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Abstract: Bone morphogenetic proteins (BMPs) possess a unique ability to induce new bone forma-
tion. Numerous preclinical studies have been conducted to develop novel, BMP-based osteoinductive
devices for the management of segmental bone defects and posterolateral spinal fusion (PLF). In
these studies, BMPs were combined with a broad range of carriers (natural and synthetic polymers,
inorganic materials, and their combinations) and tested in various models in mice, rats, rabbits, dogs,
sheep, and non-human primates. In this review, we summarized bone regeneration strategies and
animal models used for the initial, intermediate, and advanced evaluation of promising therapeutical
solutions for new bone formation and repair. Moreover, in this review, we discuss basic aspects to be
considered when planning animal experiments, including anatomical characteristics of the species
used, appropriate BMP dosing, duration of the observation period, and sample size.

Keywords: animal model; bone fracture; bone healing; posterolateral spinal fusion; regenerative
medicine; bone morphogenetic proteins

1. Introduction

Bone tissue possesses unique regenerative properties, and bone fractures regularly
heal under physiological conditions. However, large segmental bone defects resulting
from severe trauma or extensive tumor resection cannot be restored by endogenous self-
repair mechanisms, decrease quality of life, and may sometimes lead to limb amputation.
Indeed, the management of large segmental defects is one of the most challenging issues in
orthopedic medicine, typically due to the biologically hampered microenvironment [1,2].
The standard of care for the healing of large bone defects requires the use of an autologous
bone graft (ABG), which is usually harvested from the iliac crest. ABG is also used as a
gold standard to achieve spinal fusions, including posterolateral spinal fusion (PLF). PLF is
a commonly performed surgical procedure used for the treatment of degenerative diseases
of the spine, including degenerative disc disease, spondylolisthesis, spinal instability, and
symptomatic scoliosis [3–6].

However, ABG possesses several disadvantages, including a limited amount of bone
that might be harvested, the potential transfer of contaminating agents, acute and chronic
pain, skin scarring, and deformity at the donor site [4,7]. In addition, the use of ABG
increases the blood loss, duration, and cost of surgical procedures. Therefore, there remains
an imminent need for the development of novel bone regeneration strategies to enrich or
replace ABG. Among these, osteoinductive devices are under investigation for clinical use
in PLF and healing of large segmental long bone defects.

In the last few decades, numerous preclinical studies using animal models have
been conducted to test novel bone bridging or fusion strategies [8,9]. The principles of
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the rational use of animal models in the evaluation of novel bone regenerative therapies
have been previously described [8]. Hence, we further investigated the use of animal
models in the development of osteoinductive therapies of large segmental bone defects
and PLF procedures, in particular the selection of a proper anatomical model, treatment
dose, observation period, and sample size. We specifically analyzed published in vivo
studies looking into the development of bone morphogenetic protein (BMP)-based bone
inducing implants.

2. Bone Regeneration by Bone Morphogenetic Protein Devices

BMPs are well-known osteoinductive molecules, required and sufficient for ectopic
bone induction, and powerful agents for the restoration of large orthotopic bone defects [10].
BMP2 is the most widely used osteoinductive BMP in preclinical testing, and it is a part of
an osteoinductive device (Infuse™, Medtronic, Dublin, Ireland), currently approved for
anterior lumbar interbody fusion (ALIF), acute tibial fractures, and maxillofacial recon-
structions [11–15]. However, BMPs have been used off- label in various spinal indications,
including cervical spine fusion, posterior lumbar interbody fusion (PLIF), transforaminal
lumbar interbody fusion (TLIF), posterolateral spinal fusion (PLF), and thoracolumbar
fusions [16,17]. Reported side effects in patients included implant displacement, infec-
tion, swelling of the adjacent tissue and dysphagia, formations of seroma, radiculitis
and nerve root compression, ectopic bone formation, osteolysis, and retrograde ejacula-
tion [11,12,16–21]. These side effects eventually resulted from the use of supraphysiological
doses as registered BMP2-based devices contain 4–12 mg recombinant protein, while the
human body contains only a total of 2 mg of BMPs [22].

Other commonly used osteoinductive BMPs are BMP7, which is no longer in clinical
use, and more recently, BMP6 [23]. We demonstrated that BMP6 appears to be superior
to BMP2 and BMP7 in promoting osteoblast differentiation in vitro and inducing bone
formation in vivo [23,24]. The superiority of BMP6 may arise from its resistance to noggin
inhibition and affinity across the BMP type I receptors. Therefore, BMP6-based devices are
expected to be more efficacious at lower doses compared to BMP2 and BMP7.

BMPs require a carrier/delivery system that will sustain the BMP concentration
and allow prolonged BMP release [25–28]. Moreover, the ideal BMP carrier should be
biocompatible, enable vascular and cellular infiltration, resist compression, and define
the contours of the resulting bone [25,26,29]. BMP carriers can be divided into four major
groups: natural polymers, synthetic polymers, inorganic materials, and combinations
between these groups [25,26,30].

