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1. INTRODUCTION AND BACKGROUND FOR THE PROPOSED RESEARCH 

1.1. Protein Glycosylation 

Glycans are oligosaccharides attached to proteins or lipids 
1
. A typical glycan is a complex 

non-linear branched oligosaccharide composed of 10 to 15 monosaccharide residues. Glycan 

structure is defined by the order of monomeric units, exact position of the glycosidic bond, its 

anomeric configuration (α or β), the number of branches and the position of branching
 2

. The 

process of oligosaccharides attachement to a protein is called glycosylation and those proteins 

are referred to as glycoproteins. The complete set of glycans  produced by a  given cell type or 

organism is called glycome and comprehensive study of structures and functions of glycans is 

referred to as glycomics. Mammalian glycome consist of nine monosaccharides which 

theoretically could make 10
12

 combination of hexasaccharides 
3
. Moreover, a broad range of 

different glycans can be made by altering the number, order and type of monosaccharides 

units and the attachment of many different glycans to the same protein result in different 

glycoforms of the same protein molecule 
4
. It is estimated that mammalian glycoproteins 

consist of up to 2000 different glycan determinants 
5
 and changes in glycans have an essential 

impact in modifying the structure and function of polypeptides parts of glycoprotein 
6
, making 

the glycoproteome much more complex than the proteome itself 
7
. 

Glycosylation of proteins is an important post-translational modification and glycans play an 

important role in normal physiological processes such as protein folding, degradation and 

secretion as well as in cell signalling, cell-cell interactions and immune functions 
8
. 

Dysregulation of glycosylation caused by a combination of several individual mutations leads 

to various forms of congenital disorders of glycosylation 
9
. In addition mutations that cause 

formation of new glycosylation site can also be deleterious. There are several classes of 

glycans, including Asn (N)-linked and Ser/Thr (O)-linked glycans 
1
. N-glycosylation is the 

oldest pathway that take place when a block of 14 sugars attached to dolichol phosphate (the 

dolichol phosphate precursor) is transferred to asparagine (Asn) residue in newly synthesized 

polypeptides in the endoplasmatic reticulum 
10

. During passage through the Golgi 

compartments to their intra and extra-cellular destinations, these N-glycans will be subject to 

a large-scale alteration 
11

. Common mammalian monosccharides comprise glucose (Glc), 

mannose (Man),galactose (Gal), N-Acetylglucosamine (GlcNAc), fucose (Fuc) and sialic 

acid. Additionally, multiple residues can be attached to a single monosccharide which can 
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lead to complex branched structure. Therefore, oligosaccharides are amongst the most 

structurally diverse biopolymers in the nature. 

Almost all membrane and secreted proteins are modified by covalent addition of glycans 
12

 

and the complete absence of glycans is embryologically lethal 
13

. Contrary to polypeptide 

parts of proteins, which are defined by the sequence of nucleotides in the corresponding genes 

(made by a direct DNA template), glycans are formed by complex network of interactions by 

hundreds of glycogenes 
14

 that code for various glycosyltransferases, glycosidases, enzymes 

for sugar nucleotide biosynthesis, transporters, transcription factors, ion channels and other 

proteins 
15

. Therefore, the final structure of the glycan will be ultimately affected by changes 

in the abundance and/or localization of any of the enzymes, glycoprotein substrates and 

activated sugar donors involved in glycan biosynthesis 
16

. Thus, it is well established that 

glycans are a product of a complex biosynthetic pathway affected by hundreds of genetic and 

environmental factors 
14, 17,

 
18

.  

Despite their different and complex biosynthetic origin, both polypeptide and glycan parts of 

glycoproteins participate as a single molecular entity in the function of a glycoprotein 
6
. Even 

though the glycans are not directly encoded in genes, a high heritability of mammalian 

glycome composition was reported 
19, 20

 and various large population studies of human plasma 

glycome revealed a high inter-individual variability in glycan composition 
20, 21

. This 

heterogenity of glycome composition triggered by alteration in glycosylation has resulted in 

the tremendous complexity in glycan structures and even a minor changes in the glycan 

structures can have important functional effects. It is evident that this structural variety of 

glycans is responsible for adapting to changing environment and also in evading from many 

pathogens 
22

. ABO blood groups are the best conspicuous example of variability in 

monosaccharides at the end of glycan antennas as a result of modification caused by mutation 

in genes leading to a large part of individual phenotypic variations. The majority of human 

variability derives from single nucleotide polymorphisms (SNPs) which individually do not 

indicate any obvious phenotypes, but if present in specific combinations,  they can have 

significant phenotypic effects
 23

. In addition, there is a growing evidence that changes in 

protein glycosylation have been reported to be of importance in the development and 

progression of different cancers, thus raising the possibility for early detection, imaging and 

therapy 
24

. 
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1.2. Glycans relevance as biomarkers 

Glycans appear to play a key role in a wide range of diseases. The complexities of 

oligosaccharide structures and the lack of analytical methods for elucidating them have 

hampered the overall process  and only recently glycans have been tested as potential disease 

biomarkers due to the recent advances in the development of novel analytical tools. It is now 

well established that structure of glycan expressed by diseased cells are different as compared 

to those of normal cells 
25

 and these aberrant glycans are widely known to occur as a response 

to the disease 
26, 27, 28

. Since , glycans are not a result of direct genetic template, it appears that 

changes in protein glycosylation have the potential to be more notable than protein expression 

during transformation to the diseased condition 
26

. Even small changes in the associated 

protein (glycosyltransferases) expression have a direct effect on glycans and there are various 

examples that emphasize the role of glycosyltransferase overexpression in tumorigenesis 
29, 30

. 

As a result, the effect of the disease is significantly amplified and easier to detect 
1
.  

On the other side, it is widely reported that abnormality in protein glycosylation is associated 

with a complex diseases such as cancer, diabetes, cardiovascular, congenital, immunological 

and infectious disorders 
3, 8, 31

. Furtheremore, changes in protein glycosylation in either the 

level of or type of glycosylation have been shown to be of importance in the development and 

progression of different cancers. Hence, glycans are engaged in all major physiological events 

during various stages of tumor progression, from tumor cell proliferation, metastasis and 

angiogenesis 
26, 32, 33

, and a  number of different studies have made preliminary reports of 

potentially important glycan biomarkers for cancer and other diseases 
1, 33, 34, 35, 36

. Therefore, 

due to the importance of alteration in glycosylation in health and disease, there has been 

extensive research effort on the discovery of glyco-biomarkers that could have potential 

diagnostic or prognostic monitoring capabilities. 

Many known biomarkers for cancer are in fact glycoproteins, and specifically those for 

colorectal cancer are carcinoembryonic antigen (CEA) and CA19-9. However, diagnostic 

tests typically only measure the protein fraction, despite the fact that in many cases it has been 

convincingly demonstrated that glycosylation changes significantly improve the diagnostic 

value of these biomarkers 
37, 38

. Increased branching of oligosaccharides has been reported to 

be associated with cancer metastasis and tumor progression in melanoma, breast and 

colorectal cancer 
39, 40, 41

. The enzyme N-Acetylglucosaminyltransferase V (GnT-V, Mgat 5), 

which promotes increased branching of glycans has been reported to be associated with 

cancer 
42

. Its expression was subsequently reported to correlate with poor prognosis in 
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colorectal 
43

, endometrial 
44

 and bladder cancer. In mouse models, knockdown of GnT-V was 

found to inhibit breast cancer cell growth with activation of CD4+ T cells and macrophages 

45
. Functional proteomics studies indicated that GnT-V reinforces the invasive/metastatic 

potential of colon cancer through aberrant glycosylation on tissue inhibitor of 

metalloproteinase 1 
46

. More recently 1,3 fucosyltransferases were reported to be master 

regulators of prostate cancer cell trafficking 
47

, while the ST6GalNAc gene (one of many 

sialyl-transferases) was found to be associated with brain metastasis in breast cancer 
48

. A 

recent study reported that polymorphisms in several glyco-genes are also associated with 

increased or decreased risk for epithelial ovarian cancer 
49

. 

Glycosylation found on cell surfaces and in extracellular matrices is very important in 

multicellular organisms because it makes the first point of contact in cellular interactions 
50

. 

This has significant impact in cancer progression and metastasis because cancer progression 

and metastasis is a complex process requiring adhesive interactions, many of which are 

mediated by cell surface glycans and lectins. N-glycosylated cell adhesion molecules such as 

E-cadherin and integrins play key roles in cell-cell and cell-extracellular matrix interactions, 

thereby affecting cancer metastasis
 51

. A key element of protein glycosylation is the addition 

of fucose to the non-reducing ends of N-glycans and this has already been linked to cancer 

and inflammation 
52

. Indeed, fucosylated haptoglobin and sialyl-Lewis-x (SLex) have 

previously been proposed as cancer biomarkers for pancreatic, ovarian, breast and thyroid 

cancer 
39, 40, 41, 53, 54

. Fucosylated alpha-fetoprotein is highly specific tumor marker for 

hepatocellular carcinoma 
55

. Although, changes in fucosylation are associated with 

progression of prostate cancer 
56

. More recently mutation in hepatocyte nuclear factor 

(HNF1A) gene which finally cause a decrease in plasma protein antennary fucosylation is a 

promising biomarker for both, HNF1A-MODY(maturity onset diabetes of the young)  

diagnosis and HNF1A  impaired function 
57

. 

Breast cancer patients with lymph node metastasis have been shown to have significantly 

higher levels of glycans containing the SLex structure than patients without a metastasis, 

suggesting a basis for a new biomarker for cancer prognosis 
40

. In particular, malignant 

properties of cancer cells including invasivness and metastatic potential is thought to be a 

characteristic feature associated with aberrant sialylations in these cells. An increase in 

sialylation is commonly observed in various tumors, which may be due to either an increased 

activity of sialyltransferases or increased numbers of possible sialylation sites on N-linked 

carbohydrates 
58

. Sialylation of transferrin and total serum proteins coud be used as a new 

prognostic marker of acute pancreatitis 
59

. Moreover, decreases in triantennary 
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trigalactosylated glycans and/or bisected core fucosylated  biantennary monosialylated 

glycans and increases in tetraantennary tetrasialylated glycans were found to be correlated 

with perineural invasion in prostate cancer 
60

. Triantenary N-glycans are associated with 

tumor stage in hepatocarcinoma patients 
61

. Modulators of protein glycosylation and glycan 

branches have been considered to be important candidates for novel anticancer drugs 
26, 62

. 

Even though it appears that the reported markers are cancer associated rather than cancer 

specific, they nevertheless could provide an insight into the molecular mechanisms of 

carcinogenesis and disease pathogenesis 
63

.   

