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The use of machine learning (ML) approaches to target clinical problems is called

to revolutionize clinical decision-making in cardiology. The success of these tools

is dependent on the understanding of the intrinsic processes being used during

the conventional pathway by which clinicians make decisions. In a parallelism

with this pathway, ML can have an impact at four levels: for data acquisition,

predominantly by extracting standardized, high-quality information with the smallest

possible learning curve; for feature extraction, by discharging healthcare practitioners

from performing tedious measurements on raw data; for interpretation, by digesting

complex, heterogeneous data in order to augment the understanding of the patient

status; and for decision support, by leveraging the previous steps to predict clinical

outcomes, response to treatment or to recommend a specific intervention. This paper

discusses the state-of-the-art, as well as the current clinical status and challenges

associated with the two later tasks of interpretation and decision support, together with

the challenges related to the learning process, the auditability/traceability, the system

infrastructure and the integration within clinical processes in cardiovascular imaging.

Keywords: artificial intelligence, machine learning, deep learning, clinical decision making, cardiovascular

imaging, diagnosis, prediction

INTRODUCTION

Artificial intelligence (AI) systems are programmed to achieve complex tasks by perceiving their
environment through data acquisition, interpreting the collected data and deciding the best
action(s) to take to achieve a given goal. As a broad scientific discipline, AI includes several
approaches and techniques, such as machine learning, machine reasoning, and robotics (1).
Machine learning (ML) is the subfield of AI that focuses on the development of algorithms that
allow computers to automatically discover patterns in the data and improve with experience,
without being given a set of explicit instructions. Among ML techniques, Deep Learning (DL) is
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the subfield concerned with algorithms inspired by the structure
and function of the brain called artificial neural networks. Unlike
otherML techniques, DL bypasses the need of using hand-crafted
features as input, automatically figuring out the data features
that are important for solving complex problems. This is the
main reason why DL stands out as the current state-of-the-art
in virtually all medical imaging related tasks.

In the particular case of clinical decision-making in
cardiology, ML methods would perceive an individual by
collecting and interpreting his/her clinical data and would
reason on them to suggest actions to maintain or improve that
individual’s cardiovascular health. This mimics the clinician’s
approach when examining and treating a sick patient, or
when suggesting preventive actions to avoid illness. Therefore,
in order to assess the challenges and opportunities of ML
systems for clinical decision-making in cardiology, an in-depth
understanding of this process, when performed by cardiologists,
is paramount.

Figure 1 summarises a typical paradigm for clinical decision-
making. It starts by data acquisition, including the clinical history
of the patient, demographics, physiological measurements,
electrocardiogram, imaging and laboratory tests, and the relevant
indices collected from these data. Next, clinicians construct
and interpret the state of the patient by comparison with
population-based information learned during their education
or daily practice, or information derived from guidelines.
This interpretation is based on reasoning on the data using
the human innate capability of contextualizing information
through pattern recognition. Furthermore, clinicians assess the
uncertainty associated with measurements and the completeness
of the available information to estimate how much they can
rely on the data. Finally, they consider the knowledge from the
(natural as well as treated) expected evolution of populations
related to the patient’s status to make decisions. The resulting
actions can be to either collect more data to minimize the
uncertainty associated with the decision, to make an intervention
(drug/device therapy, surgery, etc.) to improve the patient’s
outcomes, or to send the patient home (whether or not with
planned observation follow-up).

In the era of evidence-based, personalised medicine (2),
millions of individuals are carefully examined, which results in
a deluge of complex, heterogeneous data. The use of algorithmic
approaches to digest these data and augment clinical decision-
making is now feasible due to the ever-increasing computing
power, and the latest advances in the ML field (3). Indeed,
big data leveraged by ML can provide well-curated information
to clinicians so they can make better informed diagnoses and
treatment recommendations, while also estimating probabilities
and costs for the possible outcomes. ML-augmented decisions
made by clinicians have the potential to improve outcomes, lower
costs of care, and increase patient and family satisfaction.