Natural polymers include collagen, hyaluronic acid, gelatin, fibrin, chitosan, alginate,
and silk and have been extensively evaluated in preclinical studies [6,31–38]. The advan-
tages of natural polymers are biocompatibility, biodegradability, and resorbability in the
physiological environment [25–27]. The most commonly used is bovine tendon collagen
which delivers BMP2 in the clinically approved Infuse™ device. However, collagen has
significant disadvantages, including a low affinity for BMPs, immunogenicity due to its
animal origin, and weak biomechanical properties resulting in compression by surrounding
tissues [25–27].

Biocompatible and biodegradable synthetic polymers, such as polylactic acid (PLA),
polyglycolic acid (PGA), poly(D, L-lactide-co-glycolide) (PLGA), polyethylene glycol (PEG),
poly-E-caprolactone (PCL), and polypropylene fumarate (PPF), as well as their block poly-
mers have been evaluated as potential BMP carriers to overcome the disadvantages of
natural polymers, including immunogenicity and disease transmission risk [39–42]. They
are also moldable into highly porous three-dimensional scaffolds, linearly oriented scaf-
folds, fibers, sheets, blocks, or microspheres [26]. Apart from these advantages, synthetic
polymers decrease local pH as a result of acidic breakdown byproducts, have poor clearance,
cause bulk degradation, and cause chronic inflammation associated with high-molecular
weight polymers, resulting in substantial disadvantages [26]. They have also been tested
with other potentially osteogenic molecules, such as PGE2 and PGE4 prostaglandin recep-
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tor analogs [43], and materials such as calcium silicate (CaSi) and dicalcium phosphate
dihydrate (DCPD) [44–47].

Inorganic materials as potential BMP carriers include calcium phosphate (CaP) ceram-
ics, calcium phosphate and calcium sulfate cement, and bioglass [2,5,29,32,38,42,48–72].
The most commonly used inorganic preclinical materials are CaP ceramics, further sub-
divided into hydroxyapatite (HA), tricalcium phosphate (TCP), and biphasic calcium
phosphate (BCP) containing both HA and TCP at various ratios. We have recently shown
that the chemical composition of ceramics does not affect the amount of newly formed bone
induced by the osteoinductive device [73,74]. However, HA and TCP significantly differ in
resorbability (HA is very stable, while TCP is more resorbable), which would eventually
result in different residual ceramic volumes. The resorbability might be adjusted by vary-
ing HA/TCP ratios in BCP ceramics [75]. Moreover, CaP ceramics might be formulated
into particles or blocks in a broad range of sizes and geometrical shapes while porosity,
pore size, and interconnectivity are adjusted during the sintering process [73,75,76]. We
demonstrated that particle size affects the volume of newly formed bone; smaller particles
(74–420 µm) combined with rhBMP6 resulted in higher bone volume than larger particles
(1000–4000 µm) [73]. Another important determinant of ceramics is the pore size since
pores from 300 to 400 µm promoted the formation of the largest bone volume [51].

The fourth group of BMP carriers are composites of the aforementioned materials
which have been introduced to overcome the encountered limitations of a single compo-
nent. The most typical combinations are composites containing either natural or synthetic
polymers with CaP ceramics [39,77–85]. In these combinations, ceramics increase the
biomechanical properties of the implants and are used to address compressibility issues.
Less frequent, natural, and synthetic polymers might be combined.

We have recently developed an autologous bone graft substitute (ABGS) comprised of
BMP6 delivered within an autologous blood coagulum to which a compression-resistant
matrix, such as allograft or synthetic ceramics, can be added [22,73,74,76,86–92]. Moreover,
the volume of newly induced bone increased with the elevation of the CRM amount, which
might be attributed to the enlargement in an overall surface area [73].

3. Animal Models

Animal models are routinely used in the development of novel bone regenerative ther-
apies [8]. Models might be categorized according to the species (mouse, rat, rabbit, sheep,
non-human primate) and tested indication (ectopic model, critical-size defect, PLF). In this
review, we suggested classification based on the stage of preclinical development, namely
as initial, intermediate, and advanced testing of osteoinductive devices (Figure 1). Initial
testing includes rodent ectopic and rodent critical-size defect models for rapid comparison
of different osteoinductive responses. Intermediate evaluation includes adequate rabbit
models (segmental defect and PLF model), while advanced testing uses canine, sheep, and
non-human primates as a final step before clinical trials.

