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Abstract 

Almost 115 years ago, Alois Alzheimer, a German psychiatrist, described Alzheimer’s disease 

(AD) for the first time, in Tübingen, Germany. Since then, many hypotheses have been 

proposed. However, AD remains an enigmatic disease and a severe health public problem. The 

current medical approaches for AD are limited to symptomatic interventions and the complexity 

of this disease has led to a failure rate of approximately 99.6% in AD clinical trials. In fact, no 

new drug has been approved for AD treatment since 2003. These failures indicate that, because 

we still do not fully understand the pathophysiology of AD, we are failing in mimicking this 

disease in experimental models, or, at least, its sporadic form. Although most studies have 

focused on the amyloid cascade hypothesis of AD, the literature has made clear that AD is 

rather a multifactorial disorder. Therefore, the persistence in a single theory has resulted in lost 

opportunities, since numerous alternative hypotheses have been proposed all over the years and 
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did not receive equal attention, for example to those based upon the presence/detection of the 

triad: amyloid-β peptide, hyperphosphorylated Tau protein and neurodegeneration. In this 

review, we aim to present the striking points of the long scientific path followed since the 

description of the first AD case and the main AD hypotheses discussed over the last decades. 

We also highlight a rather new one, the “type 3 diabetes” hypothesis, which has presented 

consistent findings and proposed insulin resistance as a common link between many other 

hypotheses. 
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INTRODUCTION 

Since the first description of Alzheimer’s disease (AD) in 1906 [1], researchers have 

coursed a long scientific path seeking for a better understanding of this neurological disorder. 

Many hypotheses have been proposed over the last decades [2,3],however, AD has remained 

an enigmatic and complex disease with etiopathogenetic mechanisms yet to be elucidated. 

Currently, besides neurodegeneration, AD is mainly characterized by the accumulation of the 

amyloid-β peptide (Aβ), which tends to aggregate and form Aβ plaques, and by presence of 

tangles, caused by accumulation of hyperphosphorylated forms of Tau protein [4].  

Worldwide, there are approximately 50 million people living with AD or other 

dementias [5]. AD is a progressive neurodegenerative condition and the most frequent type of 

dementia, corresponding to 60-80% of the cases [6]. In the United States, it is estimated that 

one in 10 people age 65 and older has AD, a total number of 5.8 million Americans [6,7]. 

Furthermore, epidemiological data suggests an increasing trend in prevalence with estimations 

being 40 million patients suffering from AD in 2016 [8] and 131 million in year 2050 [9].  Due 

to its complexity, AD is usually divided into familial AD (fAD) and sporadic AD (sAD).      fAD 

accounts for approximately 1-5% of all cases      and it is usually caused by autosomal mutations 

in the amyloid-β precursor protein (AβPP), presenilin 1 (PS1), and/or presenilin 2 (PS2) . 

Conversely, sAD, responsible for a majority of the cases (approximately 95-99%), does not 

present a well-defined etiology. It is believed that an interplay of genetic, environmental, 

behavioral and metabolic factors might be responsible for the development of the sporadic form 

of this disorder [10].  

Nowadays, more than one century after the discovery of this disorder [11], AD is still a 

chronic condition with no cure or effective interventions to delay its progression [12]. The 

current medical approaches for AD are limited to symptomatic interventions and the complexity 

of the disease has led us to constant failures in clinical trials [13]. The pharmacology of AD is 
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currently limited to cholinesterase inhibitors (rivastigmine, galantamine and donepezil) and 

memantine, which is an N-Methyl-D-aspartate (NMDA) receptor antagonist. These treatments 

are not able to prevent or reverse the progression of AD and are often accompanied by many 

adverse effects. In fact, no new drug has been approved for AD treatment since 2003 [14].  

Some authors believe that AD drugs have failed mainly because of an inadequate target, 

since the majority of studies have focused on the drugs targeting amyloid [15,16], however 

other factors such as the  stage of the disease at the moment of therapy initiation and the 

heterogeneity of factors implicated in AD pathophysiology should also be considered [17,18].  

Consequently, the multifactorial hypothesis of AD has been proposed by some to ponder 

divergent thinking and investigate multiple and diverse etiological factors that might be 

converging in a common brain pathology [19]. In this review, we aim to present the striking of 

the long scientific path since the first description of an AD case and the main AD hypotheses 

proposed over the last decades.  Additionally, the “type 3 diabetes” hypothesis is discussed as 

accumulated evidence points towards insulin as an important factor implicated in 

etiopathogenesis of AD, and dysfunctional insulin signaling in the brain provides a common 

link between other proposed hypotheses. 

THE PIONEERING DESCRIPTION OF ALZHEIMER’S DISEASE 

Alois Alzheimer, a German psychiatrist, described an AD case for the first time on 

November 4th of 1906, at the 37th annual conference of German psychiatrists, in Tübingen, 

Germany [20]. In his lecture, Alzheimer reported a case study describing a “peculiar severe 

disease process of the cerebral cortex”. Although Alzheimer's presentation did not arouse the 

interest of the numerous scientists present in the audience, the case was published one year after 

the conference [1]. Alzheimer’s talk was based on the case of a 51-year-old woman (August 

D.) from Frankfurt who had presented with psychiatric symptoms of progressive cognitive 

impairment, aggression, and hallucinations, with subsequent autopsy revealing atherosclerotic 
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changes of the larger brain vessels, and specific neurofibrillary changes unknown at the time 

[21].   

Briefly, on November 26th, 1901, a man took his wife to the Community Psychiatric 

Hospital at Frankfurt am Main after observing substantive changes in her personality and 

behavior. The first behavioral changes presented by August D. were characterized by bouts of 

excessive jealousy toward her husband which evolved into significant memory impairment, 

delusions and psychosocial incompetence [1,21]. At that time, Alzheimer was an assistant 

physician, and with the consent of Emil Sioli, the Director of the Frankfurt Hospital, he decided 

to examine and interview August D. However, in 1903, Alzheimer moved to Heidelberg to 

work with Emil Kraepelin, one of the main psychiatrists at that time, and  shortly afterwards, 

they both moved to Munich, where Alzheimer supervised the completion of a new University 

Hospital for Psychiatry and assumed the control of a modern histopathological laboratory, 

where he continued his histopathological research with important scientists from all over the 

world, including Friedrich H. Lewy, the famous neurologist who discovered the Lewy bodies 

[22]. 

August D.’s case worsened, and she died on April 8th 1906. Following her death, Emil 

Sioli informed Alzheimer, who investigated the histological sections of August D.’s brain. 

Alzheimer analyzed the histological sections stained with Bielschowsky's silver stain and 

described the main hallmarks of AD for the first time: cell death, Aβ plaques and neurofibrillary 

tangles [23]. Alzheimer and Gaetano Perusini, an Italian physician specialized in dementia, kept 

working on other cases, and in 1909, Perusini published three more cases similar to that of 

Auguste D [24]. 

In 1910, Kraepelin included Auguste D.’s case in the 8th edition of his textbook 

Psychiatrie and proposed the term Alzheimer's disease for the first time [20]. In 1911, 

Alzheimer published again [25]. In this paper, he reported the case of the male patient Johann 
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F. who died in Munich in 1910 after being hospitalized for three years and examined by 

Alzheimer and Kraepelin. Johann F’s case had already been mentioned by Kraepelin in his 

textbook, even before death, which suggest that Johann F was probably the first patient to be 

clinically diagnosed with AD [22].  His case presented many similarities to August D.’s case, 

however, Alzheimer did not identify neurofibrillary tangles in his brain slices, only Aβ plaques 

[23].  

In 1998, Möller and Graeber re-examined the original histological brain slides of August 

D. and Johann F. with more advanced techniques [26]. They concluded that the differences 

observed in these two cases could be attributed to different stages of the same disease. 

Therefore, Alzheimer had not only reported the first case of AD, but had also described one 

important stage in the physiopathology of this disorder [22]. These findings laid the foundations 

for the most traditional and accepted theory of AD, the amyloid cascade hypothesis [27].  

Nevertheless, the original debate on whether the amyloid was the cause or the consequence of 

the disease actually dates back to the time of Alois Alzheimer [28].  

THE AMYLOID CASCADE HYPOTHESIS OF ALZHEIMER’S DISEASE 

The Aβ, a peptide derived from a larger protein known as AβPP, was isolated in 1984, 

by Glenner and Wong at the University of California, in San Diego [29]. The mechanism 

responsible for the cleavage of AβPP and the production of Aβ is now well known [30]. AβPP 

is first cleaved off by the enzyme β-secretase (BACE 1), giving rise to two fragments: sAPP-β 

(N-terminal fragment), being released in the extracellular space and C-terminal fragment β 

(CTFβ,CT99 or CT89), which remain bound to the cell membrane. Then, the γ-secretase 

complex (Nicastrin, Anterior Pharynx defective 1, Presenilin enhancer 2, Presenilin 1 and or 

Presenilin 2) cleaves the remaining membrane-bound portion of the protein releasing the 

extracellular fragment Aβ (Fig. 1). Due to heterogeneous γ-secretase cleavage, γ-secretase can 
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cut AβPP at different sites, producing a 37 to 49 amino acid residue peptide. Therefore, Aβ can 

vary in length [31].  On the other hand, in the non-amyloidogenic pathway, AβPP is firstly 

cleaved by α-secretase within Aβ sequence, producing soluble α-APP fragments (sAPPα) and 

C-terminal fragment α (CTFα, CT83), and, posteriorly, CTFα is cut by γ-secretase, releasing 

non-toxic fragments [32]. 

