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Abstract: The gastrointestinal system may be involved in the etiopathogenesis of the insulin-resistant
brain state (IRBS) and Alzheimer’s disease (AD). Gastrointestinal hormone glucagon-like peptide-1
(GLP-1) is being explored as a potential therapy as activation of brain GLP-1 receptors (GLP-1R)
exerts neuroprotection and controls peripheral metabolism. Intracerebroventricular administration of
streptozotocin (STZ-icv) is used to model IRBS and GLP-1 dyshomeostasis seems to be involved in the
development of neuropathological changes. The aim was to explore (i) gastrointestinal homeostasis in
the STZ-icv model (ii) assess whether the brain GLP-1 is involved in the regulation of gastrointestinal
redox homeostasis and (iii) analyze whether brain-gut GLP-1 axis is functional in the STZ-icv animals.
Acute intracerebroventricular treatment with exendin-3(9-39)amide was used for pharmacological
inhibition of brain GLP-1R in the control and STZ-icv rats, and oxidative stress was assessed in
plasma, duodenum and ileum. Acute inhibition of brain GLP-1R increased plasma oxidative stress.
TBARS were increased, and low molecular weight thiols (LMWT), protein sulfhydryls (SH), and
superoxide dismutase (SOD) were decreased in the duodenum, but not in the ileum of the controls.
In the STZ-icv, TBARS and CAT were increased, LMWT and SH were decreased at baseline, and no
further increment of oxidative stress was observed upon central GLP-1R inhibition. The presented
results indicate that (i) oxidative stress is increased in the duodenum of the STZ-icv rat model of
AD, (ii) brain GLP-1R signaling is involved in systemic redox regulation, (iii) brain-gut GLP-1 axis
regulates duodenal, but not ileal redox homeostasis, and iv) brain-gut GLP-1 axis is dysfunctional in
the STZ-icv model.

Keywords: GLP-1; streptozotocin; Alzheimer’s disease; oxidative stress; brain-gut axis; redox homeostasis

1. Introduction

Alzheimer’s disease (AD) is the most common type of dementia characterized by
progressive neurodegeneration and the development of cognitive deficits. Etiopathogenesis
of the disease is yet to be elucidated, with the exception of a small fraction of cases in which
Mendelian inheritance of num, but not in the ileum of the controls. In the STZ-icv, TBARS
and CAT were increased, LMWT amyloid precursor protein (APP), presenilin-1 (PSEN1)
and presenilin2 (PSEN2) is believed to be a causative factor [1]. Many hypotheses have
been proposed over the years to explain early molecular mechanisms responsible for the
development of the disease. Since its proposal in 1992 [2], the amyloid cascade hypothesis
has dominated the field. Nevertheless, the hypothesis is being increasingly criticized
as none of the amyloidocentric drugs tested so far reached the predetermined primary
endpoints [3,4]. Consequently, other hypotheses are being explored to provide novel
therapeutic and diagnostic solutions and address the unmet needs of the increasing burden
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of sporadic AD (sAD). The metabolic hypothesis of AD is gaining increasing attention as
insulin-resistant brain state (IRBS) is recognized as an important etiopathogenetic factor [5],
and insulin resistance provides a common link between other hypotheses of AD [6].

Following the discovery of insulin and insulin receptors (IR) in the brain [7,8], and
their abundance in brain regions involved in the regulation of cognitive function and
metabolism [9], Hoyer and colleagues proposed dysfunctional brain insulin signaling
might be involved in the development of the metabolic dyshomeostasis recognized as
an important early molecular event preceding neuropathological changes in AD [10,11].
Early clinical findings supported the hypothesis. In one of the first clinical studies on
the topic, Bucht et al. reported increased insulin levels during the oral glucose tolerance
test in patients diagnosed with AD in comparison with hospitalized control patients [12].
Many studies followed providing accumulating evidence regarding the association of
both central and peripheral metabolic dysfunction with AD. Excess body weight, obesity
and metabolic syndrome during middle-age have all been recognized as risk factors for
the development of AD [13], and diagnosis of type 2 diabetes mellitus (T2DM) has been
associated with two times greater risk for the development of AD in the prospective
population-based Rotterdam cohort [14]. The observed risk was even more pronounced in
a subpopulation with a more advanced stage of T2DM as patients using exogenous insulin
were found to be at a four-fold greater risk of AD in comparison with the controls [14].
More than three decades after the first metabolic hypotheses [11], IRBS is now recognized as
an important etiopathogenetic factor and pharmacological target for AD [5]. Consequently,
animal models of IRBS became increasingly relevant in the context of preclinical AD
research, and antidiabetic drugs are emerging as an attractive therapeutic option for
targeting IRBS in neurodegeneration [15].

Hoyer and colleagues [16] and Lackovic and Salkovic [17] introduced intracerebroven-
tricular treatment with low-dose streptozotocin (STZ-icv) for modeling IRBS and sporadic
AD-related changes in rodents. Streptozotocin (STZ) is a nitrosourea compound used
for modeling type 1 [18] and type 2 [19] diabetes mellitus in experimental animals when
administered parenterally. When administered intracerebroventricularly in a low dose,
streptozotocin causes brain oxidative stress [20], mitochondrial dysfunction [21], neuroin-
flammation [22,23], cholinergic deficits [24], metabolic dysregulation [25], insulin system
dysfunction [26], glucose hypometabolism [27], pathological accumulation of amyloid
β [28] and hyperphosphorylated tau protein [26,29]. Most importantly, neuropathological
changes are accompanied by the progressive development of cognitive deficits following
the administration of STZ [26,30]. Consequently, considering the model recapitulates many
important pathophysiological phenomena consistently and relatively expeditiously (cogni-
tive deficits are standardly present 1 month after model induction), the STZ-icv treatment
has been widely used for modeling different pathophysiological aspects of AD.

Following the recognition of the role of both central and peripheral insulin resistance
as risk factors for the development of sAD, repurposing antidiabetic drugs emerged as
an attractive potential therapeutic strategy for targeting IRBS [31,32]. So far, encourag-
ing preclinical [33,34] and clinical [35,36] studies reported protective effects of intranasal
insulin, and there is evidence that other antidiabetic drugs such as agonists of peroxi-
some proliferator-activated receptors γ (PPARγ) [37–39], metformin [40] or inhibitors of
dipeptidyl peptidase-4 (DPP-4) [41] might also be useful.