3.1. Initial Evaluation in Rodents
3.1.1. Ectopic Models

Rodent ectopic models have been extensively used for the initial evaluation of novel
osteoinductive therapies. They might be also used for investigating the biology of ectopic
bone induction and the formation of a bone organ or ossicle, including bone and bone
marrow [31,32,39,48–57,71,73,76,86,87,93–105]. Rodent ectopic models (Tables 1 and 2)
are further subdivided according to the species (mouse, rat) and the implantation site
(subcutaneous or intramuscular). Implantation under the skin (Figure 2A–D) or into the
muscle does not affect the bone formation outcome, and the bone formation occurs in the
first two weeks following implantation of an osteoinductive device [76,86,87]. The later time
points are needed for the evaluation of the bone longevity and maintenance of the ectopic
bone structure. Molecular and cellular events during the cascade of bone formation can
be evaluated using microCT/nanoCT and histological analyses. Immunohistochemistry,
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flow cytometry, gene profile microarrays, and single-cell RNA sequencing are among other
analytical techniques used for unraveling the mechanism of ectopic bone formation.
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Table 1. Mouse ectopic and bone defect models.

Mouse Ectopic Model

Author (Year) Carrier BMP Dose (µg) Time (Weeks or Days) Sample Size
(n)

Kato et al. (2006)
PLA-DX-PEG,

PLA-DX-PEG/TCP,
TCP

2 and 5 3 and 6 weeks 6

Roldan et al. (2010) BCP 12 weeks 8

Liang et al. (2014) TCP 50 3, 7, 14, 21, and 28 days 5

Bolander et al. (2016) CaP granules/Collagen 1.06 and 1.77 5 weeks 4

Ji et al. (2018) CaP-based materials 0.81, 3.24, and 5.67 2 and 5 weeks 3

Hashimoto et al. (2020) Collagen 2.5 7, 10, 14, and 21 days
Mouse Calvarial Defect Model

Author (Year) Calvarial Defect
Size (mm) Carrier BMP Dose (µg) Time (Weeks) Sample Size

(n)

La et al. (2012) 4 TCP,
Heparin—conjugated fibrin 0.3 8 10

Yang et al. (2012) 4 Collagen,
Apatite—coated collagen 0.5, 0.75, 1, 2, and 3 8 6

Fan et al. (2015) 3 PLGA/Apatite layer 0.3, 0.6, and 1 6 8, 12

Gronowitz et al.
(2017) 3.5 Collagen/HA 2 3 4

Herberg et al.
(2017) 5 Acellular dermis 0.542 4 10

Huang et al.
(2017) 3.5 PLA 50 2, 4, 6, and 8 16

Seo et al. (2017) 5
Poly(phosphazene) hydrogels

Poly(phosphazene)
hydrogels/BCP

5 and 10 8 3

Terauchi et al.
(2017) 3.5 Sulphopropyl ether—modified

polyrotaxanes/Collagen 0.1 4 5, 6

Maisani et al.
(2018) 3.5 Hydrogel 1 8 6

Reyes et al.
(2018) 4 PLGA 0.1, 0.3, and 0.6 4 and 8 4

Mouse Femoral Defect Model

Author (Year) Femoral Defect
Size (mm) Carrier BMP Dose (µg) Time (Weeks) Sample Size

(n)
Alaee et al.

(2014) 2 Collagen 5 4 days, 1, 2, 3, 4, and 8 6

Bougrouli et al.
(2016) 2 Collagen 5 1, 2, 4, and 8 6

Zwingenbergen
et al. (2016) 3 Heparin/functionalized

mineralized collagen matrix 2.5 and 15 6 11
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Table 2. Rat ectopic and bone defect models.

Rat Ectopic Model

Author (Year) Carrier BMP Dose (µg) Time (Weeks) Sample Size
(n)

Kuboki et al. (1998) HA 1, 2, 3, and 4

Tsuruga et al. (1998) HA 4 1, 2, 3, and 4 3

Alam et al. (2000) TCP, HA, BCP 1.5 and 10 2 and 4 3

Vehof et al. (2002) HA 8 3, 5, 7, and 9 3

Kim Chang-Sung et al.
(2004) TCP, Collagen 5 2 and 8 10

Tazaki et al. (2006) HA 0.5, 1, and 5 3

Tazaki et al. (2008) HA, TCP 0.5, 1, and 5 3 3

Luca et al. (2010) Chitosan/Hyaluronan hydrogel 150 3 3, 6

Reves et al. (2011) Chitosan-nano-HA 36 4 6

Park et al. (2011) BCP 2.5 2 and 8 5–8

Bhakta et al. (2012) Hyaluronan-based hydrogel 5 8 6

Strobel et al. (2012) BCP 1.6 2, 4, and 6 6

Kisiel et al. (2013) Hyaluronan hydrogel/Fibronectin
fragments 4 7 6

Ma et al. (2014) BCP 20 8 6

Mumcuoglu et al. (2018) Collagen-based microspheres/Alginate 0.3, 1, and 10 10 8

Lin et al. (2019) Coralline HA 20 5 6
Rat Calvarial Defect Model

Author (Year) Carrier BMP Dose (µg) Time
(Weeks)

Sample Size
(n)