ML analyses have, to date, demonstrated human-like
performance in low-level tasks where pattern recognition or
perception play a fundamental role. Some examples are data

acquisition, standardization and classification (4, 5), and feature
extraction (6, 7). For higher-level tasks involving reasoning,
such as patient’s status interpretation and decision support,

ML allows for the integration of complex, heterogenous data in
the decision-making process, but these are still immature and
need substantial validation (8). In parallel to Figure 1, which
illustrated the process of making clinical decisions, Figure 2
describes the tasks involved in this process according to how ML
could contribute, and highlights how the risks to a patient from
erroneous conclusions increase with each step.

There exist other review papers that cover the topic of
AI in cardiovascular imaging from a broader perspective (9),
or that highlight the synergy between machine learning and
mechanistic models that enable the creation of a “digital twin”
in pursuit of precision cardiology (10). Complementarily, this
paper focuses on ML as a subfield of AI and on clinical decision-
making as an essential part of cardiovascular medicine. Although
cardiovascular imaging only constitutes a limited portion of the
data spectrum in cardiology, we emphasize the imaging field
in our literature review given that it is one of the areas to
which ML has contributed the most (11). In the following, we
discuss the higher-level tasks related to clinical decision-making
that involve reasoning on clinical data, namely interpretation,
and decision support. For each of these tasks, we review the
ML state-of-the-art (indicating whether the implementation was
based on DL or other ML technique), comment on the current
penetration of ML tools into clinical practice (see Clinical status
subsections), and elaborate on the current challenges that limit
their implementation in clinical practice. Finally, we discuss the
general challenges that may appear when tackling any clinical
problem with ML approaches.

This paper addresses potential questions arising from data
scientists, industrial partners and funding institutions, helping
them understand clinical decision-making in cardiology and
identify potential niches for their solutions to be helpful. At
the same time, the paper aims at informing cardiologists about
which ML tools could target their problems and what are their
current limitations.

STATUS
INTERPRETATION—COMPARISON TO
POPULATION

Let us assume that the clinical data of a patient have been
properly acquired and relevant features are readily available.
The next stage in the decision process consists in interpreting
his/her status by comparison to populations. This comparison
requires data normalization. When complex data are involved,
such as cardiac images, the traditional approach to normalization
is to build a statistical atlas–a reference model that captures the
variability associated to a population (12). To build the atlas,
the training data must be transformed into a common spatio(-
temporal) framework, which can be achieved by registration.
In this sense, registration appears as a crucial step for status
interpretation toward diagnosis, and deep learning has emerged
as a suitable tool to register 3D cardiac volumes (13), 3D pre-
operative cardiac models to 2D intraoperative x-ray fluoroscopy
to facilitate image-guided interventions (14), or cardiac MRI
sequences (15).
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FIGURE 1 | Clinical decision-making flowchart, from data acquisition and extraction, to patient’s status interpretation and associated decision.

FIGURE 2 | Different tasks where ML can support clinical decision-making.

The ML interpretation of the state of the patient can augment
the diagnosis made by clinicians. Indeed, a recently published
meta-analysis highlighted the promising potential of ML and DL
models to predict conditions such as coronary artery disease,
heart failure, stroke, and cardiac arrhythmias using data derived
from routinely used imaging techniques and ECG (16). Based
on imaging, ensemble ML models, which group the prediction
of different weak learners, have demonstrated higher accuracy
than expert readers for the diagnosis of obstructive coronary
artery disease (17); a DL model automated the diagnosis of
acute ischemic infarction using CT studies (18); and another DL
model achieved 92.3% accuracy for left ventricular hypertrophy
classification analysing echocardiographic images (19). Different
ML models have also operated on electronic health records
(EHR) for triaging of low-risk vs. high-risk cardiovascular
patients, grading findings as requiring non-urgent, urgent or
critical attention, as a strategy to improve efficiency and

allocation of the finite resources available in the emergency
department (20). Lastly, a ML ensemble model combined
clinical data, quantitative stenosis, and plaque metrics from CT
angiography to effectively detect lesion-specific ischemia (21).