In 1991, a group led by John Hardy demonstrated that mutations in the gene AβPP could 

cause a development of AD [33]. Subsequently, in 1996, mutations in PS1 and PS2, two genes 

that code for proteins from the γ-secretase complex, were found to be implicated in fAD [34]. 

These autosomal dominant mutations result in increased production and longer variants of Aβ 

associated with aggregation and formation of oligomers. Further agglomeration promotes the 

formation of insoluble fibrils, which tend to deposit in plaques. Although both types of 

aggregates are involved in the pathogenesis of AD [35], soluble oligomers are considered to be 

more toxic [36,37]. 

The gene encoding AβPP was found to be located on the chromosome 21 [38,39], 

individuals with trisomy 21 known as Down’s syndrome, seem to be at an increased risk of 

developing AD, due to an extra copy of the gene and consequent overexpression of AβPP [40]. 

These factors laid the groundworks for amyloid cascade hypothesis,      proposed by Hardy and 

Higgins in 1992 [27]. According to this theory, an acute noxious stimulus, such as head trauma, 

triggers the pathophysiological cascade that induces disturbances in AβPP metabolism by 

altering production, clearance and deposition of Aβ. The Aβ protein, in turn, leads to 

intracellular calcium (Ca2+) dysregulation, inducing neurofibrillary tangle formation and cell 

death [41]. Consequently, Aβ has been implied as a triggering factor in both forms of the 

disease: fAD and sAD. 

On the other hand, it has already been demonstrated that Aβ plaques deposition can be 

present in elderly individuals without cognitive impairment  [42–50] and it is still a matter of 
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debate  whether or not this reflects a predisposition or a preclinical state of AD [51]. 

Additionally, elevated Aβ  and the presence of plaques in individuals with Down syndrome do 

not always lead to the development of dementia [52].  Furthermore, the severity of dementia in 

humans is not proportional to quantity of Aβ plaques, but it is in positive correlation with the 

formation of neurofibrillary tangles in the neocortex, which can occur even when no plaques 

are present [53,54]. In fact, it has already been demonstrated that the removal of Aβ plaques 

from the brain does not prevent AD progression and the propagation of Tau pathology [55]. 

Another information casting doubt on the amyloid hypothesis is the fact that, although 

several pre-clinical studies using transgenic mice overexpressing human mutant AβPP/Aβ have 

been successful, the failure rate in AD clinical trials is approximately 99.6% [56,57]. These 

failures indicate that, because we still do not fully understand the pathophysiology of AD, we 

are failing in mimicking this disease in experimental models, or, at least, its sporadic form. 

Besides the fact that genetic mutations have not been sufficient to mimic sAD [58], the non–

deterministic genes related to the development of the sporadic form of AD are related to lipid 

and glucose metabolism and not to Aβ production [59].  

In this context, despite promising results in experimental studies with animal models, 

many anti-amyloid drugs have failed over the years [12,60]. In the enzyme inhibitors group, γ‐

secretase inhibitors, such as Semagacestat from Eli Lilly, failed mainly because of the numerous 

other cellular substrates of γ‐secretase, which ended up worsening the cognitive impairment 

and increasing skin cancers and infections cases [61,62]. BACE inhibitors, such as Verubecestat 

(MK‐8931), have also been developed and, although they seemed to be safer than γ‐secretase 

inhibitors, these drugs were not able to promote any improvement in cognitive function [63,64].   

Active and passive immunization against Aβ have also been tested [12,65]. In humans, 

active immunization against aggregated human Aβ1-42 (AN1792, Elan Pharmaceuticals) that 

demonstrated desirable effects on plaque burden and cognitive performance in transgenic AD 
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mice [66], resulted in removal of amyloid plaques in a few patients, but provoked aseptic 

meningoencephalitis in others [67–69]. Due to this adverse effect, the study was interrupted 

with drug dosing terminated in January 2002. Nevertheless, thorough clinical follow-up and 

monitoring of the non-affected patients continued under blinded conditions enabling 

retrospective analyses [67]. In one such retrospective analysis of the cohort, Nicoll and 

colleagues (2019) executed a 15-year post-mortem neuropathological follow-up of individuals 

who participated in the first trial of Aβ immunotherapy . The authors concluded that, although 

a clear evidence of plaque removal was observed, most patients progressed to severe cases of 

dementia, possibly due to propagation of Tau as extensive distribution of tangles (Braak V/VI) 

was found in a substantial number of patients  [55].  

Other Aβ‐targeting antibodies (Solanezumab, Crenezumab, Gantenerumab, 

Bapineuzumab) were also tested, but although some positive effects have been observed, the 

results were not always replicable [70–74]. Defenders of the amyloid cascade hypothesis 

believe that the failures in these trials occurred because of difficulties in establishing      adequate 

protocols. Problems of inappropriate dosing and administration of the drug in the late 

irreversible stages of the disease could explain the failure rate of clinical trials [75]. Indeed, the 

stage of the disease in which the drugs have been administered may have a huge impact in AD 

progress, since alterations in Aβ production, clearance and aggregation might start decades 

before the appearance of the first cognitive symptoms [76].  

On the other hand, critics of this hypothesis argue that, besides the fact that AD is a 

heterogeneous disorder, the relationship between Aβ and AD is at least indirect. In this sense, 

Aβ might represent an end-stage of the condition rather than a cause. For them, persisting in 

this theory may result in loss of opportunity to consider other options, since numerous 

alternative hypotheses have been proposed all over the years and did not receive equal attention 

[15,18]. 
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Nowadays, the two anti-Aβ antibodies Aducanumad and BAN2401 have shown 

benefits, but are still on trial [77]. Aducanumab was discontinued after a phase III futility 

analysis. However, after Biogen’s request, the U.S. Food and Drug Administration (FDA) 

approved a re-dosing study [78,79]. Aducanumab has given not just support for the amyloid 

cascade hypothesis, but also hope to society, because, if approved, this drug will be the first 

medication with the ability both to remove the amyloid and slow down the cognitive decline.      

 

ALZHEIMER’S DISEASE AS A MULTIFACTORIAL DISORDER: PROPOSAL OF      

OTHER HYPOTHESES 

Despite all the attention the amyloid hypothesis received in the recent years, other 

important theories have been proposed (Table 1; Fig. 2). One example is the cholinergic 

hypothesis proposed by Davies and Maloney in  1976 [80] that provided a critical insight in 

the role of cholinergic transmission in the context of AD etiopathogenesis, and paved the way 

for development of AD drugs that are in use today [81]. The involvement of the cholinergic 

system in dementia was first implied by the studies which demonstrated that anticholinergic 

drugs could exert amnestic effect [82–84]  and further corroborated with findings suggesting 

its reversal upon treatment with a cholinergic agonist [85]. Furthermore, the activity of the 

enzyme choline acetyltransferase (ChAT), responsible for the synthesis of acetylcholine (ACh), 

was found to be significantly decreased in postmortem samples from the amygdala, cortex and 

hippocampus of AD patients [80,86–88]. 

Shortly after, Whitehouse and colleagues observed a substantial loss of neurons in the 

nucleus basalis of Meynert (NbM), the source of cortical cholinergic innervation in the brain 

[89].  Ever since, the neurodegeneration of cholinergic projections from the NbM to the 

neocortex and the hippocampus has been considered as one of the main events in the 

pathophysiology of AD [90]. In addition, the proportion of cholinergic neurodegeneration was 
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found to have a positive correlation with the severity of dementia in AD [91,92]. Based on these 

findings, lesions in cholinergic projections from the basal forebrain to the cortex and 

hippocampus have been employed for induction of animal models of AD  [93].  

      The cholinergic hypothesis was a stepping stone in the process of development of 

most drugs approved to treat AD - the acetylcholinesterase inhibitors (tacrine, rivastigmine, 

galantamine, donepezil) [94]. These drugs ameliorate cognitive symptoms, but, unfortunately, 

they are not able to decrease the risk, slow up the onset, or stop the progression of AD. 

Moreover, individual responses to these drugs may vary. Tacrine, the first drug approved by 

the FDA and introduced in the US marketing in 1993 [95], had quite poor adherence and 

presented many adverse effects, including hepatotoxicity, which lead to its discontinuation in 

2013 [96]. Donepezil, the second drug approved by the FDA, was marketed in 1996 for the 

treatment of mild and moderate AD. However, in 2010, a higher dose was approved to treat 

more severe cases. Donepezil is accompanied by side effects, such as nausea, diarrhea, 

dizziness and insomnia, and cardiac adverse effects have been reported in some rare cases 

[97,98]. 

Galantamine [99] and rivastigmine [100] were both approved in 2000 for the treatment 

of AD. However, rivastigmine has also been used to treat Parkinson’s dementia [101]. Recently, 

Ray and colleagues demonstrated that rivastigmine is able to direct AβPP processing away from 

the amyloidogenic pathway, by promoting α-secretase activity and, therefore, it might be 

explored as a disease-modifying treatment [102].  