Agonists of the glucagon-like peptide-1 (GLP-1) receptors are another important class
of antidiabetic drugs extensively studied in the context of neurodegeneration for their anti-
inflammatory, neuroprotective [42] and insulin-sensitizing properties [43]. Even though the
most well-known effect of GLP-1 is potentiation of pancreatic insulin secretion following
meal ingestion, numerous extrapancreatic effects have been reported [44]. Both GLP-1
receptors (GLP-1R) and GLP-1 are expressed in the CNS [42,44], and most of the physiolog-
ical actions of GLP-1 seem to, at least partially, rely on GLP-1 signaling in the brain [44].
In the brain, GLP-1R are primarily expressed in neurons, especially in the hippocampus,
neocortex and in the Purkinje cells of the cerebellum, and glial cell expression of GLP-1R
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can be induced by neuroinflammation [42]. Even though the exact mechanisms responsible
for the neuroprotective effects of GLP-1 are still being explored, it has been proposed
that GLP-1 acts as a classic growth factor activating transcription of genes related to cell
growth, enhanced metabolism, inhibition of apoptosis and reduction of inflammation [42].
Furthermore, the ability of GLP-1 to suppress oxidative stress has been proposed as a pos-
sible mediator of neuroprotection demonstrated in a wide variety of in vitro and in vivo
models [45–48]. Bidirectional regulation of GLP-1 and other growth factors has also been
reported. In this context, the association of GLP-1 and insulin-like growth factor (IGF) sig-
naling [44] is especially interesting as it has been shown that GLP-1 increases the expression
of IGF-1 receptor (IGF-1R) [49], and that knockdown of IGF-1R diminishes antiapoptotic
effects of GLP-1 in the periphery [50]. Furthermore, RNA silencing or antisera-induced
reduction of IGF-2 was able to alleviate the protective antiapoptotic effect of GLP-1 in
MIN-6 cells, and cells from IGF-1 receptor knockout mice are insensitive to GLP-1-induced
increase in β cell proliferation [44,49]. It is still unknown whether this close functional rela-
tionship of GLP-1 and IGF signaling is specific for pancreatic cells, and some questions have
been brought up [51] regarding the methodology of the observed findings reported in [49].
Nevertheless, other findings suggest that this might be true as insulin and IGF-1 signaling
pathways are closely related and GLP-1 mimetics have been reported to re-sensitize insulin
signaling in the brain in different animal models of AD [52,53]. If confirmed, the existence
of such a biological relationship would further reinforce the importance of GLP-1 and
GLP-1 agonists in the context of IRBS and neurodegeneration as brain IR and IGF-1R use
the same intracellular signaling cascade, and they are often present in a heterodimerized
form [54]. Furthermore, the development of the resistance to both insulin and IGF-1 has
been recognized as an overlapping phenomenon implicated in IRBS and AD [55].

The gastrointestinal (GI) tract is emerging as an overlooked player involved in the
pathogenesis of AD. Accumulating evidence suggests gut microbiota might be involved
both in the etiopathogenesis and the modulation of the course of the disease by increasing
permeability of the gut and blood-brain barrier, secreting a large amount of amyloid and
pro-inflammatory molecules [56]. Furthermore, recent mechanistic experiments demon-
strated that intra-gastrointestinal administration of Aβ oligomers can perturb enteric
function, induce cerebral amyloidosis following retrograde transport through the vagus,
and promote the development of cognitive impairments in mice [57]. A similar pattern of
pathophysiological events has been reported for other proteins implicated in neurodegen-
eration such as α-synuclein indicating a common biological mechanism [58]. The GI tract
is also the main source of GLP-1. GLP-1 is produced in enteroendocrine L cells that are
in direct contact with luminal nutrients [44,59]. Even though L cells are predominantly
located in the ileum and colon, recent evidence indicates duodenal L cells might also play
an important role in GLP-1 secretion [59]. Meal ingestion stimulates a biphasic secretion of
GLP-1 that seems to depend on yet unresolved mechanisms involving glucose-dependent
insulinotropic peptide action on the cholinergic fibers of the vagus [59]. Brain GLP-1
signaling depends heavily on the GI GLP-1R as dorsal vagal complex, the primary cerebral
pre-proglucagon expressing site in the CNS, receives regulatory visceral sensory inputs
from gastro-duodenal neurons [60]. Consequently, dysfunction of secretion of gut GLP-1,
or failure to trigger its central secretion might induce pathophysiological milieu favoring
neurodegenerative processes. Interestingly, we have found plasma concentration of the
active fraction of GLP-1 to be reduced in a rat model of sporadic Alzheimer’s disease
induced by intracerebroventricular streptozotocin (STZ-icv) three months following model
induction—a period corresponding with the early stage of the disease [27]. Moreover, it
has been reported that galactose stimulates the secretion of GLP-1 [61], and chronic oral
galactose treatment can normalize plasma active GLP-1 in the STZ-icv rats [27]. In contrast
to parenterally administered galactose often exploited for modelling age-related patho-
physiology in rodents [62] chronic oral galactose treatment has been shown to both prevent
and alleviate cognitive decline in the STZ-icv animals [27,63]. Even though possible mech-
anisms mediating both harmful and beneficial effects of galactose are still insufficiently
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explored [64], it has been proposed that restoration of GLP-1 secretion might be responsible
for neuroprotective effects in the STZ-icv rats [27].

Based on the aforementioned, GLP-1 is emerging as an important player in neurode-
generation both in the context of its potential pathophysiological role and as an attractive
pleiotropic therapeutic target [65] modulating IRBS, peripheral insulin resistance, accu-
mulation of amyloid β, oxidative stress, neuronal cell proliferation and differentiation,
apoptosis and synaptic plasticity [43,66–70]. Consequently, there is an increasing need to
better understand the diverse physiological roles of GLP-1 that would then enable us to
fully exploit its therapeutic potential. The present aim was to assess whether brain GLP-1
signaling is involved in the regulation of GI homeostasis utilizing acute pharmacologi-
cal inhibition of brain GLP-1R. The existence of such physiological feedback loop might
explain one potential pathway by which disruption of the GLP-1 system at the level of
either brain or gut might generate a pathophysiological milieu favoring neurodegeneration.
Furthermore, we were interested to see whether the brain-gut GLP-1 axis is preserved in
the rat model of sAD given the previously reported perturbance of GLP-1 signaling [27].

2. Materials and Methods
2.1. Animals

Three-month-old male Wistar rats (n = 40) from the animal facility at the Department of
Pharmacology (University of Zagreb School of Medicine) were included in the experiment.
The animals were kept 2–3 per cage with a 7AM/7PM light-dark cycle, and standardized
pellets and water available ad libitum. Humidity and temperature were in the range of
40–70% and 21–23 ◦C respectively. The bedding was changed twice per week.