Another data-driven example of status interpretation is
unsupervised machine learning for dimensionality reduction;
a label-agnostic approach that orders individuals according to
their similarity, i.e., those with a similar clinical presentation
are grouped together, whereas those showing distinct
pathophysiological features are positioned far apart (22).
This allows identifying different levels of abnormality, or
assessing the effect of therapies and interventions, as these are
aimed to restore an individual toward increased “normality.”
An implementation of unsupervised dimensionality reduction
provided useful insight into treatment response in large patient
populations (23), and quantified patient changes after an
intervention using temporally dynamic data (24).
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Clinical Status
ML approaches for interpreting a patient’s status enhance
discovery in massive databases by offering the possibility to
identify similar cases, build normality statistics, and spot outliers.
Whether these approaches are intended for diagnosis or risk
assessment, they could contribute to deliver better healthcare.

Unfortunately, many current ML applications for interpreting
clinical data present a technically sound contribution, but do
not address real clinical needs, and they often focus on binary
classification of normal vs. abnormal (19), which strongly limits
their use in routine clinical practice. Furthermore, studies
showing impact on hard clinical endpoints rather than on
surrogate measures are still needed. The way forward is through
further integration of technical and clinical contributions, and
through the elaboration of consensus recommendations on how
to tackle a clinical necessity using ML.

DECISION-MAKING (PREDICTION)

Based on the interpretation of the patient’s status, clinicians
should decide on whether: (1) observe the patient and wait until
an event triggers the need for a decision; (2) collect more data to
improve the odds of making the right decision; or (3) perform an
intervention and monitor the outcome (see Figure 1). Machine
learning methods can help clinicians to decide which pathway to
follow (25), in a way that is cost-effective (26).

Several studies have assessed the predictive power of
ML techniques based on imaging. An echocardiography-
based DL model was shown to improve the prediction
of in-hospital mortality among coronary heart disease and
heart failure patients as compared to traditionally used
prediction models (27). An ensemble ML approach interrogating
SPECT myocardial perfusion studies demonstrated superior
performance at predicting early revascularization in patients
with suspected coronary artery disease as compared to an
experienced reader (28), or in combination with clinical and
ECG data outperformed the reading physicians at predicting the
occurrence of major adverse cardiovascular events (29). Lastly, a
DL implementation fed with CT scans from asymptomatic as well
as stable and acute chest pain cohorts demonstrated the added
clinical value of automated systems to predict cardiovascular
events (30). Leaving imaging aside, deep learning based on
clinical, laboratory and demographic data, ECG parameters,
and cardiopulmonary exercise testing estimated prognosis and
guided therapy in a large population of adults with congenital
heart disease (31).

The interplay between different a priori non-related
imaging tests has recently been discovered by DL through
the identification of previously unnoticed associations. For
example, breast arterial calcifications and the likelihood of
patients at a high cardiovascular risk was sorted out using a
DL model that operated with mammograms (32). Similarly,
the power of ML in combination with the non-invasiveness of
retinal scanning has been used to predict abnormalities in the
macrovasculature based on the microvascular features of the eye.
One such example is the DL model that predicted cardiovascular

risk factors using retinal fundus photographs, thus allowing
for an easier and cost-effective cardiovascular risk stratification
(33), or the DL implementation that inferred coronary artery
calcium (CAC) scores from retinal photographs, which turned
out to be as accurate as CT scan-measured CAC in predicting
cardiovascular events (34).

Clinical Status
The few examples of FDA-cleared cutting-edge ML applications
to cardiovascular imaging that are thus suitable for routine use,
focus on the low-level tasks of data acquisition and feature
extraction, both in cardiac MRI (35) and echocardiography (36,
37), although the latter contribution did actually prove useful
to predict a poor prognosis in acute COVID-19 patients based
on DL-enabled automated quantification of echocardiographic
images. However, the use of these ML applications for prediction
and decision-making is still in its early days, as most models
are still incapable of making predictions at the individual level
(8, 38). More effort is needed toward integration in a clinical
environment, interpretability, and validation if we want to see
these models embedded in routine patient care.

CHALLENGES COMMON TO STATUS
INTERPRETATION & DECISION-MAKING

Applications concerning patient’s status interpretation and
decision-making, which entails learning what is the risk
associated with each possible clinical decision, imply a much
higher risk as compared to the low-level tasks of data acquisition
and feature extraction, since decisions derived from them could
harm patients. Accordingly, ML outcomes need to be intuitively
interpretable by the cardiologist and validated in a much more
exhaustive way (as required by medical device regulators; e.g.,
class IIa or IIb routes to commercialization), ultimately with the
launch of randomized prospective trials.