Finally, Immunoglobulin G (IgG) molecule is a prominent example of changes in protein 

glycosylation as a response to the disease. Human serum IgG glycosylation is known to 

change with various physiological and pathological conditions, especially, it is evident a 

significant change of IgG glycosylation between control and cancer patients 
64

.  

Taking all of these studies in consideration it is predicted that, in the future, it will be possible 

to not only diagnose diseases, but perhaps even determine disease progression and specific 

strain based solely on glycan profiling 
1
. 

1.3. Immunoglobulin G 

Immunoglobulins (Ig) are glycoprotein molecules made by plasma cells in response to 

challenge from microbiological agents or cancer cells. Compared to other classes of 

immunoglobulins (IgM, IgA, IgD, IgE), IgG molecules represent the predominant class of Igs 

in the serum with typical concentration of almost 10 mg/ml 
65

, reflecting its role as a major 

effector molecule of the humoral immune system in defending organisms against many 

pathogens. IgG molecules are multifunctional glycoproteins which are one of the best studied 

class of glycoproteins present in serum in four different subclasses (IgG1, IgG2, IgG3, IgG4) 

based on their decreasing abundance (65), which also differ from each other on the basis of 

the length of hinge region and the number of interchain disulphide bonds 
66, 67

. 

IgG antibodies consist of two heavy (H) and two light (L) chains linked together by disulphid 

bonds which form two fragment antigen binding Fab moieties divided into two homologus 

domains (VL and CL) and one fragment crystallizable Fc moiety composed of four 

homologous domains (VH, CH1, CH2 and CH3) which are both together linked through a 

flexible hinge region 
68, 69

. While the Fab portion of IgG are responsible for binding antigens 

and provides the structural basis for the tremendous immunological diversity of antibodies, 

the Fc portion promotes a variety of effector functions through interactions with specific 

ligands, e.g. cellular receptors (FcRs), (FcRn) and the C1 component of complement 
 70, 71, 72

. 
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Each heavy chain of IgG carries a single covalently attached bi-antennary N-glycan at the 

highly conserved asparagine 297 residue in each of the CH2 domains of the Fc region of the 

molecule (Figure 1). In contrast to other Ig isotypes, the IgG-Fc glycan moiety is not exposed 

on the IgG surface but rather buried within the hydrophobic core between the two heavy 

chains of the CH2-domain forming multiple non-covalent bonds with polypeptide chains and 

impacting Fc structure 
73, 74

. 

 

Figure 1. The structure of an IgG1 molecule. (A) Fab and Fc portion (B). Complex biantennary glycan structure 

attached to Asn 297 in Fc portion of IgG molecule. Structural schemes are given in terms of blue square (N-

acetylglucosamine), red triangle (fucose), green circle (mannose), yellow circle (galactose), and purple diamond 

( N-acetylneuraminic acid) 64. 

The Fc glycans of human IgG are biantennary complex-type structures which are 

predominantly core-fucosylated and are in part altered by a bisecting N-acetylglucosamine 

(GlcNAc) 
75, 76

, antennae are partially trimmed varying in their degree of galactosylated and 

may carry a sialic acid residue 
77

. 

More than 95% of the final IgG glycans carry a N-acetylglucosamine on both arms and 85% 

are fucosylated
 78

. The percentage of glycans carrying one galactose (G1 glycan) is 40% and 

the frequency of non-galactosylated (G0) or bi-galactosylated glycans (G2) ranges between 

20-40% 
79

.  

In addition, it appears that there are small amounts of human IgG containing nonfucosylated 

glycans with or without bisecting GlcNAc residue
 80

. In general, it is widely known that the 

attached oligosaccharide chains are highly heterogenous and over 36 different glycans can be 
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attached to the conserved Asn 297 of the IgG heavy chains 
81

. Since IgG glycoprotein 

contains two heavy chains, it can lead to hundreds of different IgG isomers that can be 

generated from this single glycosylation site. Immunoglobulin G (IgG) molecule is one of the 

most studied glycoprotein in details in sense of structural and functional aspects of 

glycosylation. 

Interestingly it was found that the variability of glycan composition attached to IgG was 

approximately three times larger than the variability of the total plasma glycome 
20

, providing 

IgG with new physiological functions that could not be possible without this complex post-

translational process. 

Thus, glycosylation is a very complex metabolic process and heterogenity in IgG glycome 

composition argues the fact that these final products, glycans, are not solely genetically 

predefined (Figure 2), hence glycosylation is known to be affected by factors such as type of 

glyco-enzymes and their expression levels 
82

.
    

 

 

 

Figure 2. Structural variations in IgG glycans. Initial GlcNAc2Man3GlcNAc2 structure (red square) can be 

modified by the addition of bisecting GlcNAc (GnTIII), fucose (FUT8) or galactose (GalT). These resulting 

structures can further be modified by the activity of the same enzymes or by the addition of the sialic acid (SiaT) 

83
. 

These attached oligosaccharides are structurally important for the stability of the antibody and 

its effector functions 
84

. In addition, 15–20% of normal IgG molecules also carry complex bi-

antennary oligosaccharides attached to the variable regions of the light chain, heavy chain or 
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both 
85, 86

. There are glycosylation site specific differences between the Fab and the Fc. In 

contrast to Fc portion of IgG, Fab regions are characterised by a high incidence of di- and 

monosialylated structures and of cores with the bisecting GlcNAc residue  
87

. 

In general, these studies indicate that glycosylation of IgG is essential for the expression of 

proper effector functions of IgG, and specific physiological and pathological conditions can 

essentially alter the conformation of Fc region with enormous consequences for IgG effector 

functions. Therefore, variation of the glycosylation of recombinant monoclonal antibodies in 

order to derive improved therapeutic effector functions, represents an important research area 

88
. Despite the importance of protein glycosylation in all physiological and pathological 

processes and their potential as diagnostic markers, understanding of the role of IgG N-

glycans in various pathological conditions is also a good foundation for the development of 

novel therapeutics. 

1.4. The role of the Fc glycans in IgG activity 

Glycosylation appears to be particularly important in the immune system 
89

 and IgG is the 

most conspicuous example in terms of how novel IgG functions triggered by alternative 

glucosylation can provide new adaptive mechanism that allows fight against pathogens or 

cancer cells. Immunoglobulins and their binding receptors (Fc receptors) are key glycoprotein 

components of the immune system that link the innate and adaptive arms of immunity. IgG-

Fc glycans modulate the biological activities of IgG in completely two opposite directions, 

thereby acting as a switch from innate anti-inflammatory activity to an adaptive pro-

inflammatory response on antigenic challenge 
1
. 

Antibodies communicate with effector cells of the immune system through interactions with 

membrane bound Fc receptors, which are complex glycoproteins widely expressed throughout 

haematopoietic system 
90

 such as natural killer cells, macrophages, eosinophils, neutrophils, 

limphocytes and dentric cells. Stimulation of cells through FcγRs results in a wide variety of 

effector functions, including antibody dependent cell mediated cytotoxicity (ADCC) 
91

 

phagocytosis 
92

, oxidative burst 
93

 and release of inflammatory mediators 
94

. Consequently, 

alteration of IgG glycosylation patterns changes their respective effector functions 
95, 96

. There 

are two major types of FcγRs: immune reaction activating (FcγRIa, FcγRIIa and FcγRIIIa) 

and inhibiting receptors (FcγRIIb) 
74

, also there is an additional Fc receptor known as the 

neonatal Fc receptor, (FcRn). FcRn is involved in IgG, maintaining the serum concentrations 

of the antibody due to the enhanced half life of circulating IgG of up to 21 days and regulating 

IgG homeostasis where high concentrations are required to fight infection 
97

. This receptor is 
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also involved in transcellular transportation of IgG from mother to fetus across the placenta 

and is critically important for the transfer of humoral immunity to the fetus 
98

. 

Some of the immune cells express both activating and inhibitory FcγR and eventual 

interaction betwen IgG and these receptors relies on the affinity of the IgG subclasses to 

distinct FcγRs and the combination of expression level an pattern of FcγRs 
99

. 

IgG glycosylation has important regulatory functions and immune system has possibility to 

descriminate between different antibody glycoforms, which can also initiate a different impact 

on the efficacy of IgG effector function 
100

. The IgG-Fc glycans maintain the heavy chains in 

an open conformation required for FcγRs interactions and even a small changes in their 

composition have enormous consequences for IgG effector functions 
85, 101

. However, it is 

also evident that deglycosylated IgG molecules are unable to elicit in vivo an inflammatory 

response 
102

 because of their  little ability in activating complement and in binding to FcγR 
103, 

104
 as the two heavy chains form a closed conformation, impeding so formation of FcγR 

binding pocket 
105

. 

Antibody mediated tumor eradication depends on two key mechanisms targeted for activation, 

ADCC and complement-dependent cytotoxicity (CDC). In order for IgG to induce these two 

key mechanisms it must rely on proper glycosylation of its Fc region since changes in glycan 

composition will initiate dramatic consequences for effector functions of IgG (Figure 3). 

Fc glycans contain a core Fuc residue in a1,6-position linked to the core GlcNAc residue 
78

. 

Bio-synthesis of core-fucosylated glycans is the result of a transfer of a Fuc residue from 

GDP-Fuc-mediated by a1,6-fucosyltransferase in the trans-Golgi 
106

. Core-fucosylation of N-

glycans attached to the Fc part of IgG appears to be specifically and separately regulated from 

the core-fucosylation of glycans attached to Fab fragments of the same protein
 107

. While the 

majority of plasma proteins are not core-fucosylated 
19

, over 95% of IgG is core-fucosylated 

in what appears to be a mechanism which modulates binding of IgG to Fc gamma RIIIa 
20

 and 

therefore contains “safety switch” which prevents them from eliciting potentially destructive 

ADCC 
108

. FcγRIIIa (CD16) is an activating Fc receptor expressed primarily on natural killer 

(NK) cells and antibodies initiate ADCC via binding to FcγRIIIa which results in eradication 

of target cells. Core-fucosylation of IgG plays an important role in mediating ADCC 

following treatment with therapeutic antibodies because the presence of core-fucose interferes 

with FcγRIIIa binding and this is closely related to the clinical efficacy of anticancer drugs 

109
. Hence, IgG fucosylation is a strong modulator of antigen dependant cell cytoxicity 

(ADCC) 
110, 111

 and specific aspects of FcγRIIIa glycosylation have also been reported to be 

important in this process. Glycans attached to Asn45 and Asn162 of FcγRIIIa are essential for 
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the regulation of preferential binding of IgG without core-fucose to FcγRIIIa 
109

. Despite the 

role of core fucose in increasing or decreasing ADCC via binding to FcγRIIIa, it was reported 

that interaction with other activating receptors such as FcγRIIA is uneffected by the presence 

of the core fucose 
112

. Nevertheless, proper regulation of the addition of core-fucose to IgG 

could play an important role in determining  cancer prognosis as the addition of core-fucose 

decreases the potential of IgG to elicit ADCC by nearly hundred fold 
95

. Because of improved 

binding to activating Fcγ receptor and enhanced ADCC by afucosylated IgG, core-

fucosylation of IgG has been the subject of intensive research 
95

.  