2.2. Streptozotocin Treatment

The STZ-icv model was generated as described previously [23,27]. Briefly, rats were
randomized to two groups and anesthetized with ketamine (70 mg/kg) and xylazine
(7 mg/kg), the skin was surgically opened and the skull was trepanated bilaterally. Strepto-
zotocin (1.5 mg/kg dissolved in 0.05 M citrate buffer, pH = 4.5) or vehicle was split into two
equal doses and administered bilaterally (2 µL/ventricle) directly into the brain ventricles
as first described by Noble et al. [71]. Freshly made STZ was used, and the treatment was
delivered by a Hamilton microliter syringe with a custom-made stopper [72] at coordinates
−1.5 mm posterior; ±1.5 mm lateral; +4 mm ventral from pia mater relative to bregma.
The skin was sutured, and the same procedure was repeated after 48 h. Each animal in the
STZ-icv group received a cumulative dose of 3 mg/kg streptozotocin.

2.3. Exendin-3(9-39) Amide Treatment and Tissue Collection

One month after the STZ-icv, animals from both the control (CTR; n = 20) and STZ-
icv (STZ; n = 20) group were randomized to receive either saline or GLP-1R antagonist
Exendin-3(9-39)amide (Ex-9) (Tocris Bioscience, Bristol, UK) (85 µg/kg dissolved in saline)
by a single intracerebroventricular injection (CTR (n = 10); STZ (n = 10); CTR Ex-9(n = 10);
STZ Ex-9 (n = 10)) The same procedure and coordinates were used as described for STZ-icv.
30 min after the treatment, 6 animals from each group were euthanized in general anesthesia
and decapitated (the rest of the animals underwent the transcardial perfusion procedure).
Proximal duodenum (post-gastric 2 cm) and distal ileum (pre-caecal 2 cm) were dissected
and cleared from the surrounding tissue and luminal content in ice-cold phosphate-buffered
saline (PBS). The tissue was snap-frozen in liquid nitrogen and stored at−80 ◦C. Afterward,
the samples were homogenized on dry ice and subjected to three cycles of sonification
(Microson Ultrasonic Cell 167 Disruptor XL, Misonix, SAD) in five volumes of lysis buffer
containing 150 mM NaCl, 50 mM Tris-HCl pH 7.4, 1 mM EDTA, 1% Triton X-100, 1% sodium
deoxycholate, 0.1% SDS, 1 mM PMSF, protease inhibitor cocktail (Merck, Burlington, USA)
and phosphatase inhibitor (PhosSTOP, Roche, Switzerland) (pH 7.5) on ice. Homogenates
were centrifuged for 10 min at RPM and 4 ◦C. The protein concentration of the supernatant
for further analytical correction was measured utilizing the Lowry protein assay [73] and
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supernatants were stored at −80 ◦C until further analysis. Plasma was extracted from
whole blood drawn from the retro-orbital sinus after centrifugation at 3600 RPM at 4 ◦C for
10 min in heparinized tubes (100 µL/sample).

2.4. Superoxide Dismutase Activity

Superoxide dismutase activity was measured by sample-mediated inhibition of 1,2,3-
trihydroxybenzene (THB) autooxidation as described previously [64,74]. Briefly, 15 µL of
60 mM THB dissolved in 1 mM HCl was added to 1000 µL of 0.05 M Tris-HCl, and 1 mM
Na2EDTA (pH 8.2), briefly vortexed and mixed with 10 µL of the sample. Absorbance
increment was recorded at 325 nm for 300 s. Maximal THB autooxidation was measured
with the same procedure omitting the sample. Autooxidation inhibition was the ratio
of sample and reference sample difference at the endpoint and baseline absorbance val-
ues, ratiometrically corrected for tissue sample protein concentration. CamSpec M350
DoubleBeam UV-Visible Spectrophotometer (Cambridge, UK) was used.

2.5. Lipid Peroxidation

Lipid peroxidation was measured utilizing thiobarbituric acid reactive substances
(TBARS) assay [64,75]. Briefly, 12 µL of tissue homogenate was mixed with 120 µL TBA-
TCA reagent (0.375% thiobarbituric acid in 15% trichloroacetic acid) and 70 µL of ddH2O.
Samples were incubated for 20 min in a heating block set at 95 ◦C in perforated microcen-
trifuge tubes. The complex of thiobarbituric acid and malondialdehyde was extracted in
220 µL n-butanol. The absorbance of the butanol fraction was analyzed at 540 nm in a 384-
well plate using an Infinite F200 PRO multimodal microplate reader (Tecan, Switzerland).
Predicted malondialdehyde (MDA) concentration was extracted from a linear model gener-
ated from a standard dilution curve prepared by dissolving MDA tetrabutylammonium
stock in ddH2O.

2.6. Nitrocellulose Redox Permanganometry

Nitrocellulose redox permanganometry (NRP) was used for the determination of
plasma and tissue reductive capacity as described in [76] and used in [64]. 1 µL of plasma
was loaded onto the nitrocellulose membrane (Amersham Protran 0.45; GE Healthcare Life
Sciences, Chicago, IL, USA) and left to dry out. Once dry the membrane was immersed in
NRP reagent (0.2 g KMnO4 in 20 mL ddH2O) for 30 s. The reaction was terminated in dH2O,
and trapped MnO2 precipitate was analyzed by densitometry of digitalized membranes in
Fiji (NIH, USA). The same protocol was used for the assessment of tissue homogenates,
however here the obtained values were ratiometrically corrected for respective sample
protein concentration.

2.7. Low Molecular Weight Thiols and Protein Sulfhydryl Content

Low molecular weight thiols (LMWT) and protein sulfhydryl (SH) concentration were
estimated by measuring the formation of 5-thio-2-nitrobenzoic acid (TNB) in a reaction
between sulfhydryl groups and 5,5′-dithio-bis(2-nitrobenzoic acid) (DTNB) [64,75,77].
Briefly, 25 µL of tissue homogenate was incubated with 25 µL of 4% w/v sulfosalicylic acid
for 1 h on ice and centrifuged for 10 min at RPM. 30 µL of the supernatant was transferred to
separate wells for LMWT determination. The protein pellet was mixed with 35 µL of DTNB
(4 mg/mL in 5% sodium citrate), left to react for 10 min and the supernatant absorbance was
read at 405 nm using Infinite F200 PRO multimodal microplate reader (Tecan, Switzerland)
to assess protein SH. The remaining supernatant was mixed with the same DTNB reagent,
and its 405 nm absorbance was used for the assessment of LMWT. Both SH and LWMT
concentration was calculated using a molar extinction coefficient of M−1cm−1.