One of the main challenges for ML approaches to status
interpretation lies in the extraction of meaningful concepts
from raw data. This challenge entails many others, related
to the data themselves. The first concerns the reliability
and representativeness of training and outcome data. If
representative, ML models need to find a reliable metric to
compare heterogeneous data, which is not trivial. Furthermore,
for a successful interpretation, data collection protocols should
be designed to cover gender-, ethnicity- and age-related changes,
and capture the rare outliers (39). On top of this, ML systems
should be designed to consider longitudinal data, as to assess a
patient over time, e.g., during a stress protocol (40) or disease
progression (41). Finally, ML models are trained on three
different kinds of data; ranging from higher to lower quality
and completeness: (1) randomized clinical trials, (2) cohorts, and
(3) clinical routine real-world data. The exchange of knowledge
throughout these collections of data is challenging, since what
was learned from highly curated data (e.g., randomized clinical
trials) may not generalize to routinely collected data.

Another crucial problem associated to currently available
data is bias, i.e., when the training sample is not representative
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of the population of interest (see section “General challenges”
for more details). Accordingly, caution is needed when testing
a trained model in new clinical centres. As ML users can
attest, there will always be a trade-off between improving the
system performance locally and having systems that generalize
well (42). Automation bias, defined as the human tendency
to accept a computer-generated solution without searching
for contradictory information (43), may also affect clinical
interpretation and decision-making. As shown by Goddard et
al. (44), when the ML solution is reliable it augments human
performance, but when the solution is incorrect human errors
increase. Thus, who is to blame if a diagnostic algorithm
fails? The further we move along the clinical decision-making
flowchart (Figure 2), the more ethical and legal barriers the ML
practitioner/company faces. To mitigate some of these issues,
the training data should be accessible, and the learning systems
equipped with tools that allow reconstructing the reasoning
behind the decision taken.

Table 1 organizes the ideas discussed for status interpretation
and decision-making in the form of a SWOT analysis.

GENERAL CHALLENGES

We have previously described the specific challenges that may
arise when ML models are given the tasks of interpreting
the patient’s status or making predictions to guide the clinical
decision. In the following, we discuss the general challenges
that may appear when tackling any clinical problem with
ML approaches. These are divided into different sections,
depending on whether they relate to the learning itself, the
auditability/traceability aspects, the system/infrastructure, or the
integration within clinical processes.

Learning
(Non-standardized) Data
Medical data are normally kept in many separate systems, which
hampers accessibility and makes comparisons at a population
level nearly impossible. Electronic health records mostly contain
unstructured data, and so they are underutilized by care
providers and clinical researchers. Machine learning systems
can help organize and standardize information, or can be
designed to directly integrate unstructured complex data for
high-throughput phenotyping to identify patient cohorts (45).

Bias and Confounding
As discussed in the previous section, bias is another risk
that arises with the use of ML. Indeed, a recent review
of cardiovascular risk prediction models revealed potential
problems in the generalizability of multicentre studies that often
show a wide variation in reporting, and thus these models may
be biased toward the methods of care routinely used in the
interrogated centres (46). For example, in the case of cardiac
MRI, protocols are not standardised, varying by institution and
machine vendor (47). This bias may amplify the gap in health
outcomes between the dominant social group, whose data are
used to train algorithms, and the minorities (8). Luckily enough,
there are studies thatmake sure that all minorities are represented

in the training data (12, 39), but this should be the rule, not
the exception. Another challenge when applying ML models that
are designed to recognise patterns lies in the tendency of these
to overfit the dataset because they fail at distinguishing a true
contributing factor to the clinical outcome from noise (48).