Hence, a number of  strategies have been developed to reduce fucosylation of IgGs 
107

 such 

as: generation of cell lines with genetic modifications that directly influence core fucosylation 

in a way that either completely lack or have reduced levels of expression of a 1,6-

fucosyltransferase 
113, 114

. For instance, genetic elimination of fucosyltransferase 8 (FUT8) in 

Chinese hamster ovary cells has been a successful approach for the prevention of core 

fucosylated IgG 
115

. Besides, as an alternative method is used overexpression of b (1,4)-N-

acetylglucosaminyltransferase III (GnTIII) an enzyme that adds bisecting GlcNAc residues to 

IgG 
116

 which has been shown to result in reduction of the core fucose content 
117

. However, it 

seems that the lack of core fucose, not the presence of bisecting GlcNAc, has the most critical 

role in enhanced ADCC 
111

 as the presence of bisecting GlcNAc is always associated with 

low fucose content. Biopharmaceutical industry has been focused on generation of 

afucosylated monoclonal antibody therapeutics (mAb) as well, and the majority of approved 

(mAb) therapeutics that target ADCC have been engineered for use in anti-cancer therapies. 

Afucosylated monoclonal antibodies display strong therapeutic potential in anti-cancer 

therapy 
118

. Due to their ability to initiate an enhanced ADCC as a result of their improved 

FcγRIIIa binding, afucosylated IgG even low doses of afucosylated IgG are enough to 

overcome the competition with high concentrations of heavily fucosylated serum IgG 
110

. 
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Figure 3. Modulation of IgG function by alternative glycosylation.Structure of the glycan on IgG Fc part can 

significantly affect effector function of IgG 119.  
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Another structural modification of IgG-Fc glycan is the presence of terminal sialic acid 

residues and this has received increased attention since sialylation has also been implicated in 

regulating IgG activity. Increasing sialylation of the Fc glycans results in the decreased 

ADCC activity of IgGs, as terminal sialylation exhibits low affinity for the Fc gamma RIIIa 

receptor 
120

. It has been reported that increased sialylation makes IgGs an anti-inflamatory 

agents
 81, 121

 and this was found to be essential for the function of therapeutic intravenous 

gamma globulins (IVIG) which together with their Fc fragment are anti-inflammatory 
81, 122

. It 

is reported that one class of IgG Fc glycans through binding to FcγRs perform pro-

inflammatory effects of immune complexes and cytotoxic antibodies 
81

, which are so the key 

mediators of many autoimmune diseases such as immune thrombocytopenia (ITP), 

autoimmune hemolitic anemia (AHA), systemic lupus erythematosus (SLE), reumatoid 

arthritis (RA), type I diabetes and multiple sclerosis 
123, 124

. In contrast, therapeutic 

intravenous gamma globulins and its Fc fragments are anti-inflammatory 
81

.  Intravenous 

immunoglobulin (IVIG) is a therapeutic preparation of normal human polyclonal IgG 

obtained from plasma pooled from a large number of healthy blood donors. Due to its anti-

inflammatory effect, IVIG is now widely used as a replacement therapy of patients suffering 

from autoimmune diseases such as: immune thrombocytopenia (ITP), chronic inflammatory 

demyelinating polyneuropathy (CIDP), and rheumatoid arthritis (RA) 
125, 126

.  Because anti-

inflammatory activity of IVIG is maintained through enormous quantity of IVIg (1-2 g per 

kg), it was speculated that it could be possible that only a small sub-fraction of IVIg will 

mediate advantageus effect. Therefore, Kaneko et al 
81

 suggested that anti-inflammatory 

activity of IVIG is derived from sialylation of Fc region. Because a reduction in IVIG activity 

was seen only by desialylated IVIG, it was suggested that sialic acid could be the key sugar 

performing anti-inflammatory activity 
81

. Consistently, in vitro sialylation or acid specific 

lectin enrichment generated sialylated IgG Fcs which in turn suppressed inflammation at a 30-

fold lower dose than IVIG 
127

. Also, sialylated IVIG suppressed induced arthritis and 

nephrotoxic nephritis at a 10 –fold lower dose than whole IVIG 
81

. These studies confirmed 

that anti-inflammatory activity is a property of IgG Fc portion and that Fc portion alone is 

sufficient to suppress inflammation 
128

. Further support for this concept was provided by data 

showing that only α2,6 linked sialic acid residues have been found to be responsible for the 

anti-inflammatory activity observed for human IVIG 
120

. Moreover Ravetch and colleagues 
129 

pointed out the effect of sialylated Fc fragments as the anti-inflammatory  mediator of IVIG 

in the K/N experimental arthritis mouse model. Contrary to other studies, it was found that 

induction of inhibitory IgG cell surface receptor FcγRIIB on effector macrophages by 
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sialylated IgG has profound effect on anti-inflammmatory activity of these antibodies 
121

. 

Furtheremore, after administration of IVIG in a number of mouse models an increased 

expression of this inhibitory receptor FcγRIIB was observed and mice lacking this receptor 

were unresponsive to IVIG 
122, 125, 130

. Since, human and mouse IgG glycoforms bearing 

terminal sialic acid residues show a reduced affinity for activating FcγRs, it seems clear that 

other receptors might be involved in recognizing sialic acid rich IgG 
81

. Indeed,  Anthony and 

colleagues 
127

 demonstrated that the mechanism that mediate such anti-inflammatory effect 

does not involve FcγRs and FcRn, but sialylated IgG mediate its anti-inflammatory activity 

through binding a C-type lectin receptor on mouse splenic macrophages SIGN-R1 or its 

human orethologue, DC-SIGN. Although, subsequent studies have supported this by 

suggesting a protective mechanism involving the inhibitory Fc receptor (FcγRIIb) and C-type 

lectin SIGNR1 or its human ortholog DC-SIGN 
121, 131

. Because IVIG lost its therapeutic 

activity in FcγRIIB knock-out animals in models of ITP, nephrotoxic nephritis, and serum 

transfer arthritis 
130, 132

 it is obvious that the inhibitory FcγRIIB is also essential for IVIG 

activity. 

The presence or absence of anntenary galactose residues has also been demonstrated to alter 

the activity of antibodies. IgG Fc-glycans carrying galactose residues in their teminal 

antennae bind to the complement component C1q giving rise to classical pathway of 

complement activation but not ADCC activity because they do not influence binding to the 

FcγRIIIa receptor 
133

. The role of IgG galactosylation was analysed in different inflammatory 

diseases 
77

 and also similar observation were made in  infectous diseases and cancer 
134, 135

. 

Increased levels of IgG-G0 promots proinflammatory response against HIV virus and this 

argues for a functional significance of antibody galactosylation in humans 
136

. Incomplete 

galactosylation of IgG exhibits a low affinity to bind to complement component C1q and 

FcγRs resulting in impaired effector functions 
137

 and in contrast to galactosylated IgG (G1-

IgG and G2-IgG), agalactosylated IgG can activate in vitro complement system via  the 

interaction of mannose-binding lectin (MBL) with Fc terminal GlcNAc residues 
138

 and thus 

be part of the underlying pathological mechanisms. Furthermore, an increase in terminal 

GlcNAc content results in decreased binding of antibody to C1q and reduced CDC activity 

133
. The MBL is a C-type protein that is involved in clearance of immune complexes and in 

the lectin pathway of complement activation 
139

. It forms a complex with structural 

homologues of C1 complement components and triggers CDC 
138

. Based on the increased 

binding of MBL to agalactosylated glycans  in vitro, it has been suggested that the MBL may 

contribute to an additional inflammation by activating complement 
139

.  In contrast, recent 
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studies performed in MBL knock-out mice showed that despite the capacity to bind MBL and 

activate the complement cascade in vitro, there was no significant contribution of MBL to the 

activity of IgG G0 antibodies  in vivo, suggesting rather that IgG G0 antibodies work 

normally via the classical FcγR pathway 
140

. Even though this study argues no functional role 

of interaction between MBL and  G0, because of the different role of individual glycans and 

glycoforms in mouse and human, further studies must be performed in humans to elucidate 

the exact functional role of agalactosylation IgG antibodies in terms of interaction with MBL. 

  The pro-inflammatory and anti-inflammatory properties of IgG due to  alternative 

glycosylation is presented in (Figure 4). 

 

 

Figure 4. The schematic representation of the human IgG structure and functional implication of alternative 

glycosylation 141.  

  



 

15 

  

1.5. IgG glycosylation under physiologic and pathophysiologic conditions 

Despite the biosynthetic complexity, glycosylation under controlled physiological conditions 

or during bioprocessing is highly reproducible. Therefore, it has been  known for a long time 

that aberrant changes of IgG glycosylation are associated with specific physiological and 

pathophysiological conditions 
64

. Recently, there has been an increasing interest in the 

analysis of the N-glycosylation profile of human IgG in health and in a number of diseases 

such as infections, inflammation and autoimmunity 
36, 137, 142, 143, 144, 145, 146

. Although, 

variations in the glycome in cancerous state have been reported long time ago 
29

, less is 

known about the potential role of the Fc glycans in malignancy. Understanding the role of 

changes in glycosylation in autoimmune diseases and cancer is important for defining both 

molecular pathology of such conditions and also for the identification of possible targets for 

subsequent drug development 
147, 148

. The mechanisms that cause disease-related 

glycosylation changes have not yet been clarified, but in order to better understand these 

mechanisms it is very inportant to define glycosylation changes as they relate to normal 

physiologic processses. Therefore, a number of studies have reported age and sex dependence 

of certain IgG glycosylation features in healthy population 
149, 150, 79

. Parekh et al. 
149

; Yamada 

et al. 
150

; Shikata et al. 
79

; Knežević et al. 
17

; Ruhaak et al. 
151

; Pučić  et al.
 20

 in their studies 

have found a significant decrease of galactosylation and sialylation of IgG with age and an 

increase of glycan structures with the bisecting GlcNAc, while the core fucosylation of IgG 

oligosaccharides stayed rather stable over time. Yamada et al. 
150

, found different IgG 

glycosylation patterns related to gender, with agalactosylated levels of IgG antibodies being 

higher in both males and females but with males showing higher level of agalactosylated 

glycans than females in their twenties. Even though bisecting GlcNAc shows higher levels 

with age, however, differences between males and females were found. 