2.8. Catalase Activity

Catalase activity in tissue homogenates was estimated indirectly from the H2O2
dissociation rate as proposed by Hadwan [78]. Briefly, 18 µL of tissue homogenate was
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placed in a 96-well plate. Sample background absorbance was checked at 450 nm. H2O2
concentration was determined by oxidation of cobalt (II) to cobalt (III) in the presence of
bicarbonate ions by quantification of carbonato-cobaltate (III) complex ([Co(CO3)3]Co) at a
450 nm in t0 = 0 s (baseline) and t1 = 120 s (final). 10 mM H2O2 in 1xPBS (40 µL) was used
as a substrate solution and Co (NO3)2 in hexametaphosphate and bicarbonate buffer as a
reacting/stop solution [78]. Absorbance was measured with Infinite F200 PRO multimodal
microplate reader (Tecan, Zürich, Switzerland). The concentration of H2O2 was determined
from the model based on the standard curve obtained from a serial dilution of H2O2 in
1xPBS. Catalase activity was calculated from the difference in H2O2 concentration and was
corrected for protein concentration and reaction time.

2.9. Data Analysis

Data were analyzed in R (4.0.2) in concordance with principles of reporting exper-
imental data from animal studies [79] and communicating scientific evidence [80–84].
Sample size was chosen based on our previous experiments and no blinding was used
throughout the experiment. Overall effects of treatment 1 (th1; intracerebroventricular cit-
rate buffer vs. STZ) and treatment 2 (th2; intracerebroventricular saline vs. Ex-9) were first
analyzed by linear regression using oxidative stress markers of interest as the dependent
variables and th1 and th2 as independent variables. Subsequent analysis of STZ moderation
of the Ex-9 effect was explored by including the th1:th2 interaction term. Model assump-
tions were checked using visual inspection of residual and fitted value plots. Differences of
estimated marginal means or ratios for log-transformed dependent variables and respective
95% confidence intervals were reported for both models. The results were reported as raw
data points (scatterplot) accompanied by boxplots graphically depicting data through their
quartiles. Both the main effects models and models defined by the th1:th2 interaction term
were visually reported as effects plots [79] with point estimates and confidence intervals
of either differences or ratios of estimated marginal means plotted alongside respective
contrasts tested. Interaction term p-values were reported alongside contrast estimates.
Model outputs were reported in the text in the following format: contrast (e.g., STZ-CTR
(indicating difference of estimated marginal means for the STZ-icv treated animals and the
controls); overall/interaction (indicating whether the effect was estimated from the model
without [overall], or with the interaction term [interaction]; main effects were described
when appropriate (e.g., where the effect of central inhibition did not differ in the CTR and
STZ animals)); CI: (e.g., 1.36–3.68 (indicating confidence interval for the effect to inform
the reader about the strength of the effects and depict how precisely the effect has been
estimated) [81,82]); tdf (indicating the t-statistic value with df denoting degrees of freedom)
[83]; praw = (the p-value obtained by the model).. Principal component analysis was used
for dimensionality reduction. The same modeling approach for the individual oxidative
stress parameters was used to assess the overall effect on the redox regulatory network by
using the position of an individual animal in respect to the first principal component as the
dependent variable, and treatments as the independent variables. Additional parameters
related to statistical results are provided in Supplementary Material Tables S1–S23.

3. Results
3.1. Acute Pharmacological Inhibition of Endogenous GLP-1R Signaling in the Brain Induces
Systemic Oxidative Stress

Acute inhibition of endogenous GLP-1R signaling in the brain with Ex-9 induced pe-
ripheral oxidative stress in both control animals and the rat model of sAD. Three markers of
oxidative stress were examined—SOD, TBARS and NRP. Plasma SOD activity was reduced
in the STZ-icv model in comparison with controls (STZ-CTRoverall CI: 1.36–3.68; t36: 4.41;
praw = 0.0001 | STZ SAL-CTR SALinteraction CI: 1.61–5.70; t35: 4.81; praw = 0.0002). Further-
more, a trend of reduction of the activity was observed upon inhibition of endogenous
brain GLP-1, but only in the control animals (CTR Ex-9-CTR SALinteraction CI: −3.83–0.26;
t35: −2.35; praw = 0.11) (Figure 1A,D). Plasma lipid peroxidation end products inferred



Antioxidants 2021, 10, 1118 7 of 21

from TBARS concentration suggested acute inhibition of endogenous brain GLP-1 reduces
lipid peroxidation in both control and STZ-icv animals (Ex-9-SALoverall CI: −0.02–−0.003;
t36: −2.72; praw = 0.01)(Figure 1B,E). The overall reductive capacity of plasma measured
by NRP revealed weakened antioxidant capacity in STZ-icv animals (CTR-STZoverall CI:
1.13×106–4.69 × 106; t36: 3.31; praw = 0.002 | CTR SAL-STZ SALinteraction CI: 1.59 × 105–
6.81 × 106; t35: 2.83; praw = 0.037) and suggested acute pharmacological inhibition of brain
GLP-1 signaling to reduce plasma reductive capacity (Ex-9-SALoverall CI: −5.07 × 106–
−1.52 × 106; t36: −3.76; praw = 0.0006) with the effect clearly observed in control animals
(CTR Ex-9-CTR SALinteraction CI: −7.20 × 106–−5.47 × 105; t35: −3.14; praw = 0.017) and
a trend observed in the rat model of sAD (STZ Ex-9-STZ SALinteraction CI: −6.10 × 106–
7.33 × 105; t35: −2.12; praw = 0.167) (Figure 1C,F). Principal component analysis suggests
the effect of inhibition of the brain GLP-1R on plasma NRP and SOD might be mediated by
a common biological mechanism as they cluster together in the biplot (Figure 1G,H).

3.2. STZ-icv Rats Are Resistant to Gastrointestinal Redox Dyshomeostasis Induced by the
Inhibition of Endogenous GLP-1R in the Brain