ML solutions can similarly inherit human-like biases (49),
such as the model whose recommendation of care after a heart
attack was unequal among sex groups (50), as a consequence
of a biased training dataset. This bias may also appear in ML-
powered echocardiography, where studies are dependent on both
the operator performing the study and the interpreter analysing
it (47). This bias occurs because we ask ML solutions to predict
which decisions the humans profiled in the training data would
have made, thus we should not expect the ML method to be
fair. The effect of human cognitive biases in ML algorithms
have already been addressed and different “debiasing” techniques
have been proposed (51), but this is a topic that certainly needs
more attention.

Similar to bias, the learning process can be undermined by
confounding, i.e., the finding of a spurious association between
the input data and the outcome under study. Such is the case of
the deep learning model that attempted at predicting ischaemia
by looking at ECG records, but rather learnt at detecting the
background electrical activity noise present in the ischaemic
ECG examples, which was not present in the control cases (52).
Unsupervised learning can be beneficial to avoid confounding,
as it does not force the output of the model to match a given
label but rather finds natural associations within the data (53).
Similarly, randomization of experiments is highly recommended
to avoid confounding (54).

Validation and Continuous Improvement
Even if an algorithm proves to outperform humans in prediction
tasks, systematic debugging, audit and extensive validation
should be mandatory. For ML algorithms to be deployed in
hospitals, theymust improve patient as well as financial outcomes
(8). Validation should be through multi-centre randomized
prospective trials, to assess whether models trained at one site can
be applied elsewhere. Examples of prospective ML trials assessed
in a “real world” clinical environment are scarce–only 6% of
516 surveyed studies performed external validation, according to
(55). Among these rare examples, finding prospective validation
studies to prove the suitability of ML-enabled applications in
cardiovascular imaging is even rarer. In (56), a prospective
study concluded that a ML model that integrates clinical and
quantitative imaging-based features outperforms the prediction
of myocardial infarction and death as compared to standard
clinical risk assessment. Attia et al. (57) conducted a prospective
study to validate a DL algorithm that detected left ventricular
systolic dysfunction. Another pivotal prospective multicentre
trial was launched to demonstrate the feasibility of aML-powered
image guided acquisition software that helps novices to perform
transthoracic echocardiography studies (58). Lastly, a validation
study was performed to prove the feasibility of using DL to
automatically segment and quantify the ventricular volumes in
cardiac MRI (35).
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TABLE 1 | SWOT analysis—status interpretation and decision-making.

Strengths Weaknesses

• Allow objective and thorough comparison to populations

• Allow the integration of complex, heterogenous features

• May enhance the prediction of clinical outcomes, or the prediction of response to a

given treatment or intervention.

• Need well-curated, representative databases for training

• Affected by data reliability, representativeness, and bias

• Need to extract meaningful, interpretable concepts

• Need thorough validation–prospective trials

• Need to integrate longitudinal data

• Ensure transference of knowledge across populations

• Need to prove clinical benefit

• Need to be integrated within clinical systems

• Need to prove cost-effectiveness

Opportunities Threats

• Stimulate the man/machine collaboration

• Reach diagnosis in a shorter time

• Separate ambiguous cases that deserve more attention from clear cases–triaging

• Help in the organization of healthcare—diagnosis, risk assessment and urgency

assessment

• Lower cost of healthcare by suggesting cost-effective decisions

• Harm patients if wrong decisions are taken—high-risk

• Disappoint users, especially after all the striking news on ML failures

• Affect human decisions in a negative way—automation bias

• Make decisions for the average patient, not at the individual level

One of the greatest benefits of ML models resides in their
ability to improve their performance as more data become
available. However, this might be challenging particularly for
neural networks, which are prone to “catastrophic forgetting”—
to abruptly forget previously learned information upon learning
from new data. Furthermore, re-training on the whole database is
time and resource consuming. To solve these problems, federated
learning, a novel de-centralized computational architecture
where machines runmodels locally to improve themwith a single
user‘s data (59), could be helpful. Given the evolving nature of
ML models, medical device providers are obliged to periodically
monitor the performance of their programs, using a continuous
validation paradigm (60).