Jung et al. (2006) TCP 2.5 2 and 8 20

Kim et al. (2011) BCP 50 and 250 2 and 8 20

Park et al. (2011) BCP 2.5 2 and 8 5–8

Notodihardjo et al. (2011) HA 10 4 5

Jang et al. (2012) BCP 2.5, 5, 10, and 20 2 and 8 8

Lee JH et al. (2013) TCP, HA, BCP 5 4 and 8 13

Bae et al. (2017) PCL/TCP 5 4 7
Rat Femoral Defect Model

Author (Year) Carrier BMP Dose (µg) Time (Weeks) Sample Size
(n)

Chu et al. (2006) Poly(propylene fumarate)/TCP/DCP 10 6 and 15 4, 7

Johnson et al. (2011)
Collagen,

Collagen/Heparin,
Heparin

3 12 7, 9

Diab et al. (2011) PCL/Silk fibroin hydrogel 5 12 10

Lee et al. (2012) BCP 1000 4 and 8 6

Rodriguez-Evora et al.
(2013)

Segmented polyurethane/PLGA/ TCP
ceramics 1.6 and 6.5 12 9

Wai-Ching et al. (2014) Bioactive glass/DCP 10 15 8, 9

Williams et al. (2015) Collagen 25, 50, 75 and 100 8 8, 11

Krishnan et al. (2015) Nanofiber mesh alginate 5 µg 12 14
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fusion mass in rabbit (F) and sheep (H) PLF model. Histological sections were processed undecalcified and stained by Von 
Kossa (A,B), Goldner (C,D,F), and hematoxylin and eosin (H). (Modified from [74,88], respectively.) 
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Figure 2. Histological sections and gross anatomy of newly formed bone induced by rhBMP6 in a rat subcutaneous
assay (A–D); rabbit (E,F) and sheep (G,H) posterolateral spinal fusion model. (A,B) On day 7 following implantation,
endochondral bone formation occurs at the peripheral site of ABGS, while 14 days (C,D) after implantation, newly formed
bone is present throughout the implant containing rhBMP6 lyophilized on allograft mixed with ABC. Gross anatomy of
newly formed bone between transverse processes in rabbit (E) and sheep (G) PLF model. Histological sections through
fusion mass in rabbit (F) and sheep (H) PLF model. Histological sections were processed undecalcified and stained by Von
Kossa (A,B), Goldner (C,D,F), and hematoxylin and eosin (H). (Modified from [74,88], respectively.)

Murine models are initially used to unravel the potential mechanism of action of vari-
ous signaling pathways and genes or proteins in bone induction or enhancement. However,
due to limited translation of mouse to human bone regeneration and disease outcome, the
rat is therefore a more suitable model when testing functional outcomes [106–108].

3.1.2. Bone Defect Models

Mouse or rat bone defects are the initial orthotopic models to evaluate the osteoin-
ductive properties of novel therapies and the osseointegration of newly formed bone with
adjacent native bone. There are two main bone defect models in rodents: a calvarial critical-
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size defect and segmental femoral defect. In the calvarial critical-size defect, circular bone
defects are created in the mouse (3–5 mm) [109–118] and rat (4–8 mm) [29,55,58–60,66,77]
calvaria (Figure 3A; Tables 1 and 2), while segmental defects of the long bone are typically
created in the femur, both in mice (2–3 mm) [119–121] and rats (6–10 mm) [5,33–35,67,78,79]
(Figure 3B; Tables 1 and 2) and filled with tested osteoinductive material. The develop-
ment of a reproducible non-union model in the mouse is demanding, and, in contrast
to rat non-union models, mouse non-union models are sparse [122]. The main short-
coming of this model is a relatively small defect size compared to clinically relevant
proportions. Moreover, it is difficult to obtain a full stabilization of the fracture, there-
fore resulting in increased callus formation. Methods of evaluation include analyses of
radiological images (CT/microCT), histological and histomorphometric analyses, and
biomechanical testing, which might be conducted at the end of the observation period
(Figure 4) [5,29,33–35,55,58–60,66,67,77–79,109–121,123].
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Figure 3. First row: segmental defect (SD) models performed on various bones depending on the species; (A) calvarial,
(B) femoral, (C) ulnar (or radial), and (D) tibial defect. Second row: posterolateral lumbar fusion (PLF) is conducted
between adjacent transverse processes; the figure shows differences in the anatomy of rabbit (E), sheep (F), and human
(G) lumbar spine.
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Figure 4. BMP doses (µg), observation period (weeks), and sample size (n) used in the initial
phase —rodent models. Data is presented through box and whisker plots in which dots represent
all individual values from studies listed in Tables 1 and 2. E—ectopic model, C—calvarial, and
F—femoral defect.