The studies mentioned above provided valuable information regarding changes in 

glycosylation with respect to chronological age but the question whether IgG Fc glycans 

would reflect biological age was unknown for a long time,  until  Krištić et al. 
152

 performed a 

large-scale popullation study of 5,117 individuals from four European populations. This study 

revealed very extensive and complex changes in IgG glycosylation with age, and with a 

combination of several IgG glycans managed to explaine up to 58% of variance in 

chronological age, much more than other markers of biological age like telomere lengths. 

This was the first study confirming the close association of IgG glycans with both 

chronological and biological ages. High galactosylation and sialylation levels of IgG and  
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decrease of bisecting GlcNAc was reported in pregnacy 
153

. In addition, glycosylation of IgG 

from both fetal and maternal circulation was also analyzed and compared. Interestingly, the 

incidence of IgG-G0 was found to be approximately 25% higher in maternal serum as 

compared to fetal umbilical vein serum, which might indicate a glycosylation sensitive 

transport of maternal IgG via the placenta to the fetal circulation with a selection for highly 

galactosylated glycoforms 
154

. 

It seems that glycosylation varies considerably between individuals of the same sex and age, 

but the influence of life time on glycosylation is stroger than differences between sexes. 

Among the most notable features of IgG glycosylation in pathologic conditions, 

galactosylation is the most studied. Increased levels of agalactosylated IgG have been 

reported in many autoimmune diseases suggesting that the absence of galactose may have a 

role in the pathogenity of the autoantibodies. In addiion, until now more than 50 different 

studies have analyzed the role of IgG galactosylation in different inflammatory diseases. 

Despite this, the molecular significance of these changes is still mostly unknown 
64

. In sera of 

patients with rheumathoid arthritis (RA) a significant change in IgG glycosylation with 

increase levels of IgG-G0 was reported 
143

. However, increased levels of agalactosylated IgG 

have been also found in sera of patients with juvenile arthritis, Crohn’s diseas and 

tuberculosis 
144, 155

. Young et al 
156

 have found that G0 values can be used clinically as an 

indicator of disease severity and also in the early diagnosis of rheumatoid arthritis. It was 

suggested that IgG molecules containing less terminal galactose bind better to certain 

rheumatoid factors (RA) 
157

. Also, It was reported  that IgG-G0 have pathogenic role in 

mouse model of arthritis 
158

 and interesingly, increased content of galactose in IgG 

carbohydrate chains was significantly increased during pregnancy, when re-mission of RA 

symptoms occurs 
159

. In addition to RA, alteration in IgG glycosylation has been reported in 

studies of small vessel vasculitis, Wegener’s granulomatosis, microscopic polyangitis and 

Churg-Strauss syndrome 
142

. More recent studies described lower levels of IgG Fc 

galactosylation in well-defined antibody-mediated autoimmune diseases, i.e., Lambert-Eaton 

myasthenic syndrome (LEMS) and myasthenia gravis (MG) 
135

. Changes of IgG glycosylation 

have been also reported in many other non-autoimmune diseases such as malignant states. 

Gercel-Taylor et al. 
160

 and Alley et al. 
161

 have found an elevated expression of 

agalactosylated IgG in the serum of patients with ovarian cancer. Increase in agalactosylation 

levels was also reported in patients with gastric cancer 
148, 162

, lung cance 
163

 and prostate 

cancer 
164

. Recently, it was demonstrated that IgG  glycosylation  signature  might be  useful  

as  a  predictive  marker  for  gastric  cancer 
165

. In contrast, Chen et al. 
166

 have reported a 
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higher levels of galactosylated IgG in female thyroid cancer patients than in female controls. 

Aberrant IgG Fc glycosylation was also reported in multiple mieloma with decreased 

galactosylation in comparison to age and sex matched controls 
167

. 

These described changes of the overall IgG-Fc N-glycosylation, could provide insight into 

potential association of a certain glycosylation feature and antibody pathogenicity 
135

. 

However less is known about the potential role of IgG glycosylation in malignancy and tumor 

immunity. Therefore, further analysis of IgG-Fc glycans may provide clearer understading of 

the possible impact of glycosylation on tumor progession and evaluation of the Fc glycans  as 

a potentially predictive biomarker for monitoring of cancer patients. The functions of certain 

sugar residues for the pro and anti-inflammatory functions of IgG have shed light in sense of 

the functional importance of these sugar moieties attached to immunoglobulin molecule. The 

presence or absence of distinct sugar residues such as galactose,  sialic acid and core fucose 

can dramatically alter IgG activity and changes in serum IgG glycosylation during age, 

pregnacy, autoimmune disease and cancer suggests existance of active regulatory mechanisms 

that could trigger a molecular switch keeping the humoral immune system in an active pro-

inflammatory or a more anti-inflammatory state. 

1.6. The prognostic importance of colorectal cancer 

Colorectal cancer (CRC) is a malignant neoplasm of the colon and the rectum. It is the third 

most common malignancy in the world 
168

. Unfortunately, nearly 800,000 new colorectal 

cancer cases are thought to globally occur each year, which account for 10% of all incident 

cancers, and the mortality from colorectal cancer is estimated at nearly 450,000 per year 
46

. 

This places a major economic burden on the global health care system 
169

. CRC develops 

through a progressive accumulation of genetic, both inherited and somatic,and epigenetic 

changes, leading to the conversion of normal colonic mucosa into invasive cancer. Almost 70 

to 90 % of CRC-s derive from adenomatous polyps (adenomas) 
170

. The risk of CRC increases 

with age especially after the age of 50 years, and the risk is also increased by certain inherited 

genetic mutations (familial adenomatouspolyposis and hereditary non-polyposis colorectal 

cancer), a personal or family history of colorectal neoplasia, or a personal history of 

inflammatory bowel diseases (IBD) 
171

. Several modifiable factors are also associated with 

increased risk of CRC, including obesity, physical inactivity, smoking, heavy alcohol 

consumption, type II diabetes, and a diet high in red or processed meat. 
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CRC is still associated with poor prognosis, low survival rate and usually relatively late 

diagnosis. CRC develops slowly and the risk of recurrence and death from CRC is related to 

tumor stage at diagnosis. It continues to be such a serious health problem because it is largely 

asymptomatic until the latter stages oftentimes when the cancer has already metastasized. The 

growing repertoire of treatments available for CRC, including new chemotherapy approaches, 

combined with challenging benefit:toxicity ratios and cost, means that it is crucial to target 

interventions to patients most likely to benefit. Current cancer screening methods for CRC 

include fecal occult blood test followed by imaging procedures such as sigmoidoscopy, colo-

noscopy, or potentially computed tomography (CT). Although current screening methods are 

helpful, they are not optimal and present major concerns regarding sensitivity, specificity, 

complexity, cost, and compliance. Until now there are no reliable serologic markers available 

which would allow early diagnosis, monitoring and prognosis of patients. Because CRC 

develops slowly from removable precancerous lesions, detection of the disease at an early 

stage during regular health examination can reduce both the incidence and mortality of the 

disease 
168

. Early diagnosis, including detection of adenomas, is considered to be a key aspect 

for improving patient survival and prognostic or predictive biomarkers are essential for 

guiding patient therapy or monitoring treatment efficacy. In addition, the importance of 

detecting colorectal cancer at an early stage is also appreciated by the fact that patients 

diagnosed with TNM Stage I disease have a 5-year survival rate of 90% following surgical 

resection 
172

, whereas when diagnosed at the later stag-es (i.e., Stage IV), the 5-year survival 

rate is only 5%. Nevertheles, advances in cancer treatment have increased survival for some 

cancers, yet the main CRC prognostic marker at present is stage at diagnosis as reflected by 

the AJCC/UICC TNM-classification which describes tumor spread through the bowel wall, 

number of affected lymph nodes and spread of tumor to distant organs (metastasis) 
173

. In 

spite of this, even with the use of the TNM-classification method, there are some patients of 

lower TNM-stages that have a worse clinical outcome than patients of higher TNM-stages 
174

. 

This is clinically important, since patients with AJCC stage 2 CRC may be offered adjuvant 

chemotherapy if their cancer is classified as high risk 
175

. Hence, whilst pathological staging 

(TNM/Dukes') stratifies prognostic groups, it is limited in its ability to categorise poor/good 

prognosis tumours accurately and direct treatment decisions at the individual level. Also, 

current biomarkers which are at least partly released into the circulation from the tumor, 

perform poorly in terms of sensitivity and this greatly limits their value in cancer prognosis 

168.
. In line with this, currently, unfortunately scientists have failed to develop simple and non-

invasive screening test for the early detection of cancers based only on genomic and 
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proteomic studies 
176

. Therefore, the need for early detection and accurate diagnosis, 

prognosis and efficient therapeutic approach has led scientists to search further into the 

molecular level in order to identify novel biomarkers that could further refine pathology-

based prognostic information and offer much potential for clinical and public health benefit, 

thus aiding the existing tumor classification systems in determining CRC prognostication. 

 A recent extensive report endorsed by the US National Academies concluded that “glycans 

are directly involved in the pathophysiology of every major disease” and that “additional 

knowledge from glycoscience will be needed to realize the goals of personalized medicine 

and to take advantage of the substantial investments in human genome and proteome research 

and its impact on human health” 
177

. It is well known since a half century the relevance of 

alteration in glycosylation in disease states, particularly in the study of cancer 
34

 but glycans 

have only recently been  introduced  as potential disease biomarkers due to the development 

of a large-scale studies of the glycome. In general, immune response occurs in the early stage 

of tumor development and it may not only protect organisms against tumor development, but 

can also promote tumor development and progression by selecting variants with low 

immunogenicity. Inter-individual differences in immune repertoire and the capacity to process 

and present antigens is a key element in cancer immunosurveilance 
178, 179

. Glycans have an 

enormous impact in the immune system and inter-individual variation in glycosylation may 

effect function in immune system in multiple levels 
180

, leading to inter-individual variability 

in cancer immunosurveilance and/or response to therapeutic antibodies, as therapeutic 

antibodies have been set up as ‘standard of care’ therapy for several highly prevalent human 

cancers 
181

. Even though many serum glycoproteins display changes in glycosylation pattern, 

little is known  about changes in IgG glycosylation in patients with cancer. Therefore 

understanding the role of altered IgG glycosylation in colorectal cancer offers the potential for 

the discovery of a new category of glycan based biomarkers which would have high 

discriminative power to predict cancer survival outcome and would help tailor the most 

appropriate surgical and chemotherapy regimens to individual patients thereby improving 

patient outcomes. 