The cholinergic hypothesis has given support to the amyloid cascade theory [103] since 

the discovery that stimulation of cholinergic receptors regulates AβPP metabolism [104] and 

that Aβ toxicity can promote cholinergic impairment [105]. Other studies have demonstrated 

that nicotinic cholinergic receptor stimulation can modulate phosphorylated Tau aggregation 

[103] also corroborating the Tau hypothesis of AD [106].  
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The Tau hypothesis claims that Tau hyperphosphorylation precedes neurodegeneration 

and, in association with convergent signaling mechanisms, results in AD pathophysiology 

[107,108]. Moreover, there is evidence that alterations in Tau phosphorylation occur before Aβ 

accumulation [109]. The microtubule-associated protein Tau is the main component of 

neurofibrillary tangles [107]. Tau interacts with tubulin to promote microtubule polymerization 

and stabilization. However, Tau functions are regulated by its phosphorylation state. In a 

hyperphosphorylated state, the interaction of Tau and microtubules is hindered, resulting in 

destabilization and loss of cytoskeletal structure [110].               

The human Tau gene is localized on chromosome 17. There are six Tau isoforms      

expressed in the adult brain, as a result of alternative mRNA splicing [11]. In AD, all six protein 

isoforms may be abnormally hyperphosphorylated, resulting in the formation of neurofibrillary 

tangles and destabilization of the microtubule network [111]. Therefore, in AD-impaired 

neurons, degenerating neuronal microtubules might be gradually replaced by tangles [112].  

The fact that the severity of AD cases correlates well with Tau pathology in the brain 

has contributed to the confirmation of Tau hypothesis [113]. Tau pathology is usually classified 

according to Braak and Braak [114], affecting primarily the transentorhinal region in stages I 

and II, the limbic system in stages III and IV, and neocortical fields, mainly temporal and 

parietal areas, in more advanced stages (stages V and IV) [106]. In this sense, Tau has been 

investigated as a potential target in AD treatment. However, similar to the anti-amyloid 

therapies, strategies focused on Tau have also failed in clinical trials. The Tau aggregation 

blocker TRx0237 [115] and the Tau-targeted passive vaccine IVIG [116], for example, have 

both failed in phase III trials. Other trials are in progress, yet, since we do not completely 

understand the pathogenesis of AD, Tau-based therapeutic approaches still remain challenging 

[117].  
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Besides microtubule dysfunction, abnormal Tau phosphorylation promotes defective 

axonal transport of mitochondria and other organelles [118]. In fact, mitochondrial dysfunction 

has been frequently reported in AD [119], and, therefore, it has given support to another theory, 

the so-called mitochondrial cascade hypothesis [120–122].  

In 1989, Parker suggested that mitochondrial DNA inheritance could influence AD risk 

[120,123].  Other authors claimed that somatic mitochondrial DNA mutations were able to 

influence the aging process [124–127] and, more specifically, AD development [128–131]. 

Then, in 2004, Swerdlow and Khan proposed that, since the individual's baseline mitochondrial 

function is defined by genetic inheritance, interactions between genetic and environmental 

factors would define the rhythm at which mitochondrial dysfunction accumulates and, 

therefore, would determine the AD onset [122]. Subsequently, other studies demonstrated that 

a maternal family history of AD increases the risk of developing the disease, when compared 

to a paternal family history of this disorder, which indicates that the maternally inherited 

mitochondria might play an important role in mitochondrial dysfunction and mediate the risk 

for the development of AD [132,133]. 

The mitochondrial cascade hypothesis may be linked to other theories [3] especially the 

amyloid cascade theory as mitochondrial dysfunction affects both AβPP expression and 

metabolism [134–137]. Indeed, besides the fact that functional mitochondria are essential for 

Aβ neurotoxicity [134], AβPP and Aβ co-localize with the mitochondrial network [135]. 

Therefore, it has been suggested that mitochondria mediate      Aβ toxicity [119]. Furthermore, 

AβPP overexpression and Aβ exposure alter mitochondrial function in transgenic mice, 

cultured cells and autopsy brains [119,136–139]. 

Besides Aβ accumulation [139], there is evidence that mitochondrial dysfunction 

promotes Tau hyperphosphorylation [138] inflammation [140] and oxidative stress [141].  

Moreover, mitochondrial changes, such as decreased rate of metabolism [140],  decreased 
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mitochondrial concentration in the cerebrospinal fluid [141], and mitochondrial morphological 

alterations [142,143] have also been described in AD [144]. For this reason,  mitochondrial 

enzymes and energy metabolism have been investigated as potential targets of drugs for the 

treatment of AD [145].  

Mitochondrial dysfunction has also been implicated in the pathogenesis of AD through 

the generation of reactive oxygen species (ROS) [146]. ROS are oxygen-containing chemicals 

with reactive properties that play a fundamental role in maintenance of cellular homeostasis. 

ROS are constantly being produced as by-products of non-enzymatic reactions in the 

respiratory chains, or  enzymatically by macrophages upon recognition of pathogen-associated 

molecular patterns.  Physiologically, enzymes and other compounds usually control and 

maintain ROS at low levels in a defined homeostatic range, as they cannot be totally eliminated 

because of their function as specific second messengers in signaling cascades related to cell 

proliferation and differentiation. However, accumulation of high levels of ROS, usually due to 

overproduction or inadequate clearance, disrupts cellular homeostasis by a pathophysiological 

process known as oxidative stress. Since oxidative stress can damage cells, proteins, lipids, Ca2+ 

homeostasis, and DNA, it is considered harmful to the human body and a strong contributor to 

the process of aging [147]. 

 Central nervous system is particularly susceptible to free radical damage due to its large 

oxygen demand and high mitochondrial respiration rate. Besides that, the central nervous 

system is characterized by  a high lipid content and low capacity  of enzymatic and non-

enzymatic antioxidant systems, which may promote cumulative oxidative damage over time 

and contribute to AD pathogenesis [148].  

In AD, different biomolecules from the neuronal membrane, such as lipids, fatty acids, 

and proteins can undergo oxidation [149]. There is evidence showing that high ROS levels may 

be present in earlier stages of AD, even before the appearance of Aβ accumulation or clinical 
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symptoms [150]. And, besides the high amount of evidence showing that Aβ induces oxidative 

stress in AD [151], regions with elevated levels of Aβ, such as cortex and hippocampus, present 

higher levels of oxidation products when compared to regions with low Aβ levels, such as the 

cerebellum [150–152]. Moreover, oxidative stress seems to be related to modifications of 

protein Tau conformation, which contributes to the formation of neurofibrillary tangles 

[153,154]. Alterations in Tau conformation, in turn, can potentiate oxidation of  DNA and RNA  

[147,155] , evolving into a pathological cycle. Biometals also play an important role in 

neurodegeneration [156]. In this sense, increased concentrations of redox-active transition 

metals such as iron and copper, and the redox-inactive metal, zinc have been observed in Aβ 

plaques and surrounding tissues [152,157]. 

Corroborating the oxidative stress hypothesis, studies have demonstrated that AD 

patients present depletion of plasma antioxidants when compared to controls and that a good 

antioxidant status may be able to protect against cognitive impairment [158]. Moreover, since 

oxidative stress seems to be only one of many features of AD, neuroprotective potential of 

antioxidant compounds has been studied as a potential treatment option, but usually in  

combination with other therapies [159]. In this context, the phytocannabinoid cannabidiol 

(CBD), a constituent of Cannabis sativa, has been considered as a potential compound for AD 

treatment [160,161]. CBD is especially attractive as, besides its antioxidative and antioxidant 

properties, it also presents anti-inflammatory features [162] and neuroprotective effects on 

memory [163–167]. In addition, CBD appears to alleviate the hyperphosphorylation of Tau 

protein by attenuating glycogen synthase kinase 3 beta (GSK-3β) activity [168]. Furthermore, 

CBD has been shown to  promote hippocampal neurogenesis [169] and prevent cortical and 

hippocampal neurodegeneration [170]. 

Another metabolic condition that has been implicated in AD along with mitochondrial 

dysfunction and oxidative stress is neuroinflammation [171–173]. This pathophysiological 
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process, characterized mainly by the accumulation of glial cells and upregulation of pro-

inflammatory cytokines in the central nervous system, has been investigated as the crucial event 

in AD pathogenesis for more than two decades [174–177]. The peripheral immune system is 

linked to the brain through different mechanisms, including direct passage of cytokines from 

the blood through leaky regions in the blood-brain barrier (BBB), carrier-mediated transport of 

cytokines into the brain, and stimulation of cytokine synthesis by microglia activation after 

detection of a peripheral immune response via vagal afferents [178]. The immune system 

became particularly relevant to AD research once genome-wide association studies (GWAS) 

discovered that numerous immune genes are risk factors for sAD [179,180].  

According to the neuroinflammation hypothesis of AD, an initial inflammatory 

stimulus, which could be a trauma, a pathogenic infection or even Aβ toxicity, triggers 

microglial activation. Microglia, in turn, secretes numerous pro‐inflammatory cytokines, such 

as interleukin (IL)‐1β, IL‐6, and tumor necrosis factor (TNFα), and releases ROS, attracting 

more microglia and astrocytes towards the lesion area [181]. Physiologically, this process is 

critical for reparation of the damaged area. However, in pathological aging, and, more 

specifically, in AD, this stimulus is persistent and results in excessive activation of  microglia, 

which initiates an auto-destructive process, culminating in neurodegeneration and AD 

pathogenesis [176,182]. 