3.2. Intermediate Evaluation in Rabbits
3.2.1. Segmental Defect Model

Potential therapeutical solutions for segmental bone defect restoration have been
extensively evaluated in rabbits [36,41,42,61,68–70,80–84,87,124–126] (Table 3), and a defect
can be created in the femur, radius, or ulna (Figure 3B,C). Regardless of the chosen anatom-
ical site, the typical defect size is 15–20 mm. In published work, the defect was bridged
with a broad range of delivery systems containing up to 150 µg of BMPs. The observation
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period was typically 6–12 weeks. Few studies evaluated bone formation at earlier time
points (2 and 4 weeks) or for a prolonged period (24 weeks) (Figure 5, 1st column).
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phases, which include rabbit, dog, sheep, and non-human primate models. Data are presented through box and whisker
plots in which dots represent all individual values from studies listed in Tables 3–6. SEG—segmental defect models;
PLF—posterolateral spinal fusion model.
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Table 3. Rabbit segmental defect model.

Rabbit Segmental Defect Model

Author (Year) Model Carrier BMP Dose
(µg) Time (Weeks) Sample

Size (n)

Yoneda et al. (2004) Femur (1.5 cm) PLA-DX-PEG/TCP 50 24 5

Yamamoto et al. (2006) Ulna (2 cm) Gelatin hydrogel 17 6 3

Liu et al. (2009) Radius (1.5 cm) Gelatin/nanoHA/Fibrin 100 4, 8, and 12 5

Luca et al. (2010) Radius (1.5 cm) Chitosan hydrogel/TCP 150 8 1 (pilot)

Zhu et al. (2010) Radius nanoHA 4, 8, and 12 10

Bae et al. (2011) Ulna (1.5 cm) PCL/fibrin 75 8 5

Fujita et al. (2011) Ulna (2 cm) Gelatin/TCP 17 4 and 8 6, 10

Sun-Woong et al.
(2012) Ulna (2 cm) PCL 15 12 6

Hou et al. (2012) Radius (1.5 cm) Collagen,
Collagen/Chitosan 50 2, 4, 8, and 12 3, 5

Choi et al. (2014) Radius (2 cm) Collagen,
Fibrin glue 50 6 and 12 4

Wu et al. (2014) Radius (1.5 cm)
CaP cement,

Hydroxypropylmethyl
cellulose/CaP cement

50 2, 4, 8, and 12 5

Yamamoto et al. (2015) Ulna (2 cm) Gelatin/TCP 17 6 6

Peng et al. (2016) Femur (1 cm) PEG-PLGA hydrogel 5, 10, and
20 12 6

Pan et al. (2017) Femur (2 cm) Bioglass/TCP 20 4 and 8 5

Kuroiwa et al. (2018) Femur (2 cm) TCP 50 12 and 24 10

Grgurevic et al. (2019) Ulna (1.5 cm) Autologous blood coagulum 25, 50, and
100 23 5

Huang et al. (2021) Ulna (2 cm) TCP 20 8 5

Table 4. Rabbit PLF model.

Rabbit PLF Model

Author (Year) Carrier BMP Dose (µg) Time (Weeks) Sample Size (n)

Boden et al. (1995) DBM, Biocoral/ Collagen 100 and 300 5 14–16

Itoh et al. (1999) Collagen 10, 50, and 200 24 6

Louis-Ugbo et al. (2001) BCP,
Collagen/BCP 3000/mL 5 18

Jenis et al. (2002) Collagen - 3 and 12 8

Konishi et al. (2002) Autograft/HA 200 2, 4, and 6 2–7

Suh et al. (2002) Collagen/BCP,
BCP 860 5 14

Minamide et al. (2003)
TCP cement,

True bone ceramics,
Collagen

100 3 and 6 5–10

Namikawa et al. (2005) TCP/PLA-DX-PEG 7.5, 15, and 30 6 5
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Table 4. Cont.

Rabbit PLF Model

Author (Year) Carrier BMP Dose (µg) Time (Weeks) Sample Size (n)

Valdes et al. (2007) - 6 18

Dohzono et al. (2009) TCP 5, 15, 50, and 150 4 and 8 5–8

Lee JW et al. (2011)
Heparin—conjugated PLGA

nanospheres,
PLGA nanospheres

20 12 12

Lee JH et al. (2012) HA 10, 50, 200, and 500 3 and 6 14

Vukicevic et al. (2019)
Autologous blood coagulum,

Autologous blood
coagulum/Allograft

125, 250, 500, and 1000 14 4

Table 5. Dog and sheep segmental defect model.