Measurement of plasma N-glycan biomarkers thus shows potential as a novel non-invasive 

approach to determine cancer prognosis. However, published studies have been limited to 

small scale pilot studies due to technical challenges in identifying and quantifying N-glycan 

structures. The N-glycome wide approach which was applied in this thesis has only recently 

been made possible due to recent developments in high-throughput glycan analysis 
182

. This 
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study will be the first to investigate the IgG N-glycome and will employ a sample size which 

is substantially larger than current published studies. 
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2. HYPOTHESIS 

N-glycomic analysis could reveal significant inter-individual differences and identify several 

specific glycan biomarkers which are associated with CRC prognosis.  
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3. AIMS AND PURPOSE OF THE RESEARCH 

3.1. General aim:  

This research aims to identify IgG N-glycans biomarkers with discriminative power to predict 

survival in patients with CRC. 

3.2. Specific aims: 

1. To analyse IgG N-glycans in 1229 patients with CRC and 538 matching controls. 

2. To investigate the association between plasma IgG N-glycans and CRC survival and 

evaluate their potential role as clinical biomarkers for CRC prognosis. 

3. To investigate the relationship between plasma levels of IgG N-glycans and CRC mortality. 

4. To investigate the discriminative power of specific plasma IgG N-glycans as clinical 

biomarkers of CRC prognosis.   
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4. MATERIALS AND METHODOLOGY 

4.1. Study population 

The SOCCS (Study Of Colorectal Cancer in Scotland) study (1999-2006) is a case-control 

study designed to identify genetic and environmental factors associated with non-hereditary 

colorectal cancer risk and survival outcome. This study includes prospective CRC cases from 

almost all hospitals in Scotland therefore is broadly representative of the colorectal cancer 

population. The study has been described in details elsewhere 
183

. 

Samples for the analyses were assembled from a large population-based resource including a 

subset of 1229 patients with pathologically confirmed colorectal adenocarcinoma and 538 

matching controls from the University of Edinburg (age/gender/residence area matched) with 

extensive data about cases and controls including: lifestyle/ behavioural/ diet risk factors, 

tumor related parameters, ancestry, clinical data, and biological samples (DNA, lymphocytes, 

plasma). In addition to demographic data, detailed clinical data for each patient’s CRC 

episode were collected and validated, which include: clinical and imaging data, date of 

diagnosis; presence/date of recurrence; new cancer occurrence data; date of death; cause of 

death; cancer staging assigned according to the American Joint Committee on Cancer (AJCC) 

system (all available clinical, imaging and pathology data were incorporated in final AJCC 

staging). 

Cases were recruited as soon as possible after diagnosis to limit survival bias among those 

recruited and maximize the person-years of follow up IgG glycan composition was analysed 

in the time period after CRC diagnosis or recruitment. Participants completed one 

questionnaire with lifestyle and cancer information, reporting their status 1 year prior to 

diagnosis or recruitment. A semi-quantitative food frequency (http://www.foodfrequency.org) 

and supplements questionnaire was completed by participants. Participants were asked about 

their general medical history, physical activity, and smoking status. Additionally, subjects 

were asked to report any regular intake of aspirin and nonsteroidal anti-inflammatory drugs. 

Reported height, weight, and waist circumference were recorded. Participants were also asked 

to report some demographic, socioeconomic, and race/ethnicity data. Finally, women were 

asked about their menstrual and reproductive history and type of hormone replacement 

therapy and hormonal contraception, if used. 
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Blood was collected and transferred to the research centre within 72 h of sampling. Plasma 

was prepared from whole blood by gentle centrifugation of sodium EDTA tubes through a 

ficoll-hypaque gradient and 1.5 mL of each participant’s plasma was stored at  -80°C. 

 

Effects of surgery on the IgG glycome were evaluated in 28 patients sampled before surgery, 

24h, 48h and 7 days after surgery. Samples were collected at the Clinical Department for 

Laboratory Diagnostics at University Hospital Dubrava, Zagreb, Croatia.  

 

Patients who were sampled before the initial diagnosis of CRC, as well as matching controls 

that did not develop CRC during the same follow-up time were selected from the FINNRISK 

cohort 
184

. 

4.2. Ethics statement 

Approval for the study of 1229 patients with CRC and 538 matching controls was obtained 

from the MultiCentre Research Ethics Committee for Scotland and Local Research Ethics 

committee. 

 

The study of 28 patients with CRC samples before surgery was registrated at 

ClinicalTrials.gov, number NCT01244022 and was approved by the Ethics Committee of 

University Hospital Dubrava. 

 

All participants gave written informed consent. 

 

4.3. IgG N-glycans sample preparation and analyses 

4.3.1 Purification of IgG 

The IgG was isolated using protein G monolithic plates (BIA Separations, Ajdovščina, 

Slovenia) as described previously 
185

. Before use, the monolithic plate was washed with 10 

column volumes (CV) of ultra pure water and then equilibrated with 10 CV of binding buffer 

(1X PBS, pH 7.4). Plasma samples (70-100μl) were diluted 10 X with the binding buffer and 

applied to the Protein G plate. The filtration of the samples was completed in 5 min. The plate 

was then washed five times with 5 CV of binding buffer to remove unbound proteins. IgG 

was released from the protein G monoliths using 5 CV of elution solvent (0.1 M formic acid, 

pH 2.5). Eluates were collected in a 96-deep-well plate and immediately neutralized to pH 7.0 
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with neutralization buffer (1 M ammonium bicarbonate) to maintain the IgG stability. After 

each sample application, the monoliths were regenerated with the following buffers: 10 CV of 

10 X PBS, followed by 10 CV of 0.1 M formic acid and afterward 10 CV of 1 X PBS to re-

equilibrate the monoliths. Each step of the chromatographic procedure was done under 

vacuum (cca. 60 mmHg pressure reduction while applying the samples, 500 mmHg during 

elution and washing steps) using a manual set-up consisting of a multichannel pipet, a 

vacuum manifold (Beckman Coulter, Brea, CA) and a vacuum pump (Pall Life Sciences, Ann 

Arbor, MI). If the plate was not used for a short period, it was stored in 20% ethanol (v/v) at 4 

°C. After repeated use of the plate contaminants present in the sample sometimes did not 

completely elute from the monolithic stationary phase. A specific cleaning protocol was 

developed that included washing with 0.1 M NaOH to remove precipitated proteins and with 

30% propan-2-ol to remove strongly bound hydrophobic proteins or lipids. This procedure 

effectively removed all precipitates and did not significantly diminish IgG binding capacity of 

the immobilized protein G. The purity of the isolated IgG was verified by SDS-PAGE with 

NuPAGE Novex 4–12% Bis-Tris gels in an Xcell SureLock Mini-Cell (Invitrogen) according 

to the manufacturer. Precision Plus Protein All Blue Standards (BioRad, Hercules, CA) was 

used as the molecular weight marker. The gels were run at 180 V for 45 min, stained with 

GelCode Blue (Pierce) and visualized by a VersaDoc Imaging System (BioRad).  

 4.3.2 Release and labelling of IgG glycans  

IgG samples were dried in a vacum concentrator, denatured with addition of 30 μL 1.33% 

SDS (w/v) (Invitrogen, Carlsbad, CA, USA) and by incubation at 65 °C for 10 min. After 

incubation samples were left to cool down to room temperature for 30 minutes. Subsequently, 

10 μL of 4% Igepal-CA630 (Sigma-Aldrich) and 1.25 mU of PNGase F (ProZyme, Hayward, 

CA, USA) in 10 μL 5× PBS were added to the samples. The samples were incubated 

overnight at 37 °C for N-glycan release. The released N-glycans were labelled with 2-

aminobenzamide (2-AB). The labelling mixture was freshly prepared by dissolving 2-AB 

(Sigma-Aldrich) in DMSO (Sigma-Aldrich) and glacial acetic acid (Merck) mixture (85:15, 

v/v) to a final concentration of 48 mg/mL. A volume of 25 μL of labelling mixture was added 

to each N-glycan sample in the 96-well plate. Also, 25 μL of freshly prepared reducing agent 

solution (106.96 mg/ml 2-picoline borane (Sigma-Aldrich) in DMSO) was added and the 

plate was sealed using adhesive tape. Mixing was achieved by shaking for 10 min, followed 

by 2 hour incubation at 65 °C. Samples (in a volume of 100 μL) were brought to 80% ACN 

(v/v) by adding 400 μL of ACN (J.T. Baker, Phillipsburg, NJ, USA).  
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4.3.3 HILIC-SPE 

Free label and reducing agent were removed from the samples using hydrophilic interaction 

liquid chromatography-solid phase extraction (HILIC-SPE). An amount of 200 μL of 0.1 

g/mL suspension of microcrystalline cellulose (Merck) in water was applied to each well of a 

0.45 μm GHP filter plate (Pall Corporation, Ann Arbor, MI, USA ). Solvent was removed by 

application of vacuum using a vacuum manifold (Millipore Corporation, Billerica, MA, 

USA). All wells were prewashed using 5× 200 μL water, followed by equilibration using 3× 

200 μL acetonitrile/water (80:20, v/v). The samples were loaded to the wells. The wells were 

subsequently washed 7× using 200 μL acetonitrile/water (80:20, v/v). Glycans were eluted 2× 

with 100 μL of water and combined eluates were stored at –20 °C until usage. 

4.3.4 HILIC-UPLC 

Fluorescently labelled N-glycans were separated by hydrophilic interaction chromatography 

on a Waters Acquity UPLC instrument (Milford) consisting of a quaternary solvent manager, 

sample manager and a FLR fluorescence detector set with excitation and emission 

wavelengths of 330 and 420 nm, respectively. The instrument was under the control of 

Empower 2 software, build 2145 (Waters, Milford). Labelled N-glycans were separated on a 

Waters BEH Glycan chromatography column, 100 × 2.1 mm i.d., 1.7 μm BEH particles, with 

100 mM ammonium formate, pH 4.4, as solvent A and acetonitrile as solvent B. Separation 

method used linear gradient of 75–62% acetonitrile (v/v) at flow rate of 0.4 ml/min in a 25 

min analytical run. Samples were maintained at 5 °C before injection, and the separation 

temperature was 60 °C. The system was calibrated using an external standard of hydrolyzed 

and 2-AB labelled glucose oligomers from which the retention times for the individual 

glycans were converted to glucose units. Data processing was performed using an automatic 

processing method with a traditional integration algorithm after which each chromatogram 

was manually corrected to maintain the same intervals of integration for all the samples. The 

chromatograms were all separated in the same manner into 24 peaks and the amount of 

glycans in each peak was expressed as percentage (%) of total integrated area. In addition to 

24 directly measured glycan structures, 53 derived traits were calculated. These derived traits 

average particular glycosylation features (galactosylation, fucosylation, sialylation) across 

different individual glycan structures. Consequently, they are more closely related to 

individual enzymatic activities, and underlying genetic polymorphisms. 
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4.4. Survival and risk related parameters 

Data relevant to the survival analysis were obtained from the Scottish registries General 

Register Office and the Scottish Cancer Registry (which are known to have high levels of data 

quality and data completeness) after linkage of our participants with their databases using the 

Community Health Index number. Mortality outcomes were ascertained through linkage with 

the National Records of Scotland. Primary cause of death (“CRC” or “other”) was assigned 

from death certificates separately by two researchers (concordance was >99%). Survival 

follow-up was censored at the date of death or at January, 31 2013, for participants who were 

not known to have died. Clinicopathological staging data was collected where possible (eg. 