The effect of acute pharmacological inhibition of brain GLP-1R on the gastrointestinal
redox homeostasis was examined by measuring total tissue reductive capacity (NRP), lipid per-
oxidation (TBARS), low molecular cellular antioxidants (LMWT), protein sulfhydryl groups
(SH), hydrogen peroxide dissociation capacity (CAT) and the activity of ROS scavenger enzyme
superoxide dismutase (SOD). All markers were examined in both duodenum and ileum to
assess whether the observed effect was region-dependent. Total tissue reductive capacity was
largely unchanged in both tissues (Figure 2A,G). Inhibition of brain GLP-1R increased lipid
peroxidation in the duodenum and ileum of the control animals (duodenum CTR Ex-9-CTR
SALinteraction CI: 11.87–86.50; t15: 2.81; praw = 0.01 | ileum CTR Ex-9-CTR SALinteraction CI:
15.12–65.56; t19: 3.35; praw = 0.003) (Figure 2B,H,M,R). In the STZ-icv group, inhibition of
brain GLP-1R decreased lipid peroxidation in the duodenum (CTR Ex-9-CTR SALinteraction CI:
−82.33–−3.18; t15: −2.30; praw = 0.036) (Figure 2B,M), but produced no effect in the ileum (Fig-
ure 2H,R). Both LMWT (CTR Ex-9-CTR SALinteraction CI:−16.38–−1.13; t15: −2.45; praw = 0.027)
and SH (CTR Ex-9-CTR SALinteraction CI: −12.22–−0.16; t15: -2.19; praw = 0.045) were reduced
in the controls by the Ex-9 treatment in the duodenum, but no change was observed in the
ileum (Figure 2C,D,I,J,N,O)). Both LMWT (CTR SAL-STZ SALinteraction CI: 0.62–15.87; t15: 2.30;
praw = 0.035) and SH (CTR SAL-STZ SALinteraction CI:−0.42–11.64; t15: 1.98; praw = 0.066) were
reduced in the duodenal tissue of STZ-icv rats, and no additional decrement was observed in
the STZ-icv rats that also received Ex-9-icv (Figure 2C,D,N,O). This pattern was not reflected in
the ileal homogenates (Figure 2I,J). Hydrogen peroxide dissociation rate demonstrated a trend
of increment upon inhibition of brain GLP-1R in both duodenum (CTR Ex-9/CTR SALinteraction
CI: 0.58–10.06; t15: 1.31; praw = 0.210) and ileum (CTR Ex-9/CTR SALinteraction CI: 0.71–3.72; t19:
1.23; praw = 0.235) in the controls, but while a similar response of the STZ-icv rats was observed
in the ileum (STZ Ex-9/STZ SALinteraction CI: 0.92–4.50; t19: 1.89; praw = 0.074), an inverse effect
was detected in STZ-icv duodenal tissue (STZ Ex-9/STZ SALinteraction CI: 0.04–0.80; t15: −2.45;
praw = 0.027) (Figure 2E,K,P,S). Finally, SOD activity was decreased by the Ex-9-icv in the
duodenum of the control animals (CTR Ex-9-CTR SALinteraction CI: −0.14—−0.004; t15: −2.25;
praw = 0.040), while the same effect was absent in the STZ-icv (Figure 2F,Q). No change of
ileal SOD activity was induced by either treatment (Figure 2L). Principal component analysis
dimensionality reduction suggests the observed changes of SH, LMWT and SOD reflect closely
related biological mechanisms in both tissues evident from clustering of variable vectors in the
biplot (Figure 3). Most of the observed oxidative stress-related changes were more pronounced
in the duodenum, and the analysis of th:th interaction revealed differential responsiveness of
duodenum to inhibition of brain GLP-1R in STZ-icv rats (Figures 2 and 3).
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control rats and a rat model of sporadic Alzheimer’s disease induced by intracerebroventricular streptozotocin (STZ-icv). 
(A) Raw data of plasma SOD activity. (B) Raw data of plasma TBARS concentration indicating lipid peroxidation. (C) Raw 
data of plasma NRP indicating reductive capacity. (D) The effects of STZ and Ex-9 on plasma SOD activity reported as 
differences of estimated marginal means estimated from the main effects model (upper) or taking into account treatment 
interaction (lower). (E) The effects of STZ and Ex-9 on lipid peroxidation reported as differences of estimated marginal 
means estimated from the main effects model (upper) or taking into account treatment interaction (lower). (F) The effects 
of STZ and Ex-9 on total plasma reductive capacity reported as differences of estimated marginal means estimated from 
the main effects model (upper) or taking into account treatment interaction (lower). (G) Principal component analysis of 
oxidative stress-related variables in plasma. Individual animals are shown with respect to the biplot and shaded areas 
represent 95% confidence ellipses around group baricenters. (H) Contribution of variables in respect to the biplot. SOD—
superoxide dismutase; TBARS—thiobarbituric acid reactive substances; NRP—nitrocellulose redox permanganometry. 
Dim1—1st principal component; Dim2—2nd principal component; e (×10x; scientific notation). CTR (n = 10); STZ (n = 10); 
CTR Ex-9 (n = 10); STZ Ex-9 (n = 8). 

Figure 1. The effect of intracerebroventricular exendin-3(9–39)amide (icv-Ex-9) on plasma markers of oxidative stress in
control rats and a rat model of sporadic Alzheimer’s disease induced by intracerebroventricular streptozotocin (STZ-icv).
(A) Raw data of plasma SOD activity. (B) Raw data of plasma TBARS concentration indicating lipid peroxidation. (C) Raw
data of plasma NRP indicating reductive capacity. (D) The effects of STZ and Ex-9 on plasma SOD activity reported as
differences of estimated marginal means estimated from the main effects model (upper) or taking into account treatment
interaction (lower). (E) The effects of STZ and Ex-9 on lipid peroxidation reported as differences of estimated marginal means
estimated from the main effects model (upper) or taking into account treatment interaction (lower). (F) The effects of STZ
and Ex-9 on total plasma reductive capacity reported as differences of estimated marginal means estimated from the main
effects model (upper) or taking into account treatment interaction (lower). (G) Principal component analysis of oxidative
stress-related variables in plasma. Individual animals are shown with respect to the biplot and shaded areas represent
95% confidence ellipses around group baricenters. (H) Contribution of variables in respect to the biplot. SOD—superoxide
dismutase; TBARS—thiobarbituric acid reactive substances; NRP—nitrocellulose redox permanganometry. Dim1—1st
principal component; Dim2—2nd principal component; e (×10x; scientific notation). CTR (n = 10); STZ (n = 10); CTR Ex-9
(n = 10); STZ Ex-9 (n = 8).
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 Figure 2. Oxidative stress markers in duodenal (A–F) and ileal (G–L) homogenates. (A) Overall reductive capacity in
the duodenum. (B) Duodenal lipid peroxidation suggestive of qualitative th:th interaction. (C) Duodenal low molecular
cellular antioxidants. (D) Duodenal total protein sulfhydryls. (E) Duodenal catalase activity suggestive of qualitative
th:th interaction. (F) Duodenal superoxide dismutase activity. (G) Overall reductive capacity in the ileum. (H) Ileal lipid
peroxidation. (I) Ileal low molecular cellular antioxidants. (J) Ileal total protein sulfhydryls. (K) Ileal catalase activity.
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(L) Ileal superoxide dismutase activity. Main effects and treatment interaction models for oxidative stress markers of interest
in duodenal (M–Q) and ileal (R, S) homogenates. Differences of estimated marginal means and ratios of log-transformed
variables marginal means are reported. p-values are reported for the main effects models and the interaction terms in the
interaction models. Main effects and interaction models with duodenal (M) TBARS, (N) LMWT, (O) SH, (P) CAT and (Q)
SOD used as dependent variables, and treatments used as independent variables. Main effects and interaction models with
ileal (R) TBARS, and (S) CAT used as dependent variables and treatments as independent variables. CTR—control animals;
CTR Ex-9—control animals treated intracerebroventricularly with Exendin-3(9–39)amide; STZ—rat model of sporadic
Alzheimer’s disease induced by intracerebroventricular administration of streptozotocin (STZ-icv); STZ Ex-9—STZ-icv
rats treated intracerebroventricularly with Exendin-3(9–39)amide; NRP—nitrocellulose redox permanganometry; TBARS—
thiobarbituric acid reactive substances; LMWT—low molecular weight thiols; SH—protein sulfhydryls; CAT—catalase;
SOD—superoxide dismutase; e (×10x; scientific notation).
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 Figure 3. Dimensionality reduction of oxidative stress-related parameters in duodenal and ileal homogenates. (A) Principal
component analysis of oxidative stress-related variables in the duodenum. The contribution of variables (upper) and
individual animals (lower) are presented in respect to the biplot. Shaded areas represent 95% confidence ellipses around
group baricenters. (B) Position of animals in respect to the 1st principal component. (C) Point estimates with corresponding
confidence intervals from the main effects model (upper) or the treatment interaction model (lower). (D) Principal
component analysis of oxidative stress-related variables in the ileum. The contribution of variables (upper) and individual
animals (lower) are presented in respect to the biplot. Shaded areas represent 95% confidence ellipses around group
baricenters. (E) Position of animals in respect to the 1st principal component. (F) Point estimates with corresponding
confidence intervals from the main effects model (upper) or the treatment interaction model (lower). CTR—control animals;
STZ—animals treated intracerebroventricularly with streptozotocin; Ex-9—animals treated intracerebroventricularly with
Exendin 9–39; SAL—animals treated intracerebroventricularly with saline; TBARS—thiobarbituric acid reactive substances;
LMWT—low molecular weight thiols; SH—protein sulfhydryls; CAT—catalase; SOD—superoxide dismutase. Dim.1—1st
principal component; contrib—contribution; e (×10x; scientific notation).
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4. Discussion