Dog Segmental Defect Model

Author (Year) Model Carrier BMP Dose (µg) Time
(Weeks)

Sample
Size (n)

Itoh (1998) Ulna (2 cm) PLGA/Gelatin 40, 160, and 640 16 4

Tuominen (2000) Ulna (2 cm) Coral - 16 and 36 3, 6

Hu (2003) Radius (2 cm) HA/Collagen/PLA - 24 6

Jones (2008) Ulna (2.5 cm) Collagen/Allograft,
Collagen/BCP ceramics 210, 430, and 650 12 6

Harada (2012) Ulna (2.5 cm) TCP 35, 140, 560, and
2240 12 3

Minier (2014) Ulna (2 cm) CaP/Hydrogel 330 20 5

Sheep Segmental Defect Model

Author (Year) Model Carrier BMP Dose (µg) Time
(Weeks)

Sample
Size (n)

Den Boer et al. (2003) Tibia (3 cm) HA 2500 12 8

Pluhar et al. (2006) Tibia (5 cm) Carboxymethylcellulose/Bovine
collagen, Collagen 3500 16 10

Reichert et al. (2012) Tibia (3 cm) mPCL-TCP 3500 12 and 52 8

Cipitria et al. (2013) Tibia (3 cm) mPCL-TCP 1750 and 3500 12 8

Lammens et al. (2020) Tibia (3 and 4.5 cm) CaP ceramics 344, 1500, and 3800 16 4, 8, 13

Table 6. Sheep and non-humane primate PLF models.

Sheep PLF Model

Author (Year) Carrier BMP Dose (µg) Time (Weeks) Sample Size (n)

Pelletier et al. (2014) TCP 1050, 3500, and 10,500 12 12

Toth et al. (2016) Collagen/BCP,
Collagen-ceramic sponge 750 and 1500/cm3 24 12–24

Grgurevic et al. (2020)
Autologous blood coagulum,

Autologous blood
coagulum/Allograft

500 and 1500 27 6–10
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Table 6. Cont.

NHP PLF Model

Author (Year) Carrier BMP Dose (µg) Time (Weeks) Sample Size (n)

Boden et al. (1999) BCP 6000, 9000, and 12,000 24 4–12

Suh et al. (2002) Ceramic/Collagen 9000 24 4

Akamaru et al. (2003) Collagen/BCP
Collagen/Allograft 3000 24 6

3.2.2. Posterolateral Spinal Fusion (PLF) Model

Rabbit is the most commonly used species for the evaluation of the efficacy and safety
of promising therapeutical solutions for achieving PLF [5,6,37,38,40,62–64,74,85,86,127–129].
The transverse processes of lumbar vertebrae are exposed, and an osteoinductive device is
implanted bilaterally between adjacent transverse processes (L4-L5 or L5-L6) [127]. Trans-
verse processes should be decorticated before the implantation to promote osseointegration
of newly formed bone with native bone [86]. In the majority of previous studies, the
BMP dose was up to 1000 µg and was delivered on various carriers (Table 4). The spinal
fusion outcome was evaluated 6 weeks following surgery, and the majority of rabbit PLF
studies had an observation period of fewer than 10 weeks. Few studies had a prolonged
observation period (>10 weeks), but later time points might be important to determine
the survival and long-term maintenance of newly induced bone [6,86], which is clinically
relevant in patients undergoing PLF surgery (Figure 5, 1st column).

Methods of evaluation in rabbit segmental defect and PLF models are similar and
include segmental mobility testing, radiological methods (x-ray and CT/microCT), histo-
logical (Figure 2F), histomorphometric analyses, and biomechanical testing [5,6,37,38,40,62–
64,74,85,86,127–129].

3.3. Advanced Evaluation of Bone Regeneration Therapies
3.3.1. Dog and Sheep Segmental Defect Model

Dog and sheep segmental defect models are used for advanced evaluation of bone
regeneration therapies. In dogs, the defect (20–25 mm) is created in the radius or ulna
(Figure 3C) [130–135]. Applied doses of BMPs were in the range between 100 and 650 µg,
which is higher compared to the rabbit model. Moreover, the typical observation period
(12–24 weeks) was also prolonged compared to the rabbit model (Figure 5, 2nd and
3rd columns).

Tibial segmental bone defects in sheep (Figure 3D) were recently developed to eval-
uate novel bone regeneration therapies in conditions mimicking the size and biology of
segmental bone defects in the clinics [2,136–140]. Moreover, there are two subtypes of this
model: a fresh defect (FD) and biologically exhausted defect (BED), the latter mimicking
a patient with a non-union [2]. Following the creation of a large defect (30 or 45 mm) in
the sheep tibia in the FD model, a polymethyl-methacrylate spacer is inserted to induce
the formation of the Masquelet membrane. Six weeks following the creation of the defect,
an osteoinductive device was inserted after the removal of the spacer (FD model). In
the BED model, the defect is in the first instance left untreated leading to a non-union.
Subsequently, debridement of the non-union or fibrotic tissue ingrowth (BED model) is
performed, followed by implantation of a spacer for 6 weeks, and then, finally, after re-
moval of the spacer, an implant is inserted. BMP doses applied in this model ranged from
344 to 3800 µg, while the typical observation period was up to 16 weeks [2]. Although the
osteoinductive device containing BMP6 on a carrier achieved bridging in FD (30 mm), it
was found that larger, biologically exhausted defects appear to require a cell-based implant
together with BMP to achieve proper clinically relevant bridging (Table 5) [2]. Importantly,
defects were mechanically well stabilized with a circular external fixator according to the
Ilizarov technique.
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3.3.2. Sheep PLF Model