Auditability/Traceability
Interpretability vs. Explainability
Interpretability is understood as the ability to explain or to
present in understandable terms to a human (61). In a strictly-
regulated field such as cardiovascular medicine, the lack of
interpretability of ML models is one of the main limitations
hindering adoption (62). Indeed, from the example of predicting
ischaemia by looking at ECG records discussed above (52),
it is evident that the non-intelligible use of ML outputs can
lead to controversial results and therefore translation to clinical
practice should be done cautiously. Unfortunately, many ML
implementations available do not comply with the European
General Data Protection Regulation (GDPR), which compels ML
providers to reveal the information and logic involved in each
decision (63).

When reasoning on the data to make decisions, the human
brain can follow two approaches (64): the fast/intuitive (Type
1) vs. the slow/reasoned (Type 2) one. Type 1 is almost
instantaneous and based on the human ability to apply heuristics
to identify patterns from raw information. However, it is prone
to error and bias, as it can lead to an incomplete perception of
the patient due to low quality or lack of relevant data (65, 66). In
contrast, Type 2 is deductive, deliberate, and demands a greater

intellectual, time and cost investment, but often turns out to be
more accurate.

The above is highly relevant for both “traditional” and ML-
based clinical decision-making, as ML systems ultimately mimic
different aspects of human reasoning and can lead to the same
errors. For the sake of explaining ML decisions, researchers
provide attention maps (67), reveal which data the model
“looked at” for each individual decision (68), provide estimates
of feature importance (69), or explain the local behaviour of
complex models by changing the input and evaluating the
impact on the prediction (70). However, caution is needed
with this entire research trend, as explainability is not a
synonym of interpretability (71). Explainable models tend to
reach conclusions by fast/intuitive black-box reasoning (Type 1,
see also causal vs. predictive learning in the following subsection),
while interpretable models demand a slow/reasoned (Type 2)
approach throughout the entire learning path. In this sense,
explainable models that follow a fast/intuitive reasoning might
incur more diagnostic errors than interpretable models, which
follow an analytical reasoning (64). The research field that focuses
on enhancing models’ interpretability is still in its infancy.
Generative synthesis (69), which uses ML to generate a simplified
version of a neural network, or mathematical attempts to explain
the inner working of neural networks (72) could provide key
insight into why and how a network behaves the way it does, thus
unravelling the black-box enigma (73).

For MLmodels to be applied in clinical decision-making, they
cannot merely be interpretable, but they also must be credible.
A credible model is an interpretable model that: (1) provides
arguments for its predictions that are, at least in part, in-line with
domain knowledge; (2) is at least as good as previous standards
in terms of predictive performance (74). For ML models to
achieve credibility, the medical expert must be included in the
interpretation loop (75).

Together with models, we should also develop strategies to
objectively evaluate their interpretability. This can be done by
assessing fairness; privacy of data; generalizability; causality, to
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prevent spurious correlations; or trust, to make sure the model is
right for the right reasons (61). Depending on the application,
the interpretability needs might be different. For cardiology
applications in particular, ML for status interpretation and
decision-making should be equipped with the most-advanced
interpretability tools.

Causal ML Rather Than Predictive ML
Predictive ML based on correlations of input data and outcomes
may not be enough to truly impact the healthcare system. Indeed,
this form of learning can be misleading if important causal
variables are not analysed. For auditability reasons, we should
probably shift toward finding the root causes ofwhy that decision
was made, and interpreting the process followed by the algorithm
to reach that (diagnostic) decision, i.e., how the diagnosis was
made. These two questions are addressed by causal ML, a
powerful type of analysis aimed at inferring the mechanisms of
the system producing the output data. In practice, causal models
provide detailed maps of interaction between variables, so the
users can simulate cause and effect of future actions (76).

System-Related
Security
Machine learning raises a handful of data security and privacy
issues, as DL models require enormous datasets for training
purposes. The most secure way to transfer data between
healthcare organizations is still unclear, and stakeholders no
longer underestimate the hazards of a high-profile data leakage.
Hacking is even more harmful, as hackers could manipulate a
decision-making model to damage people at a large scale.

The European GDPR compels to adopt security measures
against hacking and data breaches. A potential solution that
has been largely discussed is Blockchain, a technology that
enables data exchange systems that are cryptographically secured
and irrevocable, by providing a public and immutable log
of transactions and “smart contracts” to regulate data access.
The downsides of Blockchain’s technology are that it is slow,
costly to maintain, and hard to scale (77). As an alternative,
federated learning could guarantee the security of patient data
(see “Validation and continuous improvement subsection”), as
this model-training paradigm allows updating a learning model
locally without sharing individual information with a central
system (78).