Microglial activation is usually beneficial, as microglia participates in Aβ clearance and 

degradation [183], but its persistent activation may result in neurotoxic effects [184]. In fact, 

there is evidence that hyper-reactive microglia is present even in early stages of sAD [185]. In 

this sense, studies have demonstrated that constant microglial activation stimulated by Aβ, 

increases Aβ production and diminishes its clearance [186,187]. However, the inflammatory 

process induced by other agents is also able to increase Aβ production, via β-secretase cleavage 

[184]. Furthermore, hyperphosphorylated Tau leads to the activation of microglial cells, and 
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synthesis and production of pro-inflammatory cytokines [188]. Pathologically changed 

astrocytes have also been described in AD [189] and, although astrogliosis has been observed 

in regions without Aβ pathology, in AD brain tissue, astrogliosis is correlated with the degree 

of cognitive impairment  [190]. 

In summary, the response to inflammatory stress induces hyperphosphorylation of Tau 

and increases Aβ synthesis. In addition, both Aβ accumulation and Tau hyperphosphorylation 

dysregulate the immune system and activate a constant and persistent inflammatory process, 

leading to a deleterious microglial and astrocytic reactivity, and, consequently, trigger a vicious 

circle of neurotoxic pro-inflammatory response [191]. 

 Studies have consistently reported elevated levels of pro-inflammatory cytokines in 

serum and brain tissue of AD patients relative to controls, especially in severe AD [192–194]. 

More recently, it has been proposed that ambient air pollution might be  able to trigger 

microglial activation and, consequently, provoke a constant inflammatory process accompanied 

by a permanent elevation of pro-inflammatory cytokines and ROS that could lead to AD and 

other neurodegenerative diseases [195,196]. Indeed, alterations in microglial morphology, 

increased proinflammatory cytokines and elevated oxidative stress have been observed in brains 

of humans and animals exposed to high levels of ambient urban air pollution [197–203].  

Although the effects of the exposure to anti-inflammatory drugs in AD, specially 

nonsteroidal anti-inflammatory drugs (NSAIDs), are still controversial, some studies have 

observed benefits in the use of this type of medication before the onset of AD      [204]. The 

early-stage responsiveness of AD to NSAIDs might be explained by the fact that, in advanced 

stages of the disease, the overactive microglia would go through a process of senescence and 

become non-functional, reaching a dystrophic status. At this stage, the senescent microglia 

would not be able to accomplish its physiological roles such as neuroprotection and clearance, 

but would maintain its ability to produce pro‐inflammatory cytokines, thus accelerating the 
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disease progress [205,206]. Furthermore, it has been proposed that the activation of the innate 

immune system might act as a disease-promoting factor in which the senescent microglia is the 

initial trigger of AD pathogenesis [207]. In this case, AD should be considered an immune 

senescent disease rather than a neuroinflammatory disorder, as stated by the innate immunity 

hypothesis [208–210]. 

Another pathophysiological event that has been proposed as both the cause and the 

consequence of metabolic, oxidative, and proteotoxic stress in AD is dysregulation of Ca2+  

homeostasis [211]. In this sense, the calcium hypothesis, postulated more than 30 years ago 

[212–214], proposes that sustained alterations in Ca2+ signaling in neurons might be a key event 

of AD pathogenesis [215]. This hypothesis has been supported by the findings suggesting that 

gene mutations that increase the risk for developing AD are usually related to dysfunctional 

Ca2+ signaling [211].  

The Ca2+ ion works as an intracellular messenger in many signal-transducing pathways 

and as a regulator in diverse physiological functions. Because of the importance of Ca2+ 

homeostasis,  a number of cellular regulatory mechanisms, such as ion channels, buffers and 

ATP-dependent ion pumps, are working to keep  the level of Ca2+ at low nanomolar 

concentrations under resting conditions [216]. Homeostasis is particularly important as action 

potential-regulated influx and efflux of calcium is indispensable for proper neuronal signaling. 

Consequently, regulation of a complex network of calcium channels and transporters, as well 

as conserved activity of endoplasmic reticulum (ER) and mitochondria, two main organelles 

responsible for intracellular buffering, is a prerequisite for maintenance of structure and 

function of the central nervous system.  Failures of this system results in the inability to 

maintain calcium homeostasis and leads to neurodegeneration [217].  Although astrocytes, the 

main homeostatic regulatory cells in the central nervous system, cannot generate action 
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potentials, they sense fluctuations in intracellular concentration of ions, especially Ca2+, in order 

to respond to neuronal activity [218].  

Corroborating the calcium hypothesis, several studies have shown a bidirectional 

relationship between Ca2+  and the Aβ peptide in pathogenesis of AD [219]. In this context, it 

has already been demonstrated that Aβ aggregates disrupt Ca2+ signaling in numerous ways and 

that Ca2+ dysregulation may also alter AβPP metabolism [220–225]. This link has been 

confirmed by the findings of the longitudinal aging study suggesting that individuals who use 

calcium channel blockers (CCBs) in the antihypertensive treatment present a significantly 

slower rate of progression to dementia. This effect could be related to a significant CCBs-

induced decrease in Aβ1-42 levels found in neuroglioma cultures overexpressing APP [226]. 

Tau pathology might also be linked to disruption in Ca2+ signaling once microtubule 

dysfunction promoted by hyperphosphorylation of Tau impairs dynamics and axonal transport 

of organelles and vesicles, including mitochondria and ER [118]. When these components are 

affected, they end up directly influencing calcium signaling pathway, especially in neurons 

where the communication networks between ER, mitochondria and plasma membrane are 

fundamental for the regulation of temporal and spatial aspects of Ca2+ signaling [227]. 

Recently, Jadiya and colleagues (2019) demonstrated that impaired mitochondrial 

calcium efflux stimulates disease progression in AD models, by accelerating memory 

alterations, Aβ pathology, Tau hyperphosphorylation and development of histopathological 

changes [228]. In fact, some authors believe that, since mitochondrial Ca2+ overload may appear 

before the typical pathological features of AD, it should be considered a priority among 

therapeutic targets for AD [229]. Finally, all proposed hypotheses should not be considered 

individually, but as pieces of the pathophysiological puzzle contributing to understanding of 

the etiopathogenesis of AD. Some hypotheses, such as the mitochondrial hypothesis of the 

disease, and oxidative stress hypothesis as well as the calcium hypotheses are more closely 
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related as mitochondrial dysfunction is often considered as a key contributor to cellular ROS 

burden, and bidirectional interaction between the ER calcium and mitochondria make it difficult 

distinguish their cause-effect relationship. Nevertheless, a number of less obvious 

interconnections exist between all factors proposed as the main drivers of the disease, and 

current understanding of molecular mechanisms suggests all have the potential to trigger 

pathogenic cascade of AD.      Recently, accumulated evidence on the importance of metabolic 

factors in the context of AD provided additional information that, when considered in the 

context of other hypotheses, might enable deeper understanding of the pathogenesis of the 

disease and reveal some links that might have been overlooked. 

Due to numerous metabolic alterations described in AD, it was proposed that this disorder 

contains a significant metabolic component [230]. One of the main features of AD hypothesized 

as a metabolic disorder is the consistent findings suggestive of impaired insulin signaling in AD 

brains. In fact, the term “type 3 diabetes” has been proposed in order to englobe the cellular and 

molecular mechanisms by which insulin plays an important role in the pathology of AD. 

Interestingly, alterations in the regulation of the insulin signaling pathway, just like Aβ peptide 

accumulation, seem to be related to many aspects of AD discussed in this review. 

ALZHEIMER'S DISEASE HYPOTHESIS OF A “TYPE 3” DIABETES 

Although cognitive dysfunction in Diabetes mellitus (DM) has been frequently reported 

over the last decades [231–238], the first study showing worse performance in attention and 

memory tests in diabetic patients was made in Boston by Miles and Root, almost a century ago 

[239]. At that time, these findings were not well understood, however, in 1983, Bucht and 

colleagues found important results suggestive of decreased insulin sensitivity in AD patients 

[240]. These data implied for the first time that the hormone insulin could somehow be involved 

in the etiopathogenesis of AD. In 1998, Frölich and colleagues described alterations in the 

neuronal insulin signal transduction pathway in AD brains [241], which culminated in the 
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proposal that AD is a brain type of non-insulin dependent DM, made by Hoyer [242] in the 

same volume. After extensive work, in 2005, a group led by Suzanne de La Monte at the Brown 

Medical School proposed the term “type 3 diabetes” to refer to AD as a neuroendocrine 

disorder, similar, but also distinct, from DM types 1 (T1DM) and 2 (T2DM) [243].  

More recently, studies have demonstrated that DM is a risk factor for developing 

dementia [244–247]. According to Chatterjee and colleagues, this risk is approximately 60% 

greater for diabetic patients compared with those without diabetes [248]. The most prominent 

factors that seem to be shared by T2DM and AD as common risks could be found often 

combined, from aging and age-related alterations like metabolic, hormonal and vascular 

pathology to environmental factors. Additionally, although the link between the two diseases is 

still not fully understood, associations have been reported also at the genetic level [249]. 

Caberlotto and colleagues have recently analyzed transcriptomic data of post-mortem AD and 

T2DM human brains and identified a central role for the autophagy pathway in both diseases. 

In addition, the authors used genetically modified animal AD models to confirm the role of 

autophagy-related genes in AD pathogenesis. These results suggest that autophagy 

dysregulation might be a common pathophysiological mechanism underlying AD and T2DM 

[250].  