The sheep PLF model is highly translatable to clinics because the size of the lumbar
vertebrae of the sheep is comparable to humans. However, only a few preclinical studies
have been conducted on this model [3,65,88] (Table 6). Sheep PLF may be conducted at
a single level or as a multisegmental procedure. Moreover, it may be performed with or
without instrumentation [88]. The observation period and applied BMP doses in this model
were typically significantly longer/higher than in studies on small animals: the follow-up
period was up to 6 months with a BMP amount up to 10 mg (Figure 5, 3rd column). Meth-
ods of evaluation included X-ray monitoring, microCT evaluation, histological analyses
(Figure 2H), and biomechanical testing [3,65,88].

3.3.3. Non-human Primate (NHP) PLF Model

Non-human primates are the most similar animal species to humans, both anatomically
and genetically. However, only a few studies were conducted using NHP PLF [14,63,141]
(Table 6), primarily due to ethical and economic reasons. In these studies, the goal was
to achieve a single-level fusion between adjacent lumbar transverse processes, which are
anatomically similar to humans. The applied BMP2 doses (3–12 mg), as well as observation
period (24 weeks), were comparable to the sheep PLF model (Figure 5, 4th column).

3.4. Anatomical Characteristics of the Species
3.4.1. Segmental Bone Defect

The general anatomy of long bones (Figure 3B–D) of species discussed in this review
is similar, and obviously, the greatest difference among them is size. Differences in the bone
size reflect the segmental defect created in each species. The length of the long bone seg-
mental defect in mice (3 mm) or rats (5–8 mm) is small and created in the femur, the largest
bone in rodents [5,33–35,67,78,79,119–121,123,142]. Long bones are significantly larger in
rabbits/dogs, and segmental defects (15–20 mm in rabbits and 20–25 mm in dogs) are
created in the femur, radius, or ulna [36,41,42,61,68–70,80–84,87,124–126,130–135]. Sheep
segmental bone defects are usually created in the tibia and, due to their size (30–45 mm),
are considered clinically relevant because the defect size compares to those in patients [2].

3.4.2. PLF

Posterolateral spinal fusion (PLF) in preclinical studies is conducted in the lumbar
portion of the spine. Although the basic anatomical features of lumbar vertebrae are similar
among species discussed in this review, they differ in size and proportions of the different
parts of the vertebrae. Rabbits (Figure 3E) and sheep (Figure 3F) have long transverse
processes compared to the size of the vertebral body, while humans (Figure 3G), as an
adaptation to erect posture and bipedal locomotion, have large bodies and short transverse
processes. Importantly, transverse processes in rabbits are slanted and oriented anteriorly
(Figure 2E or Figure 3E). On the other hand, the transverse processes in sheep (Figure 2G
or Figure 3F) and humans (Figure 3G) are horizontal. The distances between the transverse
processes are relatively short in rabbits (20–30 mm), while they are comparable in sheep
and humans (40–50 mm).

4. Appropriate Bone Morphogenetic Proteins Dosing

The selection of the appropriate dose for each indication is one of the most chal-
lenging steps in the design of experiments. In this review, we compared doses used
in various models in mice, rats, rabbits, sheep, and NHP. In the mouse and rat ectopic
models, BMP doses were typically up to 25 µg [31,32,39,48–57,71,73,76,86,87] (Figure 4,
1st column, 1st row) per implant, while they were increased in the rat bone defects
(up to 50 µg) [5,29,33–35,55,58–60,66,67,77–79,123] (Figure 4, 2nd column, 1st row). BMP
doses used in rabbits were up to 150 µg in segmental bone defects [36,41,42,61,68–70,80–
84,87,124–126,143] (Figure 5, 1st column, 1st row) and up to 300 µg in rabbit PLF proce-
dures [5,6,37,38,40,62–64,74,85,86,127–129] (Figure 5, 1st column, 1st row). Tested BMP
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doses in dogs were higher and were typically in the range between 100 and 650 µg [130–135]
(Figure 5, 2nd column, 1st row). Moreover, in the sheep and NHP models, BMP doses were
significantly higher: in the sheep, the doses were between 500 µg and up to 4 mg [3,65,88]
(Figure 5, 3rd column, 1st row), while in the NHP, the doses were up to 12 mg [14,63,141]
(Figure 5, 4th column, 1st row).