TNM is not feasible in patients who did not undergo surgery). Clinical records were reviewed 

and tumor site and multiplicity were determined from clinical and pathological records. Pre-

operative staging imaging was collected through participating centres. Using the collated 

pathology, imaging and clinical data, tumor stage was assigned according TNM staging 

system and mapped onto the American Joint Committee on Cancer (AJCC) tumor-node-

metastasis system (AJCC 1-4). 

 

Blood was collected at various points after the CRC diagnosis and after surgery. Median time 

to sampling was 5.4 months after the diagnosis (interquartile range, IQR: 3.2 to 8.3 months). 

Since illness and treatment may acutely affect IgG glycan levels and confound the analysis, a 

variable describing time from operation to blood collection and a variable determining the 

type of operation were created. 

4.5. Statistical analysis 

Data was analysed using STATA (version 12.0) and R.  

Initially we examined the association between IgG glycan levels (continuous and quartiles) 

and CRC/all-cause mortality using cox proportional hazards models. Three models were 

applied: a crude model (Model I), a model where hazard ratios (HR) were adjusted for age at 

diagnosis, sex and stage of disease (Model II) and a  model where HRs  were adjusted  for age 

at diagnosis, sex, stage of disease, body mass index (BMI), time from operation to blood 

collection, type of operation and CRP (Model III). P-values were adjusted for multiple testing 

using false discovery rate method (Benjamini–Hochberg procedure). 

We estimated the predictive value of a clinical only Cox-regression algorithm for model II 

(which included age, sex, disease stage) and model III (which was adjusted for age, sex, 
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disease stage, BMI and CRP level), by calculating the Harrell’s C concordance coefficient, 

the Area under the ROC curve (AUC) and the Integrated Discrimination Index (IDI defined as 

a difference in discrimination slopes) and compared this to an algorithm that also included 

glycan predictors.This analysis was ran in the whole data set and after AJCC stage 

stratification. The glycan variables included in the final model were selected by applying 

generalised boosted regression, which orders the variables by their relative importance, in 

1000 bootstrap samples 
186, 187

, over the 10 inner training folds, and forward selection of 

ranked glycans by applying log-likelihood ratio test.  

The predictive value of the models was evaluated on independent samples using 10-fold 

cross-validation for all models except for AJCC stage 1 strata, where cross-validation was not 

possible due to the small number of events. P <0.002 was considered statistically significant, 

after applying the Bonferroni correction for 21 independent tests. 

Classification analyses were performed  to a) predict the 5-year risk of CRC death and b) to 

predict the rapid progressors within each stage. A rapid progressor was defined as someone 

who died of CRC and whose follow-up time was in the lower 1/3rd of the patients to die of 

CRC in that stage of cancer, with the cut-off thresholds at 2.9, 2.4, and 1.3 years for stages 2-

4 respectively. We applied several families of classification models (LASSO, nearest 

neighbours, PAM, Support Vector Machines, naive Bayes, Decision Trees, and boosted stump 

classifiers), with and without stratification, with and without initial filtering on the training 

data, with and without log transformations of glycan expressions and clinical factors. The 

choice of the models was influenced by their popularity in biomarker studies, and their ability 

to address high-dimensional (large-p, small-n) problems via regularization or an explicit 

control for model complexity. More information about these estimators is presented in 

Supplementary Box 1, and the motivations for considering multiple classifiers for this 

problem are discussed in Supplementary Section on Model Comparison. 

 

All the results for this analysis were averages over 10 runs using 10-fold cross validation, 

where the validation folds were used neither for filtering nor for estimation of model 

parameters. We also used 10 inner folds to estimate the stopping criteria or optimal value of 

hyperparameters (such as the regularization parameter for LASSO). Then we estimated 

whether adding glycans to clinical covariates would improve the predictive performance of a 

model of the same class on independent test data; that is, we compared LASSO using clinical 

variables with LASSO using clinical variables and glycans, DTs using clinical variables with 

DTs using clinical variables and glycans, etc. This task is different from the association 
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analysis, or from identifying specific glyco-clinical models outperforming a known baseline, 

where corrections for multiple tests are needed to control the probability of false discoveries. 

We applied the paired Wilcoxon sign-rank test comparing models with and without glycans, 

testing whether the difference in the cross-validated AUC of the clinical and glycol-clinical 

models is significantly different from zero.  

Comparison of clinical characteristics among 760 patients and 538 matching controls was 

done by using Wilcoxon and Fischer Exact tests. Data was analyzed and visualized using R 

programming language (version 3.0.1). To make measurements across samples comparable, 

normalization by total area was performed where peak area of each of 24 glycan structures 

was divided by total area  of corresponding chromatogram. Batch correction was performed 

on normalized log-transformed measurements using linear mixed models (R package lme4),  

where technical source of variation was modelled as random effect.  

Association analyses between disease status and glycan traits were performed using a logistic 

regression model with age and sex included as additional covariates. Prior to analyses, glycan 

variables were all transformed to standard Normal distribution (mean=0,sd=1) by inverse 

transformation of ranks to Normality (R package "GenABEL", function rntransform). Using 

rank transformed variables in the analysis makes estimated odds ratios of different glycans 

comparable as transformed glycan variables have the same standardized variance, and in that 

case estimated odds ratios always correspond to one standard deviation change in the 

measured glycan trait. False discovery rate was controlled using Benjamini-Hochberg 

procedure 
188

. For prediction of CRC status, regularized logistic (elastic net) regression model 

was applied (R package "glmnet"). For classification, only 24 initial glycan traits were used as 

predictors. Prior to model training and validation, elastic net regularization parameters (alpha 

and lambda) were tuned on 20% of samples (260 samples), and optimal parameters chosen by 

the tuning procedure (alpha = 0, lambda = 0.1) were used in further analysis. To evaluate 

performance of predictive model 10-cross validation procedure was used on remaining 80% 

of samples. Predictions from each validation round were merged into one validation set on 

which model performance was evaluated based on area under the receiver operating 

characteristic curve (AUC) criteria. The AUCs of different models were compared using a 

bootstrap test. 
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LASSO - sparse logisitic regression. This is a standard logistic regression model with a logit 

link function, and L1 penalties on the weights. To set the penalty parameter, we run 10-fold 

cross-validation over a set of 10 penalties in the range 0.001 to 0.1. We choose the penalty 

resulting in the minimum-deviance model. 

k-nearest neighbours -  k nearest neighbours with k=1. For a new input, this classifier 

predicts the class of the nearest input in the training data, measured by Euclidean distance. 

PAM - Prediction Analysis for Microarrays. This is the "nearest-shrunken-centroid" 

classifier. To set the shrinkage parameter, we run 10-fold cross-validation over 31 equally 

spaced values in the range 0 to 1.5. We choose the parameter that produces the lowest mean 

error rate. 

Support Vector Machines – kernel-based maximum-margin classifiers. We consider linear, 

square, cubic, and squared exponential (Gaussian) kernel functions with fixed 

hyperparameters. 

Naive Bayes – factorized class-conditional classifiers with normal or kernel density 

estimator-based marginal distributions. The KDE bandwidth is selected automatically. 

Decision Trees – non-parametric tree classifiers, with the internal nodes corresponding to 

predictors, and leaves encoding classification labels. Binary trees with the Gini impurity 

splitting criterion were used. 

Boosted stump classifiers – aggregations of multiple boosted one-node decision trees 

(stumps), where each later stump focuses on previously misclassified samples, using a version 

of Adaboost. 

Supplementary Box 1. Information about the estimators used in the classification analysis. 
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4.5.1 Supplementary Section: Model Selection 

One classifier vs multiple classifiers 

In life and clinical sciences, it is common to analyse the predictive performance by using an 

arbitrarily chosen single regression or classification model such as linear regression for 

continuous outcomes or logistic regression for binary outcomes, without motivating the model 

choice. There are multiple models that may in principle be considered for continuous and 

binary outcomes, and deeper insights about the utility of biomarkers may potentially be 

obtained by evaluating many such models. We note that the analysis of the predictive 

performance based on a single model may be misleading, due to the following observations: 

(i) It may happen that by considering a single model, researchers observe that biomarkers do 

not improve the quality of predictions. But this observation may be an artefact of the implied 

modelling constraints (such as the linear decision surface separating cases from controls in 

logistic regression). One reason for failing to demonstrate an improvement in predictions may 

be the fact that the chosen predictive model was limited and inappropriate for the dataset. The 

biomarkers may still be useful predictors, but the researchers may be making incorrect 

assumptions about the data and using a wrong model, without trying to evaluate whether the 

modelling assumptions are correct. (ii) A similar argument may hold for a subset of variables. 

For example, researchers may be able to demonstrate that a common model such as logistic 

regression with covariates defined by biomarkers and clinical variables outperforms logistic 

regression that only uses clinical variables, and may conclude that the biomarkers are 

generally useful for predicting the considered outcome. However, it may happen that the 

logistic assumption is particularly unfavourable to the clinical model (for example, when the 

mapping from the clinical variables to the outcomes is complex, and the classification surface 

cannot be well modelled by a hyperplane in the subspace of clinical variables). In this case, a 

clinical model of some other class (for example, an SVM) that does not use the biomarkers 

could significantly outperform models with biomarkers. In this case, the conclusion that the 

biomarkers are useful for developing a diagnostics, may be misleading - one may be able to 

achieve a superior quality of predictions when considering "richer" clinical models 

(something overlooked by considering model of a single class). We note that the assessment 

of the predictive performance by considering a single model may often be limited, and the 

results may need to be interpreted with some care. This work is an empirical attempt to 

overcome the arbitrariness of a specific model choice. In particular, we considered a larger set 

of models that make different assumptions about the mapping from glycans to outcomes. We 
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use (nested) cross-validation to estimate the predictive performance on new previously unseen 

data. We then compare pairs of models of the same class that use clinical variables only and 

clinical variables with glycans, and test how likely it is that using glycans for predictions 

leads to improvements over clinical models independently of the modelling assumptions. 