Considering the metabolic factors, particularly glucose metabolism in the brain, 

decreased glucose utilization and altered energy metabolism have been reported since early 

stages of AD [248], especially in regions associated with the process of learning and memory 

[251,252].   

Evidence has gathered supporting the link between AD and T2DM based on the 

presence of AD biomarkers in the brain tissue of diabetic patients without clinical signs of 

dementia [253–256] and alterations in insulin signaling pathways found in the brain of both AD 

patients post mortem and AD animal models [241,243,257–259]. The insulin signal 
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transduction pathway is particularly important in the brain because of its functions related to 

neuronal survival, central regulation of body metabolism and modulation of memory and other 

cognitive and emotional processes [260].   

The insulin signal transduction pathway in the AD brain 

The presence of insulin in the central nervous system, as well as its origin and functions 

have been widely debated over the decades [261–265] mainly because glucose uptake by 

neurons is not insulin dependent. After extensive research in this field, it has become evident 

that both insulin and insulin receptors (IR) are distributed in a region-specific manner in the 

brain, with highest density in the hippocampus, cerebral cortex, olfactory bulb and 

hypothalamus [266–270]. Moreover, it is now known that glucose uptake in the brain can be 

influenced by insulin in conditions of high energy demand      induced by increased neuronal 

activity.  Increased glucose uptake upon insulin binding is mediated by the stimulation of the 

translocation of glucose transporters type 3 (GLUT3) and type 4 (GLUT4) to the plasma 

membrane in the conditions of increased energy demand, such as hippocampal-dependent tasks 

[271,272]. Studies have also demonstrated that systemic insulin may be actively transported 

through the BBB to the central nervous system [266,270,273,274], but a small portion of insulin 

can also be locally produced by neurons [275–279]. There is a higher density of IR in neurons 

as compared to glia, but astrocytes express both IR isoforms (IR-A and IR-B; IR-A, in contrast 

to IR-B, shows no negative cooperativity, indicating different functional regulation upon insulin 

binding), while neurons express exclusively the IR-A isoform [280]. 

IRs are composed of dimers of alpha (extracellular) and beta (intracellular) subunits 

joined by disulfide bonds. Insulin, or insulin-like growth factors (IGF), bind to the alpha 

subunits of IR inducing autophosphorylation of its beta subunit on tyrosine residues, thereby 

promoting the transduction of many signaling pathways [281], especially related to cell 

proliferation and metabolism. Then, the signal is transduced through the phosphorylation of 
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insulin receptor substrates (IRS), which are usually composed of six members (IRS1-6), also 

on tyrosine residues [282]. The IRS-1 is one of the most well described in humans and it is 

involved in modulation of  essential functions in the cerebral cortex [260]. Phosphorylation of 

the IRS promotes conformational changes that enable the binding between IRS and another 

enzyme, phosphoinositide 3-kinases (PI3K). PI3K activation, in turn, phosphorylates 

phosphatidylinositol (4,5)-bisphosphate (PIP2) at the cell membrane and results in the 

formation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3). Then, PIP3 enables protein 

kinase (AKT/PKB) signaling pathway [283], which regulates the activation of many 

intracellular proteins in pathways related to cell proliferation and survival, such as the 

mammalian target of rapamycin (mTOR), forkhead box (FOX) proteins and Glycogen synthase 

kinase-3 (GSK3), besides the facilitation of the translocation of GLUT4 to the cell membrane 

and glucose uptake into the cell by the metabolic pathway [284].  

GSK-3 activity is extremely relevant to AD pathogenesis and has emerged as an 

important target for AD drug development [285–287]. There are two isoforms of GSK-3 in 

mammals, the isoforms α and β, encoded by two different genes [288]. While GSK-3α regulates 

Aβ production [289],  GSK-3β modulates phosphorylation of Tau [290]. In fact, GSK-3β is the 

main kinase of Tau protein, and it is able to phosphorylate at least 12 Ser/Thr of its pro-sites 

[291–293]. Moreover, GSK3-β activity may also be involved in Aβ production through the 

modulation of AβPP cleavage, as PS1 has been identified as a GSK-3β substrate and GSK3-β 

over-activation or overexpression stimulates the cleavage of AβPP by BACE1 [288]. The 

activities of GSK-3 α/β are inhibited through phosphorylation of GSK-3 by AKT at serines 21 

and 9, respectively [294].  

GSK-3 is expressed in all tissues, but it is particularly abundant in the brain, especially 

in the hippocampus [295]. It can inhibit insulin signaling through serine phosphorylation of the 

IRS 1 and 2 [296–298]. It is also the main suppressor of Wnt signaling pathway, one of the 
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most important developmental pathways that regulates fundamental aspects of cell fate 

determination, such as cell migration and neural patterning [299], which means that GSK-3 is 

able to influence cell differentiation and reproduction [295,300–302]. GSK-3 is also involved 

in regulation of learning and memory functions, and processes of neurodegeneration, 

neurogenesis, inflammation and synaptic plasticity, therefore alterations in GSK-3 activity 

found in AD could provide a molecular background for some of the neuropathological 

hallmarks of the disease [295,303]. Since GSK-3 phosphorylation at serine inhibits its activity, 

it would be expected to observe decreased phosphorylated GSK-3 α/β levels in AD brains. 

Curiously, AD studies have been contradictory and, while some authors identified increased 

levels of GSK-3 α/β in its active form [304], others observed increased GSK-3 phosphorylation 

[305,306]. Elevated expression and over-activity of GSK-3 has also been reported in           

T2DM [307] providing further support to dysfunctional IR signaling cascade as an underlying 

pathology linking AD and T2DM. Furthermore, increased expression and activation of GSK-3 

have also been observed in  other diseases, such as bipolar disorder [308–310], Parkinson’s 

disease [311–313], and Huntington's disease [314,315]. 

Therefore, inhibition of GSK-3 has been investigated as a candidate pharmacological 

target for the treatment of many diseases, especially AD [287]. One of the most well studied 

drugs in this field is lithium, a non-selective GSK-3 inhibitor. However, the obtained results are 

contradictory and inconclusive [316–318]. Similar results were found with a small molecule 

non-ATP-competitive and irreversible GSK-3 inhibitor tideglusib (NP12) [319,320]. More 

recently, a meta-analysis performed by Matsunagaa, Fujishirob and Takechia suggested that 

GSK-3 inhibitors might not be effective in AD treatment. However, the protocol established in 

the analyzed studies might have not been adequate, and non-selective inhibition of GSK-3 in a 

number of different cell types with consequent modulation of important signaling pathways 
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might account for both ineffectiveness and side-effects of such a treatment. Hence, further 

studies are needed to obtain final conclusions about GSK-3 inhibitors [287].  

Besides changes in GSK-3 activity, other upstream alterations in the insulin signaling 

cascade have also been reported in AD pathogenesis. For example, decreased levels of insulin, 

IGF-1, and their receptors have already been identified in AD brains [241,243,321]. Lower 

levels of IRS-1 [322] and increased IRS-1 serine phosphorylation, which disable normal 

transmission of signal through the IR-IRS signaling pathway and      may result in insulin 

resistance [323,324], have been described in AD [325–327], even a decade before the clinical 

onset of AD [328]. Serine IRS-1 phosphorylation might be      associated with Tau dysfunction 

in AD. In Tau knockout mice, serine phosphorylation of IRS-1 is increased, and insulin-induced 

hippocampal tyrosine phosphorylation of IRS-1 is decreased [329]. Decreased levels of PI3K 

and reduced phosphorylation of Akt have also been reported in AD [273,322]. Dysfunctional 

PI3K/Akt pathway has important downstream signaling consequences in AD, since it has been 

recognized as a molecular regulator of GSK-3, mTOR, glucose transporter trafficking, and 

autophagy, all recognized to be altered in the process of neurodegeneration.  

IR signaling pathway also leads to the activation of the mitogen-activated protein kinase 

(MAPK) pathway, which regulates cell differentiation, proliferation, survival, death and 

metabolic activity. The expression of MAPK is increased in AD brain tissue and it is found to 

also be involved in the process of Aβ plaques formation, Tau hyperphosphorylation, 

neuroinflammation, oxidative stress and synaptic plasticity. Furthermore, MAPK seems to be 

involved in the regulation of cognitive function      [258,330] . Consequently, MAPK has also 

been proposed as a possible therapeutic target in AD [331] and some candidate molecules have 

been tested in this context. For example, brain-permeable orally bioavailable small molecule 

isoform-selective inhibitor of p38α MAPK MW181 was reported to improve working memory, 
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reduce Tau phosphorylation and inflammation in Tau transgenic mouse model of tauopathy 

[332].  

Since many studies have demonstrated that impairment in both peripheral and central 

metabolism is related to cognitive decline and dementia [333–335] insulin levels and sensitivity 

became therapeutic targets in AD treatment [336]. In line with that, both insulin secretagogues 

like glucagon-like peptide 1 (GLP-1) receptor agonists insulin sensitizers, such as 

thioglitazones and biguanides, have been shown to improve cognitive function in both AD 

patients and animal models [337–339]. Metformin, a biguanide that decreases gluconeogenesis 

in the liver and ameliorates insulin resistance, has been associated with a reduced risk of 

developing AD in older people with DM [340]. Although some results have been contradictory, 

studies have shown that this drug is able to interfere with the formation of Aβ plaques and 

neurofibrillary tangles and improve insulin signaling in the brain [258,341–343]. 