5. Duration of the Observation Period

The bone induction process is significantly faster in small animals compared to higher
species animals and humans. Therefore, observation periods were significantly shorter
in rodent ectopic and bone defect models than in studies on sheep and non-human
primates (Figures 4 and 5, 2nd row). The average observation period in mouse and
rat ectopic models was 3–4 weeks [31,32,39,48–57,71,73,76,86,87] (Figure 4, 1st and 2nd
columns, 2nd row). However, depending on the purpose of the study, observation pe-
riods in these studies might vary from a few days (studies on the mechanism of bone
induction) to several months (bone longevity). Typical observation periods in the rat
calvarial defect and femoral segmental defect models are slightly prolonged and last
5 and 10 weeks, respectively [5,29,33–35,55,58–60,66,77–79,123] (Figure 4, 2nd column, 2nd
row). The observation period in segmental defect studies was up to 12 weeks in rab-
bits. [36,41,42,61,68–70,80–84,87,124–126,130–135,143] (Figure 5, 1st column. 2nd row). On
the other hand, spinal fusion outcome in the rabbit PLF model was typically evaluated after
6 weeks [5,6,37,38,40,62–64,74,85,86,127–129] (Figure 5, 1st column, 2nd row). However, to
study longevity or resorbability of compression-resistant matrices, the follow-up period
might be prolonged. As expected, a longer observation period in dogs and sheep was up
to 12 months [3,65,88,130–135] (Figure 5, 2nd and 3rd columns, 2nd row), while in NHP
studies, it was 6 months [14,63,141] (Figure 5, 4th column, 2nd row).

6. Sample Size

Defining an appropriate sample size is a prerequisite for obtaining valid conclusions
from each study. Moreover, the appropriate size of the sample is affected by several
parameters, including experimental design and purpose of the study as well as expected
differences among experimental groups. The sample size in the majority of reviewed
studies here was 5–10 per group regardless of the animal species or model (Figures 4 and 5,
3rd row). Moreover, there is a consensus in published work that the minimal number of
animals per experimental group is four. However, a few animals might die during surgery
or follow-up periods due to reasons non-related to the tested osteoinductive therapy;
therefore, at least five animals per experimental group should be included.

7. Study Outcomes

In Tables 1–6, it was not possible to describe the study outcomes due to non-comparable
scoring grades for healing or spinal fusion experiments. The prerequisite in reporting the
outcome of bone defect and spinal fusion studies is a clearly described success rate as
the percentage of successfully rebridged defects or fused spine segments, respectively.
Moreover, the method (radiological images, mobility testing) used to determine rebridg-
ment/fusion should be clearly described. Surprisingly, in a large number of published
studies, the success rate was not explicitly described. Several authors used their own
scoring grades instead of standardized binary outcomes (successful or unsuccessful re-
bridgment/fusion). However, even when the binary outcome was used, the determination
of successful rebridgment/fusion differed among authors. For example, a few authors de-
termined success rate only on X-ray images without microCT, histology, and biomechanical
testing. We suggest that successful rebridgment/fusion should also be determined with
microCT, histological sectioning, and biomechanical testing.

The experimental outcome of osteoinductive therapies using rodent ectopic models
should be determined by microCT and histology. MicroCT analyses provide information
on newly formed bone volume expressed as bone volume (BV) or bone volume/tissue



Materials 2021, 14, 3513 16 of 23

volume ratio (BV/TV). Additionally, if the tested osteoinductive device contains ceramics,
microCT analyses might be used to determine the amount of residual ceramic matrix.
Moreover, microCT analyses allow the determination of structural properties of newly
formed bone by calculating trabecular parameters (trabecular number, trabecular thickness,
trabecular separation). The structural properties of newly induced bone should also be
analysed by histology and histomorphometry to determine the volume of the bone and
remaining carrier/matrix.

8. Conclusions

Due to the large socioeconomic burden of degenerative diseases of the spine and
segmental defects of long bones, there is an imminent need for the development of novel
osteoinductive therapeutic solutions [1,22]. However, until now, none of the osteoinductive
devices have been approved for use in PLF and large segmental defects in patients. A
broad range of bone regeneration strategies have been proposed and tested in different
animal models. A vast majority of these studies have been conducted in rats and rabbits,
leading only to the initial and intermediate steps of preclinical testing, and despite claiming
positive results, only a few have been further tested in sheep and NHP models. Infuse™, a
BMP2-containing osteoinductive device, has been approved for use in ALIF and acute tibial
fractures but has also been used in various off-label indications. However, numerous side
effects related to high BMP dose and a large release from the bovine collagen as a carrier
have been reported. Therefore, there is a need for an osteoinductive device that would be
efficacious at lower doses of BMP delivered on a carrier with a prolonged BMP release.
There is some hope that novel engineered BMPs or innovative delivery systems for BMPs
may reduce the required therapeutic doses. A novel ABGS containing rhBMP6 within
autologous blood coagulum was evaluated in preclinical studies, and in exploratory clinical
trials (high tibial osteotomy, distal radial fracture, and posterolateral interbody fusion), it
was proven safe and efficacious at relatively low BMP6 doses [73,74,76,86–88,91,92].
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