The presented results (i) suggest the involvement of brain GLP-1R in the regulation of
systemic oxidative stress; (ii) provide the first evidence of the pathophysiological changes
in the GI tract of the STZ-icv rat model of sAD; (iii) offer preliminary evidence of the
involvement of brain GLP-1R in the regulation of GI redox homeostasis (and anatomical
differences along the GI tract) and (iv) indicate dysfunction of the brain-gut GLP-1 axis in
the STZ-icv rat model of sAD.

4.1. GLP-1 and Systemic Oxidative Stress

The protective effects of GLP-1 and GLP-1 agonists have been widely discussed in
the context of oxidative stress [85–87], however, the contribution of endogenous GLP-1
to the regulation of systemic redox homeostasis by activation of brain GLP-1R is still not
fully understood. Our results suggest that central GLP-1 might play a role in the systemic
redox regulation as acute pharmacological inhibition of brain GLP-1R reduces reductive
capacity measured by NRP (Figure 1C,F). Interestingly, plasma TBARS were reduced by
the treatment both in the CTR and STZ groups (Figure 1B,E), however, the true meaning
of this remains to be explored. Considering central GLP-1 is involved in the regulation
of peripheral metabolism and blood flow [44], further analysis of other redox-related
markers and the exploration of the effects on the liver and other peripheral organ systems
involved in the brain-periphery GLP-1 axis could elucidate the mechanisms responsible
for the observed effects. Reduced levels of SOD activity and diminished plasma reductive
capacity observed in STZ-icv rats (Figure 1A,C,D,F) are in concordance with previous
observations suggesting oxidative stress might play an important role in the development
of neurodegenerative changes in the STZ-icv model [20,76,88].

4.2. Pathophysiological Involvement of the GI System in Animal Models of AD

Pathophysiological changes of the gut have been reported in different animal models
of AD. In the Tg2576 mouse model of familial AD, dysregulation of gut homeostasis has
been observed before the accumulation of brain Aβ [89]. Honarpisheh et al. analyzed
the intestinal epithelial barrier of pre-symptomatic Tg2576 and found lower levels of mu-
cus fucosylation and reduced expression of an important apical tight junction protein
E-cadherin accompanied by an increased breach of gut bacteria through the epithelial
barrier [89]. Increased intestinal permeability has been recognized as an important patho-
physiological event that might promote enteric neuroinflammatory events and trigger
neuroinflammation and neurodegeneration in the CNS [90]. In this context, failure of the
GI homeostasis that emerges before both neuropathological and behavioral dysfunction
suggests GI-related changes might be involved in the development of the AD-like pheno-
type. Interestingly, Tg2576 also suffers from an impaired absorptive capacity of vitamin
B12 in the pre-symptomatic phase [89] and maintained B12 homeostasis is critical for the
maintenance of white matter homeostasis, indicating other important mechanisms could
also be involved in the GI-promoted neurodegeneration. Pathophysiological changes of
the GI system have also been described in the transgenic models of AD such as 5xFAD,
mThy1-hAβPP751, AβPP23 and TgCRND8 [91,92], however, to the best of our knowledge,
this is the first evidence of GI-related pathophysiological changes in a non-transgenic
model of AD. Non-transgenic models have been recognized as a valuable research tool for
deciphering early molecular events related to AD so evidence of the involvement of the
GI tract in both transgenic and non-transgenic animals might indicate important shared
pathomechanisms. Furthermore, considering that the changes occur in the early stage of
the disease [89,91], elucidation of the GI pathophysiology could provide foundations for
the development of exciting new diagnostic opportunities and preventive strategies. As
we have recently confirmed the presence of redox dysbalance in an independent cohort
of STZ-icv animals and observed that oxidative stress was associated with morphomet-
ric changes of the GI barrier [93], this remains an important area of our future research.
Functional consequences of the GI involvement should also be considered. For example,
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decreased absorption of drugs has been reported in the mouse model of familial AD [94].
In this context, an answer to the question of whether such changes also occur in non-
transgenic models (e.g., the STZ-icv) could further increase the reliability and robustness
of the model and improve the chances of developing new meaningful treatment strategies
in the preclinical setting.