Many antidiabetic drugs have been investigated in AD treatment. These drugs may 

present numerous positive effects, such as improvement of insulin resistance and cell 

metabolism, which might result in amelioration of cognitive impairment [330]. Recently, in a 

literature review, Meng and colleagues summarized the available clinical and experimental 

studies reporting the effects and the potential mechanism of action for 14 antidiabetic drugs that 

have been considered for AD treatment [344]. Among them, insulin administration has led to, 

besides other benefits, significant improvement in cognitive function in both humans and 

animal models. 

Effects of insulin administration on memory and Alzheimer’s disease 

Numerous studies have investigated the effects of insulin administration in the central 

nervous system in order to better understand the role of this hormone in cognition, and, more 

specifically, in AD [345]. Curiously, while peripheral insulin administration promotes memory 

deficits in rodents [346], probably through the induction of hypoglycemia [347], intranasal 
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insulin administration has shown positive effects in cognitive function in both clinical and 

experimental studies [306,348–350].  

When insulin is applied to the nasal mucosa, its transport to the brain is facilitated by  

the axon bundles of the receptor cells in the roof of the nasal cavity that are involved in the 

process of olfaction. In this context olfactory bulb and hippocampus stand out as the most 

important brain structures involved in the process.  Trigeminal pathways and rostral migratory 

flow also appear to be involved in this transport [351–354]. This type of administration does 

not alter peripheral insulin or glucose levels [355] and it usually takes 1 hour for insulin to bind 

to IRs in the hippocampus and frontal cortex in animals [356] and humans [351,357]. The 

importance of findings related to this treatment modality are further corroborated by the fact 

that the National Institutes of Health (NIH) appointed intranasal insulin administration as one 

of the most promising therapeutic strategies for the treatment and prevention of AD until the 

year 2025 [358].  

Studies have demonstrated that even a single dose of intranasal insulin is sufficient to 

improve cognitive function in cognitively normal individuals [359–362]. In AD patients, most 

studies, in general, have reported positive results on cognition, [352,357,361,363–366]. 

Regarding the duration of treatment, literature data are inconsistent and indicate that the 

response might also depend on the type of insulin used for the treatment (e.g. short-acting versus 

long-acting) [365].  

Overall, insulin treatment seems to be beneficial for the quality of life of AD patients, 

since studies have reported the treatment to be associated with improved functional status and 

daily activity [367]. Recently, the first pilot study of a single dose rapid-acting intranasal insulin 

in Down syndrome patients was performed by Rosenbloom and colleagues in order to verify 

the safety and viability of this potential treatment as      this population is at high risk to develop 
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AD. Although the treatment was well tolerated by the subjects, the study was not powered to 

identify effects on cognitive function [368].  

Besides the consistent reports of positive effects of insulin on memory [306,363–

365,369–371], many other benefits have been observed in AD studies. Vandal and colleagues 

demonstrated that a single injection of insulin is able to decrease Aβ accumulation in a mouse 

model of AD [372]. In a clinical study, chronic treatment with intranasal insulin was able to 

modulate Aβ levels in early AD [366]. It has also been shown that chronic treatment with 

intranasal insulin decreases Tau hyperphosphorylation and improves the regulation of the 

insulin signaling pathway in animals [306]. Regarding      neuroinflammation, one week of daily 

intranasal insulin treatment decreases microglial activation and increases synaptic proteins 

levels [373].  

Although intranasal insulin administration seems to be a promising strategy in AD 

treatment, few studies have reported controversial results [361]. A minority of studies have 

observed no effect [374,375] or a reverse effect of insulin administration on memory [376]. 

However, some clinical studies have suggested that response to intranasal insulin may depend 

on other factors [367]. Four month-treatment with a short-acting insulin (20 IU or 40 IU) 

administered by a nasal delivery device to participants with mild cognitive impairment or AD, 

stratified as APOE4-carriers or -non-carriers, indicated a dose-, APOE4 status- and sex-

dependent response in cognitive performance, compared to placebo [377]. The low dose group 

demonstrated overall treatment effect which was not seen in the high dose group where in 

APOE4-non-carriers cognitive improvement was observed in men and not in women while their 

APOE4-carrier counterparts remained cognitively stable. The results of studies with intranasal 

insulin treatment in cognitively impaired patients indicate that some people are better 

responders than the others to the treatment which targets insulin resistance in the brain, 

supporting thus the idea of the existence of different endophenotypes of AD and underlying the 
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necessity of identifying the brain insulin resistance-endophenotype features for a more 

successful therapy. 

Some animal studies also reported conflicting results. In one study, glial overactivation 

has been observed following intranasal insulin treatment in F344 rats [376].  In one other study 

insulin treatment induced little effect on the regulation of proteins from the insulin signaling 

pathway [374]. Interestingly, in both studies, the treatment was tested in healthy animals, 

suggesting that, among other factors, the treatment effect might depend on the presence of 

underlying pathophysiological changes.   

The link between diabetes and insulin signaling to other AD hypotheses  

Evidence has gathered indicating dysfunctional insulin signaling in the brain of AD 

patients and animal AD models, which supports the hypothesis of AD as a "type 3 diabetes", 

however, alterations in the insulin signaling cascade seem to be shared by other hypotheses of 

AD as well. Regarding the amyloid cascade hypothesis, a bidirectional link between insulin 

and AβPP metabolism has already been identified [378]. The secretion of sAPPα, the product 

of normal APP processing in the non-amyloidogenic pathway related to neuronal health and 

brain development, is increased after insulin treatment, which indicates that insulin signaling 

may have functions related to the expression and activation of α-secretases that favor anti-

amyloidogenic processing of AβPP and prevent Aβ accumulation [379,380]. Moreover, both 

insulin and IGFs present neuroprotective effects against Aβ toxicity [381–384]. These 

neuroprotective effects occur through the modulation of Akt and extracellular signal-regulated 

kinases (ERK) phosphorylation [385].  

Furthermore, the insulin degrading enzyme (IDE) is one of the main factors      

responsible for Aβ degradation [386]. However, given its higher affinity, IDE binds 

preferentially to insulin, when compared to other substrates, including Aβ. Thus, insulin or 

pathological conditions that affect its levels, such as DM, can indirectly modulate circulating 
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Aβ levels. In this sense, conditions that decrease insulin sensitivity and increase insulin levels 

may result in greater accumulation of Aβ and, consequently, gradual deposition in senile 

plaques [387–389]. It has already been demonstrated that IDE’s activity in the brain decreases 

during the process of aging and is significantly reduced in early stages of AD [390,391]. 

Conversely, insulin can also increase IDE protein levels via PI3K pathway and, therefore, 

deficient insulin signaling is correlated with decreased IDE in AD brains [392].  

On the other hand, the Aβ peptide can form oligomers that bind to IRs, acting under 

certain conditions as insulin antagonists and interfering with the regulation of the insulin 

signaling cascade through the reduction of Akt activation and the increase of GSK-3 α/β activity 

[393]. Aβ can also induce serine phosphorylation of IRS-1, which inhibits insulin signaling and 

initiates a positive feedback loop, leading to an increase in AβPP processing and Aβ production 

[380]. There is also evidence that Aβ is able to promote the loss and redistribution of neuronal 

surface IRs, which might be related to the first clinical symptoms of AD [394,395].  

Tau protein is related to insulin signaling in more complex ways. Marciniak and 

colleagues revealed this complexity when they identified brain insulin resistance in Tau 

knockout mice [329]. It is well known that insulin and IGF-1 modulate both Tau 

phosphorylation and Aβ production through the inhibition of GSK-3 by the PI3K-Akt signaling 

pathway [289,396]. However, there is also evidence that peripheral hyperinsulinemia, one of 

the main features T2DM, is able to alter brain insulin signaling and promote Tau 

hyperphosphorylation [397]. In this context, insulin resistance in T2DM is associated with 

elevated cerebrospinal fluid levels of Tau [398]. These findings are extremely relevant for 

understanding the underlying mechanism leading to an increased risk of diabetic patients to 

develop AD.  

On the other hand, it has already been shown that intranasal insulin administration 

reduces Tau hyperphosphorylation in the brain of T2DM rat models induced by a high protein, 
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high glucose, and high fat diet followed by intraperitoneal injection of streptozotocin (STZ) 

[399]. STZ is a glucosamine-nitrosourea substance with alkylating properties that destroys 

pancreatic β-cells and leads to decreased insulin secretion and hyperglycemia, and, 

consequently, induces diabetes in experimental animals. Curiously, central administration of 

this compound produces memory deficits, impaired insulin signaling, neuroinflammation, 

neurodegeneration, and other molecular and pathological features that mimic those in patients 

with sporadic AD, and has, therefore, been considered a model of type 3 diabetes [400–403]. 

Chronic treatment with intranasal insulin decreases Tau hyperphosphorylation, improves 

cognitive function, ameliorates      microglial activation and increases neurogenesis in this 

model [306].  