(Note that the models are generally not nested even when they belong to the same class – so 

we cannot use standard tests). As the evaluation criterion, we use the AUC computed by 

cross-validation over the test folds of data. In some sense, rather than comparing an arbitrary 

model with or without glycans, we are evaluating how easy it may be to use glycomic 

biomarkers to construct a superior diagnostic independently of the modelling details. 
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5. RESULTS 

5.1. IgG glycan measurements in colorectal cancer prognosis 

IgG glycome composition was analysed in 1229 patients with CRC and 538 matching 

controls. Total IgG glycan (combined Fc and Fab glycans) compositions were determined by 

HILIC-UPLC analysis of 2AB labelled glycans as reported recently 
189

.  

 

1. To examine the potential role of individual variation in IgG glyosylation on CRC prognosis 

we initially performed detailed analyses of IgG glycome composition in 1229 patients with 

CRC of all CRC stages. 

2. In addition, we explored the prognostic biomarker potential of IgG glycans after stage 

stratification to account for the different stage prognosis of CRC patients. 

 

Total IgG glycan measurements resulted in 24 chromatogaphic peaks (GP1-GP24) that were 

directly measured glycan structures, and 53 derived traits that represent common features 

shared among several measured glycans (galactosylation, sialylation, core fucosylation and 

the incidence of bisecting GlcNAc. (Table 1) 
20, 185

. A typical chromatogram showing 

seperation of the IgG glycome into individual structures is shown in (Figure 5).  

We restricted our survival analysis to those IgG glycan traits that were found to be robustly 

analysed. Robustness was calculated as follows. On each plate from the CRC cohort we put 3 

standards that were biologically identical. Therefore, differences between measurements of 

standards are consequence of only experimental noise. We then calculated the variance of 

standards only and the variance in the whole CRC population. "Robustness" is defined as the 

ratio of those two variances (Var(Stand)/Var(CRC))*100 (i.e. lower values indicate higher 

robustness) and represents the contribution of experimental variation in total variation.  

 

Thirty nine of the 77 glycan traits whose percentage of experimental variation was below 20% 

were included in the analysis (Table 1). 
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Figure 5. HILIC-UPLC chromatogram of IgG n-glycans. Each IgG contains one conserved N-glycosylation 

site on Asn197 of its heavy chains. Different glycans can be attached to this site and the process seems to be 

highly regulated. UPLC analysis can reveal composition of the glycome attached to a population of IgG 

molecules by separating total IgG N-glycome into 24 chromatographic glycan peaks (GP1–GP24), mostly 

corresponding to individual glycan structures. 

The amount of glycans in each peak is expressed as percentage of total integrated area. 

Glycoforms represented by each peak were analyzed on the basis of their elution positions 

and measured in glucose units then compared to reference values in the  “GlycoBase” 

database for structure assignment 
190

. GU units were assigned according to 2AB labeled 

standard of glucose oligomers of different sizes. Value for each peak is presented as the area 

percentage of the total glycome of the analyzed sample.  
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Table 1. Glycans annotations and experimental variation for each glycan variable 

GROUP Code 

Glycan Peaks and 

derived traits  

Code 

Description Formula Variation 

Total  

glycans 

(neutral + 

charged) 

IGP1 GP1 The percentage of FA1 glycan in total  IgG glycans  GP1 / GP * 100 34.35 

IGP2 GP2 The percentage of A2 glycan in total  IgG glycans  GP2 / GP * 100 34.02 

IGP3 GP4 The percentage of FA2 glycan in total  IgG glycans  GP4 / GP * 100 2.45 

IGP4 GP5 The percentage of M5 glycan in total  IgG glycans  GP5 / GP * 100 32.90 

IGP5 GP6 The percentage of FA2B glycan in total  IgG glycans  GP6 / GP * 100 1.78 

IGP6 GP7 The percentage of A2G1 glycan in total  IgG glycans  GP7 / GP * 100 29.37 

IGP7 GP8 The percentage of FA2[6]G1 glycan in total  IgG glycans  GP8 / GP * 100 10.82 

IGP8 GP9 The percentage of FA2[3]G1 glycan in total  IgG glycans  GP9 / GP * 100 6.71 

IGP9 GP10 The percentage of FA2[6]BG1 glycan in total  IgG glycans  GP10 / GP * 100 2.42 

IGP10 GP11 The percentage of FA2[3]BG1 glycan in total  IgG glycans  GP11 / GP * 100 31.34 

IGP11 GP12 The percentage of A2G2 glycan in total  IgG glycans  GP12 / GP * 100 28.10 

IGP12 GP13 The percentage of A2BG2 glycan in total  IgG glycans  GP13 / GP * 100 95.50 

IGP13 GP14 The percentage of FA2G2 glycan in total  IgG glycans  GP14 / GP * 100 1.05 

IGP14 GP15 The percentage of FA2BG2 glycan in total  IgG glycans  GP15 / GP * 100 12.56 

IGP15 GP16 The percentage of FA2G1S1 glycan in total  IgG glycans  GP16 / GP * 100 33.19 

IGP16 GP17 The percentage of A2G2S1  glycan in total  IgG glycans  GP17/ GP * 100 112.42 

IGP17 GP18 The percentage of FA2G2S1 glycan in total  IgG glycans  GP18 / GP * 100 2.19 

IGP18 GP19 The percentage of FA2BG2S1 glycan in total  IgG glycans  GP19 / GP * 100 15.42 

IGP19 GP20 Structure not determined GP20 / GP * 100 104.69 

IGP20 GP21 The percentage of A2G2S2 glycan in total  IgG glycans  GP21 / GP * 100 49.60 

IGP21 GP22 The percentage of A2BG2S2 glycan in total  IgG glycans  GP22 / GP * 100 96.00 

IGP22 GP23 The percentage of FA2G2S2 glycan in total  IgG glycans  GP23 / GP * 100 25.62 

IGP23 GP24 The percentage of FA2BG2S2 glycan in total  IgG glycans  GP24 / GP * 100 30.39 
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Total IgG 

glycans - 

derived 
parameters 

IGP24 FGS/(FG+FGS) 
The percentage of sialylation of fucosylated galactosylated 

structures without bisecting GlcNAc in total IgG glycans 

SUM(GP16 + GP18 + GP23) / 

SUM(GP16 + GP18 + GP23 + 

GP8 + GP9 + GP14) * 100 18.10 

IGP25 FBGS/(FBG+FBGS) 
The percentage of sialylation of fucosylated galactosylated 

structures with bisecting GlcNAc in total IgG glycans 

SUM(GP19 + GP24) / 

SUM(GP19 + GP24 + GP10 + 

GP11 + GP15) * 100 13.28 

IGP26 FGS/(F+FG+FGS) 
The percentage of sialylation of all fucosylated structures without 

bisecting GlcNAc in total IgG glycans 

SUM(GP16 + GP18 + GP23) / 

SUM(GP16 + GP18 + GP23 + 

GP4 +  GP8 + GP9 + GP14) * 

100 8.10 

IGP27 FBGS/(FB+FBG+FBGS) 
The percentage of sialylation of all fucosylated structures with 

bisecting GlcNAc in total IgG glycans 

SUM(GP19 + GP24) / 

SUM(GP19 + GP24 + GP6 + 

GP10 + GP11 + GP15) * 100 13.02 

IGP28 FG1S1/(FG1+FG1S1) 

The percentage of monosialylation of fucosylated 

monogalactosylated structures without bisecting GlcNAc in total 
IgG glycans 

GP16 / SUM(GP16 + GP8 + 

GP9) * 100 
48.95 

IGP29 
FG2S1/(FG2+FG2S1+FG2

S2) 

The percentage of monosialylation of fucosylated digalactosylated 

structures without bisecting GlcNAc in total IgG glycans 

GP18 / SUM(GP18 + GP14 + 

GP23) * 100 
9.74 

IGP30 
FG2S2/(FG2+FG2S1+FG2

S2) 

The percentage of disialylation of fucosylated digalactosylated 

structures without bisecting GlcNAc in total IgG glycans 

GP23 / SUM(GP23 + GP14 + 

GP18) * 100 
22.02 

IGP31 
FBG2S1/(FBG2+FBG2S1

+FBG2S2) 

The percentage of monosialylation of fucosylated digalactosylated 

structures with bisecting GlcNAc in total IgG glycans 

GP19 / SUM(GP19 + GP15 + 

GP24) * 100 
9.54 

IGP32 
FBG2S2/(FBG2+FBG2S1

+FBG2S2) 

The percentage of disialylation of fucosylated digalactosylated 

structures with bisecting GlcNAc in total IgG glycans 

GP24 / SUM(GP24 + GP15 + 

GP19) * 100 
44.66 

IGP33 FtotalS1/FtotalS2 
Ratio of all fucosylated monosialylated and disialylated structures 

(+/- bisecting GlyNAc) in total IgG glycans 

SUM(GP16 + GP18 + GP19) / 

SUM(GP23 + GP24) 34.85 

IGP34 FS1/FS2 
Ratio of fucosylated monosialylated  and disialylated structures 

(without bisecting GlcNAc) in total IgG glycans 
SUM(GP16 + GP18) / GP23 

29.15 

IGP35 FBS1/FBS2 
Ratio of fucosylated  monosialylated  and disialylated structures 

(with bisecting GlcNAc) in total IgG glycans  
GP19 / GP24 

45.81 
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IGP36 FBStotal/FStotal 
Ratio of all fucosylated sialylated structures with and without 

bisecting GlcNAc in total IgG glycans  

SUM(GP19 + GP24) / 

SUM(GP16 + GP18 + GP23) 6.69 

IGP37 FBS1/FS1 
Ratio of  fucosylated monosialylated structures with and without 

bisecting GlcNAc in total IgG glycans  
GP19 / SUM(GP16 + GP18) 

5.67 

IGP38 FBS1/(FS1+FBS1) 
The incidence of bisecting GlcNAc in all fucosylated 

monosialylated structures in total IgG glycans in total IgG glycans  

GP19 / SUM(GP16 + GP18 + 

GP19) 
5.48 

IGP39 FBS2/FS2 
Ratio of fucosylated disialylated structures with and without 

bisecting GlcNAc in total IgG glycans  
GP24 / GP23 

3.89 

IGP40 FBS2/(FS2+FBS2) 
The incidence of bisecting GlcNAc in all fucosylated disialylated 

structures in total IgG glycans  
GP24 / SUM(GP23 + GP24) 

4.44 

Neutral 

IgG 

glycans 

IGP41 GP1n The percentage of FA1 glycan in total neutral IgG glycans (GPn) GP1 / GPn* 100 
35.92 

IGP42 GP2n The percentage of A2 glycan in total  neutral IgG glycans (GPn) GP2 / GPn* 100 
37.40 

IGP43 GP4n The percentage of FA2 glycan in total  neutral IgG glycans (GPn) GP4 / GPn* 100 
1.27 

IGP44 GP5n The percentage of M5 glycan in total  neutral IgG glycans (GPn) GP5 / GPn* 100 
36.24 