Regulatory
The use of ML for clinical decision-making unavoidably brings
legal challenges regarding medical negligence derived from
learning failures. When such negligence arises, the legal system
needs to provide guidance on what entity holds liability, for
which recommendations have been developed (79). Furthermore,
the evolving nature of ML models poses a unique challenge to
regulatory agencies, and the best way to evaluate updates remains
unclear (60). Policymakers should generate specific criteria
for demonstrating non-inferiority of algorithms compared to
existing standards, specially emphasizing the quality of the
training data and the validation process (80). Regulatory bodies
must also ensure that algorithms are used properly and for

people’s welfare. In summary, forML technology to be adopted by
cardiology departments within the next years many legal aspects
still need to be addressed, and decision- and policy-makers
should join efforts toward this end.

Integration (Man/Machine Coexistence)
The scenario of ML tools replacing humans in clinical medicine
is highly unlikely (81). Besides the formidable challenges for
ML solutions discussed above (8), cardiologists will still be
needed to interact with the patients and perform physical
examinations, navigate diagnostic procedures, integrate and
adapt ML solutions according to the changing stages of disease
or patient’s preferences, inform the patient’s family about therapy
options, or console them if the disease stage is very advanced.

Accordingly, instead of a human-machine competition, we
should rather think of a cooperation paradigm, where ML
is used to augment human intelligence–targeting repetitive
sub-tasks to assist physicians to reach a more informed
decision, more efficiently. Indeed, ML and humans possess
complementary skills: ML stands out at pattern recognition
on massive amounts of data, whereas people are far better at
understanding the context, abstracting knowledge from their
experience, and transferring it across domains. Human-in-the-
loop approaches facilitate cooperation by enabling users to
interact with ML models without requiring in-depth technical
knowledge. However, understanding where ML models can be
used and at which level is crucial to avoid preventable errors
attributed to automation bias (43). Examples of human-machine
collaboration already exist. Indeed, a ML algorithm cleared
by the FDA improved the diagnosis of wrist fractures when
clinicians used it, as compared to clinicians alone (82). In
diabetic retinopathy diagnosis (83), model assistance increased
the accuracy of retina specialists above that of the unassisted
reader or model alone. In cardiovascular imaging, most examples
of human-machine collaboration thus far focus on segmentation,
and detection-classification of imaging planes (84).

In light of this, the current clinical workflow could be
rethought: the ML system would propose a diagnosis, the human
operator then revises the data on which the conclusions are
drawn, informing the system of potential measurement errors
or confounders, and finally accepts or rejects the diagnosis.
Thus, the human operator preserves the overall control, while
machines perform measurements and integrate and compare
data at request (75). Ultimately, this human-machine symbiosis
will be beneficial to release physicians from low-level tasks such
as cardiac measurements, data preparation, and standardization,
to give them more time on higher-level tasks such as patient care
and clinical decision-making (85).

ML Applied to Real Clinical Data
In human decision-making, a clinician would explore all available
data and compare them to patients they have seen before
or were trained to recognize. Once an individual is put into
context with regards to expected normality and typical cases,
previous knowledge on treatment effect is used to manage this
individual patient. This ‘eminence-based’ approach is only within
reach of very experienced clinicians. For standardization, many
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professional organizations provide diagnostic guidelines based
on data from large cohorts or clinical trials (86–88). Although
guidelines have significantly contributed to improve medical
care, they do not consider the full data available. In this sense,
the use of ML seems amply justified.

Most ML models are trained with data collected following
strict input criteria and well-defined protocols used in
randomized clinical trials (89, 90), but routinely collected
data is often much noisier, heterogeneous and incomplete.
ML techniques need to deal with incompleteness, either by
performing imputation or by adopting formulations that
explicitly consider that the data can be incomplete. Furthermore,
patients often lie outside the narrow selection criteria of
cardiology trials (including co-morbidities, ethnicity, gender,
age, lifestyle, etc.), may have been differently treated before the
investigation, may present at a different stage of disease, and
most importantly, may undergo different decision pathways
during the study. On top of this, obtaining a hard outcome to
train an algorithm is often difficult, e.g., to register death, the
study would need to be conducted until everybody dies, which
is unfeasible both for time and economic constraints. Even if
registered, often the outcome is scarce, and when appearing, the
reason for experiencing it may be different among patients (91).