4.3. Brain-Gut GLP-1 Axis

Incretin effects of GLP-1 have been discovered in the 1980s, and they have been
successfully exploited for pharmacological glucoregulation by the 2000s [95]. Nevertheless,
the physiology of GLP-1 is still being actively explored, and many of its exciting roles are
yet to be fully understood [44,96]. It has been proposed that brain GLP-1Rs are involved
in the regulation of peripheral glucose homeostasis, fuel partitioning and monitoring
energy levels to prepare the organism for the fasting that comes after a meal [44,60].
Many peripheral systems are involved in this regulation. Stimulation of brain GLP-1 with
exendin-4 decreased insulin-induced muscle glucose uptake, increasing glucose availability
for the replenishment of liver glycogen [97]. Furthermore, stimulation of brain GLP-1
potentiates insulin secretion from the pancreas but counteracts its vasodilatory effects in
the femoral artery [98] possibly to prevent muscle glucose utilization and increase liver
glycogen synthesis [60]. Conversely, intracerebroventricular administration of Ex-9 has
been shown to increase muscle glucose utilization in an insulin-independent manner that
requires an intact vagus [97]. Interestingly, it has been proposed that brain GLP-1-mediated
peripheral glucoregulation is rendered dysfunctional due to chronic overstimulation in a
diabetic state, and that chronic intracerebroventricular administration of Ex-9 can block
the development of hyperinsulinemia and insulin resistance in mice fed with a high-
fat diet [44,60,99]. The gut is the main source of GLP-1, however, it is still not clear
whether it is also under the influence of the brain GLP-1, possibly via the GLP-1 feedback
loop. The effect of acute pharmacological inhibition of the brain GLP-1R on the redox
homeostasis of the gut (Figures 2 and 3) suggests this might be the case. The brain-gut GLP-
1 axis has been described primarily in the context of brain regulation of lipid absorption.
Farr et al. demonstrated that brain GLP-1 is involved in the regulation of postprandial
chylomicron secretion [100]. Central stimulation of GLP-1 receptors either with exendin-4
or indirectly with endogenous GLP-1 upon inhibition of brain DPP-IV reduced postprandial
secretion of chylomicrons, and pre-treatment with intracerebroventricular Ex-9 annihilates
the effect [100]. The effect seems to be dependent on the sympathetic nervous system
outflow as it was not observed in the presence of adrenergic receptor antagonists, and it
seems to be mediated by regulation of jejunal triglyceride availability and the activity of
microsomal triglyceride transfer proteins [100]. The current understanding of the brain-
gut GLP-1 axis-mediated regulation of the GI system is relatively humble, and at this
moment, it is impossible to propose whether the regulation of redox homeostasis and lipid
absorption are in any way associated. Nevertheless, further exploration of the brain-gut
GLP-1 axis might provide valuable information not only for understanding the physiology
of GLP-1 but also for understanding its pathophysiology, especially in AD as described in
the next paragraph.

4.4. The Role of Brain-Gut GLP-1 Axis in AD?

As mentioned previously, a dysfunctional GLP-1 system has been observed in the
STZ-icv rat model of sAD. Three months after the model induction, active GLP-1 plasma
concentration was reduced in the STZ-icv animals [27]. Interestingly, chronic treatment
with oral galactose restores plasma GLP-1 in the STZ-icv rats and induces the expression of
hypothalamic GLP-1R [27]. The mechanism and exact temporal pattern of GLP-1 changes
in the STZ-icv model are still unknown, but GLP-1 dysfunction might be involved both in
the development and progression of AD-like neuropathology and behavioral dysfunction.
It is currently believed that IRBS is the main mechanism by which STZ-icv generates neu-
ropathological changes and GLP-1 could re-sensitize brain insulin signaling [52] possibly
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by acting on mechanisms underlying bidirectional regulation of GLP-1 and other growth
factors in the brain (e.g., IGF-1[44]). The involvement of the brain-periphery GLP-1 axis
cannot be excluded in this context either, as peripheral metabolic dysfunction has been
recognized as an important risk factor for the development of AD [13]. This is probably
best evident from animal models exploiting peripheral metabolic dysfunction for modeling
neurodegeneration (e.g., high-fat diet-induced IRBS, peripheral streptozotocin-induced
IRBS [101]). Finally, an important mechanism by which the brain-gut GLP-1 axis might
be involved in the development and/or progression of neurodegeneration is related to its
regulation of intestinal lipid absorption. Dysfunctional lipid absorption could not only
exacerbate neurodegenerative processes by stimulating peripheral metabolic dyshomeosta-
sis and inflammation, but also by regulating Aβ homeostasis in the intestine. It has been
shown that dietary cholesterol affects the risk of AD, and that excess brain cholesterol in-
creases the generation of amyloid peptides and the accumulation of amyloid plaques [102].
Furthermore, it has been reported that dietary cholesterol and saturated fats increase entero-
cyte amyloid synthesis [103] and it has been proposed that intestinally derived Aβ is a key
regulator of chylomicron metabolism involved in the control of postprandial lipoproteins
generated in a response to dietary fats [104]. Interestingly, subsequent studies by the same
group suggested that saturated fats, and not dietary cholesterol stimulate intestinal Aβ

and that dietary cholesterol might even exert a protective effect by reducing the amyloid
burden [104] similar to what has been previously reported [105]. Even though intestinal Aβ

is still not sufficiently explored, and the extent of its contribution to the systemic amyloid
burden and transport is unknown, demonstration of retrograde transport of intestinal
amyloid into the brain and subsequent seeding [57] indicate it might play an important role
in AD. It is also possible that intestinal Aβ regulation and lipid absorption in the intestine
are involved indirectly by affecting lipid transport mechanisms recognized as important
risk factors for AD. For example, apolipoprotein E4 has been recognized as one of the most
important risk factors for AD and an attractive therapeutic target as it is the most prevalent
genetic risk factor affecting approximately 50% of patients [106]. Considering the close
association of intestinal lipoprotein production and Aβ, the brain-gut GLP-1 axis could
emerge as an important player in AD due to its involvement in the regulation of intestinal
lipoprotein production.