Intracerebroventricular injection of STZ also generates oxidative stress and 

mitochondrial dysfunction, which may contribute to cognitive impairment [404,405]. Several 

mechanisms have been proposed to explain STZ-induced oxidative stress, and dysregulation of 

insulin/IGF signaling, an important regulator of redox homeostasis, provides one possible 

explanation  [406]. Insulin resistance in T2DM is accompanied by      hyperglycemia which 

generates the accumulation of advanced glycation end (AGE) products that promote ROS 

generation, and increased levels of AGE as well as overexpression of its receptor (RAGE) have 

also been observed in AD brains [407]. Besides oxidative stress, an imbalance between pro-

oxidants and antioxidants and lipid peroxidation leading to cell damage have been identified in 

both AD and DM [408]. Moreover, insulin antagonizes the deleterious effects of oxidative 

stress in the brain. It presents neuroprotective effects against oxidative stress by restoring 

antioxidants and energy metabolism and modifying anti-apoptotic-associated protein synthesis 

through      the stimulation of the PI3K/Akt pathway and inhibition of GSK-3β [409,410].  

Moreover, it has already been shown that insulin sensitizers are able to protect against 

mitochondrial dysfunction caused by APOE4, a genetic risk factor for AD [411]. 
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With regards to the cholinergic hypothesis, Hoyer was the first researcher to associate 

the cholinergic system to the brain insulin signal transduction system in AD [412] based on the 

information that glucose and energy metabolism are fundamental to the formation of the 

neurotransmitter acetylcholine [406]. However, many other authors have contributed to the 

understanding that the memory-enhancing effects of glucose are mediated by the cholinergic 

system [347]. Studies with hypoglycemia due to hyperinsulinemia have demonstrated that 

systemic insulin administration produces memory impairments in rodents [346,347]. In 

addition, the authors observed that these effects were mediated by cholinergic changes, which 

suggested that insulin had an important role in the modulation of cholinergic influences on 

memory [347]. Subsequently, Rivera and colleagues demonstrated that alterations in insulin 

and IGF-I signaling promote brain deficiencies in acetylcholine biosynthesis [413].  

Chronic inflammation and high levels of inflammatory markers are other two main 

features of DM and AD. The connection between DM and AD inflammation is corroborated by 

the fact that adipose‐derived inflammatory mediators, usually found in T2DM, can cross the 

blood–brain barrier and act together with the cytokines produced by microglia, increasing brain 

inflammation [414]. Moreover, GSK-3 may be a key mediator between impaired insulin 

signaling and neuroinflammation. Increased levels of TNFα, secreted mainly by microglial cells 

in response to central nervous system injuries, have been identified in both DM and AD, and it 

has been shown that GSK-3 is able to increase its production [415]. Increased levels of TNFα 

have also been observed in the cerebrospinal fluid of healthy individuals after peripheral 

administration of a single dose of insulin [416].  

In addition, it has been shown that TNFα, as well as other inflammatory cytokines and 

stress‐sensitive kinases, can promote insulin resistance [417–419] by stimulating the serine 

phosphorylation of IRS via the activation of c‐Jun N‐terminal kinase (JNK) [257,414] and that 

the intracerebroventricular administration of an anti-TNF agent is able to ameliorate insulin 
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signaling in rats [420]. On the other hand, the anti-inflammatory cytokine IL-4 increases insulin 

sensitivity [418,421].  Najem and colleagues proposed that neuroinflammation, insulin 

resistance and Aβ accumulation may act together to drive the pathogenesis of AD [418]. Their 

proposal was based on findings that insulin signaling modulates Aβ-induced inflammatory 

response [420] and soluble oligomers of Aβ promote IRS‐1 inhibition via TNFα activation 

[325]. Therefore, they suggested that AD research should focus on understanding the possible 

link between these three events [418].  

Regarding the calcium hypothesis, calcium homeostasis also presents a bidirectional 

link with insulin signaling. Calcium flux is involved in modulation of insulin release from the 

pancreatic islets cells [422]. On the other hand, insulin can control calcium distribution [423]. 

In addition, it has already been demonstrated that PI3K-Akt signaling pathway plays important 

roles in the voltage-dependent calcium channel trafficking to the plasma membrane, which 

suggests that insulin participates in the regulation of calcium entry in excitable cells [424].  

More recently, it has been shown that acute insulin treatment is able to decrease calcium 

transients, which may affect intracellular calcium channel functions. These results suggest that 

insulin-mediated changes in calcium homeostasis may contribute to the positive effects of 

insulin in the brain [425]. On the other hand, in the central nervous system, increased levels of 

intracellular calcium are related to dysfunctional glucose metabolism [426,427]. Moreover, 

according to De Felice, aberrant calcium influx may be related to insulin resistance in AD since 

neuronal response to insulin can be inhibited by the calcium chelator BAPTA‐AM [428]. 

      A possible link between AD and T2DM could also be discussed at the level of 

cerebrovascular pathology found in diabetic and many AD patients indicating an additive effect 

on dementia [429,430]. Bearing in mind the heterogeneous etiopathogenesis of vascular 

cognitive impairments [431] it could not be excluded that the underlying mechanisms, besides 

factors like hyperglycaemia, maybe also linked to insulin regulation of vascular function [336]. 
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At normal concentrations insulin acts as vasodilator (binding to its receptors on endothelial cells 

stimulates release of nitric oxide via the PI3K pathway) while at high concentrations it acts as 

a vasoconstrictor (stimulation of endothelin-1 production via the MAPK pathway) [432]. In a 

T2DM condition of chronic hyperinsulinemia due to insulin resistance, the vasoconstrictory 

role of insulin prevails resulting in reduced cerebral perfusion which may be detected years 

before the cognitive impairment [336].  

CONCLUSIONS 

Alzheimer’s disease is a severe health public problem, with no cure or interventions to 

delay its progression. Although numerous researchers have focused on the understanding of 

this disease over the last decades, AD is still a not well understood disorder, with a complex 

pathogenesis. A lack of perception of AD as a heterogeneous pathological condition with a 

multifactorial etiology might be contributing to the constant failures in AD clinical trials. After 

gathering all the main features and hypotheses proposed in the context of the development of 

AD, we can infer that a single theory that could explain all its enigmas has not yet been 

proposed. We believe that AD is rather a multifactorial condition that can be influenced by 

numerous factors and different processes and that an adequate approach of AD should englobe 

the multiple aspects of this disorder. 

Although most studies have focused on the amyloid cascade theory of AD, the metabolic 

hypothesis of AD, suggesting that AD is a metabolic disorder gained a lot of attention and 

provided consistent basic and clinical evidence in recent years. Based on this, some authors 

even proposed that AD should be considered a  “type 3 diabetes”  to further emphasize the 

importance of metabolic changes in the context of etiopathogenesis of the disease. The most 

interesting feature of this hypothesis is the fact that it provides an integrative framework 

indispensable for understanding individual pathomechanisms proposed by other hypotheses and 

often considered individually. By adding an additional contextual layer, and providing missing 
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links, this integrative hypothesis of AD taking into account dysfunctional insulin signaling 

cascade as a missing link between many of the other proposed hypotheses, may help us deepen 

our understanding of the AD pathophysiology, gain different perspectives, and design better 

prevention and treatment strategies.  
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FIGURE LEGENDS 

Fig. 1. The traditional triad in Alzheimer’s disease pathogenesis: amyloid-β peptide, 

hyperphosphorylated Tau protein and neurodegeneration. Aβ plaques, neurofibrillary tangles, 

and cell death had been seen the main neuropathological hallmarks and major factors in AD 

pathogenesis for more than a century. According to the amyloid cascade hypothesis, the most 

traditional hypothesis of AD, disturbances in AβPP metabolism are the triggering event in AD.  

In the amyloidogenic pathway, AβPP is first cleaved off by the enzyme β-secretase (BACE 1), 

giving rise to two fragments: sAPP-β (N-terminal fragment) and CT99 or CT89. Then, the γ-

secretase complex cleaves the remaining membrane-bound portion of the protein releasing the 

extracellular fragment Aβ. On the other hand, in the non-amyloidogenic pathway, AβPP is 

firstly cleaved by α-secretase within Aβ sequence, producing soluble α-APP fragments (sAPPα) 

and C-terminal fragment α (CTFα, C83), posteriorly, CTFα is cut by γ-secretase, releasing non-

toxic fragments (P3 peptide and AβPP intracellular domain). Alterations in AβPP processing 

usually result in increased Aβ production in the amyloidogenic pathway. Excessive Aβ 

production, aggregation and deposition into plaques, in turn, lead to intracellular Ca2+ 

dysregulation and induce Tau protein hyperphosphorylation and cell death. Tau is highly 

abundant in neurons and interacts with tubulin to promote microtubule polymerization and 

stabilization. However, when hyperphosphorylated, the ability of Tau to interact with 

microtubules is impaired. Hyperphosphorylated Tau undergoes conformational changes and 

self-aggregates into oligomers. Elongated oligomers usually form paired helical filaments, 

which culminate in neurofibrillary tangles formation, inducing neurodegeneration. Moreover, 

hyperphosphorylated Tau can sequester normal tau into filamentous tau aggregates. 