All these aspects make it extremely challenging to associate
input descriptors to outcomes using supervised predictive
ML/DL techniques, which may fail to understand the context
from which data have been drawn, and thus yield unwanted
results that might harm patients. A more promising approach
could be based on unsupervised dimensionality reduction, a
label-agnostic approach where input descriptors are used to
position individuals according to their similarity and combined
with previous knowledge this similarity can be used to infer
diagnosis or to predict treatment response (23).

FUTURE PERSPECTIVES

The foreseeable application of ML in the short to mid-term
is to perform specific and well-defined tasks relating to data
acquisition, predominantly by extracting standardized, high-
quality information with the smallest possible learning curve. In
this sense, DL solutions already help extracting information with
minimal or even without the need of human intervention (8, 92),
or aid selecting the images that are good enough for subsequent
clinical interrogation (93). Another evident application of ML
that will soon be ubiquitous in clinical practice is that of image
analysis, which will discharge cardiologists from monotonous
activities related to feature extraction from images (94), thus
freeing them up to dedicate more time to higher-level tasks
involving interpretation, patient care, and decision-making.

For the topics covered in this paper, i.e., the higher-level
tasks involving reasoning, such as patient’s status interpretation
and decision support, ML applications are still immature and
need substantial validation. A modest number of ongoing
clinical trials have been conceived to tackle these drawbacks.
One such example is the current investigation aiming at
validating a DL model that diagnoses different arrhythmias
(AF, supraventricular tachycardia, AV-block, asystole, ventricular
tachycardia and ventricular fibrillation) on 12-lead ECGs and

single-lead Holter monitoring registered in 25,458 participants
(95). Another example is the clinical study that will interrogate
stress echocardiography scans with ML models to discriminate
normal hearts from those at risk of a heart attack in a prospective
cohort of 1,250 participants (96). Considering the above, we do
not expect to see a vast penetration of ML-enabled applications
for patient’s status interpretation and decision support in clinical
practice in the foreseeable future.

Whatever the application, the penetration of ML models into
routine practice will be subject to their seamless integration into
the clinical decision pathway used by cardiologists. Furthermore,
we consider that the upcoming policies for ML research in
healthcare should address the challenges described in the
previous section, which can only be achieved bymultidisciplinary
teams. On the algorithmic side, more attention should be
dedicated to dealing with longitudinal data, and how to
relate the ML conclusions with pathophysiological knowledge.
Data integration and what is the best approach for dealing
with incomplete data and outliers should be also surveyed.
On the validation side, generalization performance should be
systematically reported, and uncertainty quantification methods
should be developed to establish trust in the (predictive) models.
Finally, the practical considerations that will affect adoption
of the ML technology, such as how ML software should be
integrated with the archiving and communication system of
the hospital or how it would be paid for by facilities, should
be explored. For these, a clear demonstration of the cost-
effectiveness of ML technology in healthcare systems and its
positive impact on patients’ outcomes is needed.

CONCLUSION

ML algorithms allow computers to automatically discover
patterns in the data and improve with experience. Together
with the enormous computational capacities of modern servers
and the overwhelming amount of data resulting from the
digitalization of healthcare systems, these algorithms open
the door for a paradigm shift in clinical decision-making in
cardiology. However, their seamless integration is dependent
on the understanding of the intrinsic processes being used
during the conventional pathway by which clinicians make
decisions, which in turn helps identifying the areas where
certain types of ML models can be most beneficial. If the
obstacles and pitfalls that have been covered in this paper can
be addressed satisfactorily, then ML might indeed revolutionize
many aspects of healthcare, including cardiovascular medicine.
For the promise to be fulfilled, engineers and clinicians will need
to engage jointly in intensive development and validation of
specific ML-enabled clinical applications.
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