The brain-gut GLP-1 axis also seems to be involved in the regulation of GI redox home-
ostasis, although the mechanistic explanation of the observed effect remains to be proposed.
Intestinal redox homeostasis is involved in stem cell proliferation, enterocyte apoptosis, in-
testinal immune responses, nutrient digestion and absorption [107]. Furthermore, intestinal
oxidative stress seems to play an important role in the onset and development of chronic
gut inflammation. Depletion of the most abundant intracellular low molecular weight thiol
glutathione (GSH) has been reported in Crohn’s disease and ulcerative colitis [108,109].
Furthermore, it has been shown that depletion of mucosal T cell intracellular GSH results
in redox disequilibrium that favors the switch from tolerant to reactive state associated
with intestinal inflammation [107,110]. Inflammation and disrupted homeostasis of the gut
have serious implications for AD as increased permeability of the intestinal barrier can
initiate and perpetuate both systemic and central inflammation [56,111] and this mecha-
nism has been recognized in the context of dysbiosis-induced neuroinflammation [111,112].
Intestinal dyshomeostasis accompanied by barrier dysfunction leads to induction of pro-
inflammatory cytokines that stimulate the expression of amyloid precursor protein and
β-secretase resulting in accumulation of amyloid plaques [113]. Furthermore, microbial
products (e.g., bacterial amyloids, lipopolysaccharide) activate pathogen-associated molec-
ular pattern-sensitive signaling (e.g., via Toll-like receptor-2 or -4) that leads to activation
of microglia and generation of proinflammatory cytokines such as tumor necrosis factor α
and interleukin 1 β in the central nervous system [113,114].An association of inflammatory
bowel disease and dementia has also been reported [115] providing further evidence of
the possible involvement of gut homeostasis in the disorders of the CNS. Here, we demon-
strated that single acute administration of Ex-9 in the brain can induce intestinal oxidative
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stress reflected by increased lipid peroxidation and decreased LMWT, and protein SH
and SOD activity (Figures 2 and 3) indicating a possible role of the brain GLP-1R in the
regulation of gut redox homeostasis. Interestingly, although pronounced in the duodenum,
the effect was largely absent in the ileum (Figures 2 and 3) suggesting a physiological
regulatory mechanism with a clear anatomical distinction in the GI tract. Implications of
these findings are to be further explored, but the existence of brain GLP-1R-dependent
regulation of homeostasis in the upper small intestine could be important in the context of
the previously acknowledged role of brain GLP-1R in peripheral energy monitoring and
fuel partitioning [44,60]. In the context of neurodegeneration, the existence of such a mech-
anism would further corroborate the importance of brain GLP-1 as a therapeutic target in
neurodegeneration providing an additional mechanism by which normalization of central
GLP-1 signaling might stop the vicious cycle of neuroinflammation and systemic inflam-
mation (Figure 4). Furthermore, our recent observations suggest that glucose-dependent
insulinotropic polypeptide (GIP) might act by a similar mechanism as acute inhibition
of brain GIP receptors exerts similar effects on the duodenal redox homeostasis as has
been shown here for GLP-1 [93]. These findings add another important perspective to the
concept of utilizing dual incretin receptor agonists [53,116].
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Figure 4. A schematic representation of the potential role of brain GLP-1 signaling in the control of
intestinal, systemic and brain inflammation. Brain GLP-1 might control growth factor signaling in
the brain (1), maintain the redox homeostasis of the gastrointestinal tract via the brain-gut axis (2)
and control peripheral metabolism to regulate systemic inflammation (3). Failure of the brain GLP-1
signaling leads to dysfunctional redox homeostasis and generation of oxidative stress in the gut (4).
Oxidative stress and loss of gastrointestinal homeostasis led to dysbiosis, accumulation of intestinal
amyloid and increased epithelial permeability (5). Breach of microbiota, proinflammatory molecules
and amyloid through the intestinal barrier induces systemic inflammation that in turn leads to the
development of neuroinflammation and insulin-resistant brain state (6).

5. Conclusions

Our results provide the first evidence of pathophysiological changes in the GI sys-
tem of the STZ-icv rat model of sAD indicating involvement of the GI tract might be a
shared feature of different animal models of AD. Given recent evidence suggesting the
involvement of the gut in the etiopathogenesis and progression of the disease in humans,
further understanding of intestinal pathophysiology might provide critical information for
understanding the biology of neurodegeneration and the development of new diagnostic
and treatment strategies. Furthermore, perturbations of the GI homeostasis upon inhibition
of brain GLP-1R indicate the existence of the brain-gut GLP-1 axis involved in the mainte-
nance of redox balance in the upper small intestine. Implications of these findings remain to



Antioxidants 2021, 10, 1118 15 of 21

be fully explored, but brain-gut GLP-1 redox regulation might be involved in the peripheral
fuel partitioning and could be important in the context of the development of chronic gut
inflammation. In concordance with previous findings related to the dysfunctional GLP-1
system in the STZ-icv model, the reported results provide additional mechanistic insight
into how the failure of the brain-gut GLP-1 axis might support the development of systemic
and central inflammation in the rat model of sAD.

6. Limitations

Intracerebroventricular administration can perturb oxidative stress and glucose home-
ostasis and it has been shown that GLP-1 inhibits hyperglycemia-induced oxidative in-
jury [85]. Even though we included appropriate controls to account for this, the obtained
results may reflect mechanisms that are more relevant in the pathophysiological than in
the physiological milieu (Supplementary Material Figure S4).

Furthermore, in this manuscript we propose the existence of the brain-gut GLP-1 axis
based on the results from acute experiments. Further research focused on chronic effects of
brain GLP-1R inhibition on the homeostasis of the gut, as well as exploration of potential
mechanisms responsible for mediation of the effects are needed to elucidate whether the
observed is just a short-term phenomenon or represents an important pathophysiological
process that could theoretically drive dyshomeostasis of the gut.

Another important limitation is that it was not possible to assess potential efflux
of Ex-9 into the periphery upon intracerebroventricular administration. Consequently,
the observed effects could theoretically reflect small concentrations of inhibitor reaching
the intestines. Previous experiments utilizing intracerebroventricular administration of
Ex-9 acknowledged this problem. For example, Kanoski et al. introduced additional
controls coadministered with intraperitoneal Ex-9 in doses likely exceeding those that
could have effluxed after intracerebroventricular administration [117]. Kanoski et al. used
25% and 75% of centrally administered doses [117] introducing a substantial safety margin
considering previous work estimated approximately 17% of centrally administered Ex-
9 reaches peripheral circulation using intranasal administration [118]. Similar design
utilizing additional control animals co-administered with intraperitoneal Ex-9 may provide
an insight into whether the effects observed here could have been caused by the effluxed
Ex-9 that reached the intestines. Until such experiments are conducted, we only have
indirect proof suggesting direct effect of effluxed Ex-9 is not likely the cause as (i) there is
no difference in cyclic adenosine monophosphate in either duodenom or ileum between
groups (unpublished data); (ii) there is no difference in the estimated expression of GLP-
1R in either duodenom or periduodenal adipose tissue (unpublished data)—although
this information has to be interpreted with caution as commercial GLP-1R antisera often
provide unreliable results [119,120]; (iii) there is no difference in plasma or cerebrospinal
fluid glucose concentration (Supplementary Material Figure S4). Taken all together, we
believe the abovementioned provides evidence that Ex-9 efflux is not the likely cause of the
observed effects, however future experiments using a similar design as has been used by
Kanoski et al. [117] will provide a final answer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antiox10071118/s1, Tables S1–S23: Statistical model outputs, Figures S1–S3: Scree plot and
contribution of individual variables, Figures S4: Plasma and cerebrospinal fluid glucose concentration
in the control rats and rats treated with intracerebroventricular streptozotocin 30 min after intracere-
broventricular saline (CTR/STZ) or Exendin-3(9-39)amide (CTR Ex-9/STZ Ex-9) administration.
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