Fig.2. Alzheimer’s disease as a multifactorial disorder: multiple factors converging into a single 

disease. Interactions between different events proposed in AD pathogenesis over the last 

decades: Aβ overproduction, tau hyperphosphorylation, neuroinflammation, alterations in the 
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cholinergic system, mitochondrial dysfunction, oxidative stress, calcium imbalance, and insulin 

resistance as the main link connecting different factors. The PI3K-Akt signaling pathway is 

particularly important in AD pathogenesis due to its numerous interactions with AD events, but 

mainly because of its modulation of Aβ production and Tau protein hyperphosphorylation 

through GSK-3 activity. Insulin binds to the alpha subunits of the insulin receptor (IR) by 

inducing autophosphorylation of its beta subunit on tyrosine residues. Then, the signal is 

transduced through the phosphorylation of insulin receptor substrates (IRS), also on tyrosine 

residues. Phosphorylation of the IRS promotes conformational changes that enable the binding 

between IRS and another enzyme known as phosphoinositide 3-kinases (PI3K). PI3K 

activation, in turn, phosphorylates phosphatidylinositol (4,5)-bisphosphate (PIP2) in the cell 

membrane and results in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) formation. Then, 

PIP3 enables protein kinase (AKT/PKB) signaling pathway, which regulates the activation of 

many intracellular proteins in pathways related to cell proliferation and survival, such as the 

mammalian target of rapamycin (mTOR), forkhead box (FOX) proteins and Glycogen synthase 

kinase-3 (GSK3). There are two isoforms of GSK-3 in mammals, the isoforms α and β. While 

GSK-3α regulates Aβ production, GSK-3β modulates Tau phosphorylation. Besides GSK-3 

activity, alterations of many other proteins in the insulin signaling cascade have also been 

reported in AD. 
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TABLE 

Table 1.      Main hypotheses on the pathogenesis of sporadic Alzheimer’s disease 

and associated therapies       

Hypothesis Main concept Related therapies References 

Amyloid cascade 

hypothesis 

The Aβ peptide is 

the triggering factor 

of AD. Acute 

effects, such as head 

trauma, promote 

disturbances in 

AβPP metabolism, 

altering Aβ 

production, 

clearance and 

deposition. The Aβ 

protein, in turn, 

promotes 

intracellular 

calcium 

dysregulation, 

inducing 

neurofibrillary 

tangle formation 

and cell death.  

Vaccines, 

antibodies and 

molecules targeting 

monomeric, 

oligomeric and 

fibrillar Aβ species, 

soluble and 

insoluble Aβ, Aβ 

protofibrils, Aβ 

oligomer receptor, 

Aβ synthesis, Aβ 

aggregation, Aβ-

glycosaminoglycan 

binding, and 

pyroglutamate-Aβ 

(ABvac40, 

Adubanumab, 

Bapineuzumab, 

Solanezumab 

BAN2401, 

acitretin, 

[27,433] 
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atabacestat, 

semagacestat, 

elenbecestat 

bexarotene, 

Alzhemed, PQ912, 

etc.) 

 

Cholinergic 

hypothesis 

AD is a brain 

cholinergic system 

failure and the 

cognitive 

symptoms observed 

in this disorder are 

caused mainly by 

degeneration of 

cholinergic neurons 

in the basal 

forebrain and by 

cholinergic 

synaptic loss in the 

cerebral cortex. 

Cholinesterase 

inhibitors (tacrine, 

donezepil, 

rivastigmine, 

galantamine). 

[80,96] 

Tau hypothesis Tau 

hyperphosphorylati

on precedes 

neurodegeneration 

Modulators of tau 

posttranslational 

modifications, Tau 

aggregation 

[107,108,117,434] 
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and Aβ 

accumulation, and 

in association with 

convergent 

signaling 

mechanisms, result 

in AD 

pathogenesis. 

inhibitors, tau 

disaggregating 

agents, stabilizing 

microtubules 

(ACI35, AADvac-

1, RG6100, ABBv-

8E12, lithium, 

tideglusib, 

saracatinib, 

salsalate, 

ASN120290, 

epothilone D, 

methylene 

blue, nilotinib, 

TRx0237, etc.). 

Mitochondrial 

cascade hypothesis 

The individual's 

baseline 

mitochondrial 

function is defined 

by genetic 

inheritance, and 

interactions 

between genetic 

and environmental 

factors define the 

Antioxidants, 

bioenergetic 

medicine, vitamins, 

cofactors, electron 

acceptors, redox 

molecule 

precursors, 

intermediate 

compounds of the 

Krebs cycle and 

[122,435,436] 
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rhythm at which 

mitochondrial 

dysfunction 

accumulates and, 

therefore, 

determine the AD 

onset. 

gluconeogenesis, 

intermediate 

compounds of 

mitochondrial 

metabolic 

pathways, 

peroxisome 

proliferator-

activated receptor 

gamma 

Phenylpropanoids, 

antihistaminic 

drug, actions on the 

lifestyle (vitamin E 

and C, coenzyme 

Q10, selenium, 

mitoquinone 

mesylate, 

melatonin, α-lipoic 

acid, catalase, 

resveratrol, 

curcumin 

rapamycin, 

Dimebon, 

nicotinamide 
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adenine 

dinucleotide, 

physical exercise, 

calories restriction, 

, etc.). 

Oxidative stress 

hypothesis 

The CNS presents a      

high lipid content 

and decreased 

amount of 

antioxidant 

enzymes relative to 

other systems, 

which may promote 

cumulative 

oxidative damage 

over time and result 

in AD 

pathogenesis. 

Different 

biomolecules from 

the neuronal 

membrane, such as 

lipids, fatty acids, 

and proteins 

undergo oxidation, 

Antioxidant, 

vitamins, 

supplementary 

diets, polyphenolic 

compounds, 

Flavonoids, 

medicinal plants 

(rosmarinic acid, 

quercetin, 

epicatechin, 

cannabidiol, 

melatonin,  

vitamins A, C, and 

E, β-carotene, B-

complex vitamins, 

proanthocyanidin, 

Centella asiatica, 

Aloe arborescens, 

Capparis spinosa 

L., Alpinia 

[148,149,162,437] 
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even in earlier 

stages of AD. 

galanga L., 

Abelmoschus 

esculentus, 

Curcuma longa, 

etc.). 

Neuroinflammation 

hypothesis 

A persistent 

inflammatory 

stimulus, (trauma, 

pathogenic 

infection, Aβ 

toxicity) triggers 

microglia 

activation. 

Microglia, in turn, 

secrete      

numerous pro‐

inflammatory 

cytokines and 

release ROS, 

attracting more 

microglia and 

astrocytes 

migrating towards 

the lesion area. 

Microglia become      

Non-steroidal 

anti-inflammatory 

drugs, antioxidants, 

probiotics, steroid 

and phenolic 

phytochemicals, 

Terpenoid-Derived 

phytochemicals, 

alkaloidal 

phytochemicals, 

Tumor necrosis 

factor-alpha 

inhibitor, 3-

hydroxy-3-methyl-

glutarylcoenzyme 

A (HMG-CoA) 

reductase inhibitor, 

p38 mitogen-

activated 

[176,177,438–440] 
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overactive, which 

initiates an auto-

destructive process, 

culminating in 

neurodegeneration 

and AD 

pathogenesis. 

serine/threonine 

protein 

kinase p38 MAPK 

(p38 

MAPKα) selective 

inhibitor, receptor 

for advanced 

glycation 

endproducts 

(RAGE) 

inhibitor, 

peroxisome-

proliferator 

activated receptor γ 

(PPARγ) 

agonists 

(ibuprofen, 

tarenflurbil, 

salsalate, 

celecoxib, 

resveratrol, 

etanercept, 

simvastatin, 

neflamapimod, 

azeliragon, 
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Diosgenin, 

Prosapogenin III, 

quercetin, 

Ginkgolide, 

berberine, etc.). 

Innate immunity 

hypothesis 

The activation of 

the innate immune 

system is the 

disease-promoting 

factor and the 

activation of a 

senescent and non-

functional 

microglia is the 

initial trigger of AD 

pathogenesis. 

Pharmacological 

and genetic 

therapies targeting 

impaired microglial 

clearance, 

nonsteroidal anti-

inflammatory 

drugs, actions in 

lifestyle 

(galantamine, 

thiazolidinedione, 

interleukin 33, 

etc.). 

[208–210,441] 

Calcium hypothesis Sustained 

alterations in Ca2+ 

signaling in 

neurons is a key 

event of AD 

pathogenesis. 

Modulation of 

Ca2+ related 

proteins and 

pathways, 

therapeutic 

strategies to 

balance calcium 

[212,442–446] 



107 
 

homeostasis, and 

actions in lifestyle. 

(nilvadipine, 

memantine, 

amlodipine, MEM-

1003, EVT-101, 

physical exercise, 

etc.). 

Type 3 diabetes 

hypothesis 

AD is a 

neuroendocrine 

disorder, similar, 

but also distinct, 

from DM types 1 

and 2. Insulin 

deficiency and 

alterations in the 

insulin signaling 

pathway play major 

roles in AD 

pathogenesis. 

Agents that treat 

hyperglycemia and 

ameliorates insulin 

sensitivity and the 

regulation of 

insulin signaling 

pathway,  

antidiabetic drugs, 

amylin analog 

drugs, insulin, 

glucagon-like 

peptide-1 receptor 

agonists, 

thiazolidinediones, 

sulfonylurea, 

inhibitors of 

dipeptidyl 

[243,344,447] 
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peptidase 4, 

biguanides and 

gliflozin class 

drugs, glucosidase 

inhibitors, and 

meglitinides 

(liraglutide, 

pioglitazone, 

sitagliptin, 

pramlintide, 

glimepiride, 

metformin, 

canagliflozin, 

acarbose, 

repaglinide, etc.). 

 

 