IGP45 GP6n The percentage of FA2B glycan in total  neutral IgG glycans (GPn) GP6 / GPn* 100 
1.02 

IGP46 GP7n The percentage of A2G1 glycan in total  neutral IgG glycans (GPn) GP7 / GPn* 100 
32.32 

IGP47 GP8n 
The percentage of FA2[6]G1 glycan in total neutral IgG glycans 

(GPn) 
GP8 / GPn* 100 

2.69 

IGP48 GP9n 
The percentage of FA2[3]G1 glycan in total  neutral IgG glycans 

(GPn) 
GP9 / GPn* 100 

2.06 

IGP49 GP10n 
The percentage of FA2[6]BG1 glycan in total  neutral IgG glycans 

(GPn) 
GP10 / GPn* 100 

0.91 
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IGP50 GP11n 
The percentage of FA2[3]BG1 glycan in total  neutral IgG glycans 

(GPn) 
GP11 / GPn* 100 

37.96 

IGP51 GP12n The percentage of A2G2 glycan in total  neutral IgG glycans (GPn) GP12 / GPn* 100 
29.22 

IGP52 GP13n 
The percentage of A2BG2 glycan in total  neutral IgG glycans 

(GPn) 
GP13 / GPn* 100 

92.53 

IGP53 GP14n 
The percentage of FA2G2 glycan in total  neutral IgG glycans 

(GPn) 
GP14 / GPn* 100 

0.58 

IGP54 GP15n 
The percentage of FA2BG2 glycan in total  neutral IgG glycans 

(GPn) 
GP15 / GPn* 100 

13.13 

Neutral 

IgG 

glycans - 

derived 

parameters 

IGP55 G0n 
The percentage of agalactosylated structures in total neutral IgG 
glycans  SUM(GP1n: GP4n + GP6n) 1.24 

IGP56 G1n 
The percentage of monogalactosylated structures in total neutral  

IgG glycans  
SUM(GP7n: GP11n) 

1.09 

IGP57 G2n 
The percentage of digalactosylated structures in total neutral IgG 
glycans  

SUM(GP12n: GP15n) 
1.51 

IGP58 Fn total 
The percentage of all fucosylated structures  (+/- bisecting 

GlcNAc) in total neutral IgG glycans  

SUM(GP1n+ GP4n+ GP6n+ 

GP8n+ GP9n+ GP10n+ 

GP11n+ GP14n+ GP15n) 44.04 

IGP59 FG0n total/G0n 
The percentage of fucosylation of agalactosylated structures in 

total neutral IgG glycans  

SUM(GP1n+ GP4n+ GP6n) / 

G0n * 100 40.29 

IGP60 FG1n total/G1n 
The percentage of fucosylation of monogalactosylated structures in 

total neutral IgG glycans  

SUM(GP8n+ GP9n+ GP10n+ 

GP11n) / G1n * 100 20.74 

IGP61 FG2n total /G2n 
The percentage of fucosylation of digalactosylated structures in 

total neutral IgG glycans  

SUM(GP14n+ GP15) / G2n * 

100 81.14 

IGP62 Fn 
The percentage of fucosylated  structures (without bisecting 

GlcNAc) in total neutral IgG glycans  

SUM(GP1n+ GP4n+ GP8n+ 

GP9n+ GP14n) 11.33 

IGP63 FG0n/G0n 
The percentage of fucosylation of agalactosylated structures 

(without bisecting GlcNAc) in total neutral IgG glycans  
SUM(GP1n+ GP4n) / G0n * 100 

4.70 
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IGP64 FG1n/G1n 
The percentage of fucosylation of monogalactosylated structures 

(without bisecting GlcNAc) in total neutral IgG glycans  
SUM(GP8n+ GP9n) / G1n * 100 

5.89 

IGP65 FG2n/G2n 
The percentage of fucosylation of digalactosylated structures 

(without bisecting GlcNAc) in total neutral IgG glycans  
GP14n/ G2n * 100 

57.82 

IGP66 FBn 
The percentage of fucosylated structures (with bisecting GlcNAc) in 

total neutral IgG glycans  

SUM(GP6n + GP10n + GP11n 

+ GP15n) 2.27 

IGP67 FBG0n/G0n 
The percentage of fucosylation of agalactosylated structures (with 

bisecting GlcNAc) in total neutral IgG glycans  
GP6n/ G0n * 100 

1.06 

IGP68 FBG1
n
/G1

n
 

The percentage of fucosylation of monogalactosylated structures 

(with bisecting GlcNAc) in total neutral IgG glycans  

SUM(GP10n + GP11n) / G1n * 

100 2.70 

IGP69 FBG2n/G2n 
The percentage of fucosylation of digalactosylated structures (with 

bisecting GlcNAc) in total neutral IgG glycans  
GP15n / G2n * 100 

21.03 

IGP70 FBn/Fn   
Ratio of fucosylated structures with and without bisecting GlcNAc 

in total neutral IgG glycans  
FBn/ Fn * 100  

3.39 

IGP71 FBn/Fn total  
The incidence of bisecting GlcNAc in all fucosylated structures in 

total neutral IgG glycans 
FBn/ Fn total * 100 

3.43 

IGP72 Fn/(Bn + FBn) 
Ratio of fucosylated non-bisecting GlcNAc structures and all 

structures with bisecting GlcNAc in total neutral IgG glycans  
Fn/(GP13n + FBn ) 

6.00 

IGP73 Bn/(Fn + FBn)  
Ratio of structures with bisecting GlcNAc and all fucosylated 

structures (+/- bisecting GlcNAc) in total neutral IgG glycans  
GP13n/ (Fn+ FBn ) * 1000 

92.61 

IGP74 FBG2n/FG2n  
Ratio of fucosylated digalactosylated structures with and without 

bisecting GlcNAc in total neutral IgG glycans  
GP15n/GP14n  

28.12 

IGP75 FBG2n /(FG2n + FBG2n ) 
The incidence of bisecting GlcNAc in all fucosylated 

digalactosylated structures in total neutral IgG glycans  
GP15n/(GP14n + GP15n) * 100 

28.43 

IGP76 FG2n/(BG2n + FBG2n) 

Ratio of fucosylated digalactosylated non-bisecting GlcNAc 

structures and all digalactosylated structures with bisecting 
GlcNAc in total neutral IgG glycans  

GP14n/(GP13n + GP15n) 

52.69 

IGP77 BG2n/(FG2n + FBG2n)  

Ratio of digalactosylated structures with bisecting GlcNAc and all 

fucosylated digalactosylated structures (+/- bisecting GlcNAc) in 

total neutral IgG glycans  

GP13n/(GP14n + GP15n) * 

1000 
106.54 
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5.2. Survival analysis 

Among the 1229 patients, there were 9563 person-years of follow-up. There were 489 deaths, 

including 385 from CRC.Median follow-up was 9.4 years (IQR: 4.4 to 10.6 years) overall, 

and 10.3 years (IQR: 9.6 to 11.0 years) for live patients.  

 

Summary statistics and univariate Cox regression analysis for the confounding factors that 

were included in the subsequent glycan analysis are presented in (Table 2). Of them stage at 

diagnosis and post-surgery CRP levels were strongly associated with all-cause and CRC-

specific mortality (all-cause mortality: stage 3 vs. stage 1 OR (95% CI): 2.65 (1.96, 3.59), p-

value 3.0x10
-10

; stage 4 vs. stage 1 OR (95% CI): 14.32 (10.37, 19.77), p-value 8.1x10
-19

; 

CRP levels >10 mg/l vs. ≤10mg/l OR(95% CI): 2.13 (1.67, 2.72), p-value 1.1x10
-9

).  

 

Age at diagnosis, sex and site of cancer (colon or rectum) were not associated with all-cause 

or CRC-specific mortality. 
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Table 2. Summary statistics and univariate Cox regression for factors influencing all-

cause and CRC mortality. 
 

All-cause mortality Deceased 

Cases  

N=489 

Survived/ 

Censored cases 

N=740 

p-value HR (95% CI) p-value 

Mean age (SD) 59.94 (10.15) 58.59 (9.87) 0.02 1.01 (1.00, 1.02) 0.09 

Sex      

Men 287 416  1.00  

Women 202 324 0.39 0.96 (0.80, 1.15) 0.67 

AJCC stage      

1 54 195  1.00  

2 115 306  1.35 (0.98, 1.87) 0.07 

3 186 227  2.65 (1.96, 3.59) 3.0x10-10 

4 134 12 <10-5 14.32 (10.37, 19.77) 8.3x10-19 

Site      

Colon 263 430  1.00  

Rectum 223 304 0.12 1.14 (0.95, 1.36) 0.15 

Mean BMI(SD)1 26.86 (4.77) 26.32 (4.09) 0.05 1.03 (1.01, 1.05) 0.02 

Mean CRP(SD) 5.99 (14.24) 2.54 (8.88) <10-5 1.02 (1.01, 1.02) 1.2x10-11 

CRP      

≤10mg/l 412 687    

>10 mg/l 77 53 <10-5 2.13 (1.67, 2.72) 1.1x10-9 

CRC mortality Deceased 

Cases  

N=385 

Survived/ 

Censored cases  

N=844 

p-value HR (95% CI) p-value 

Mean age (SD)1 58.81 (10.23) 59.27 (9.89) 0.46 1.00 (0.99, 1.01) 0.48 

Sex      

Men 212 491  1.00  

Women 173 353 0.31 1.12 (0.91, 1.36) 0.28 

AJCC stage      

1 22 227  1.00  

2 76 345  2.17 (1.35, 3.49) 0.001 

3 159 254  5.40 (3.46, 8.43) 1.3x10-13 

4 128 18 <10-5 30.63 (19.38, 48.40) 1.2x1048 

Site      

Colon 205 488  1.00  

Rectum 178 349 0.12 1.16 (0.95, 1.42) 0.15 
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Mean BMI (SD)2 27.08 (4.88) 26.29 (4.12) 0.007 1.04 (1.01, 1.06) 0.002 

Mean CRP(SD) 6.57 (15.24) 2.71 (8.98) <10-5 1.02 (1.01, 1.03) 4.5x10-12 

CRP      

≤10mg/l 318 781  1.00  

>10 mg/l 67 63 <10-5 2.37 (1.82, 3.09) 1.4x10-10 

 

BMI available for 1057 CRC cases (415 CRC deaths and 642 survived / censored). 

 

The univariate glycan HRs for the whole sample are presented in (Table 3 and Table 4) for 

all-cause mortality and in (Table 5 and Table 6) for CRC specific mortality. 
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Table 3.  All cause analysis for rank transformed glycans. Q value represents the adjusted p-values using the false discovery rate method 

(Benjamini–Hochberg procedure). 

Glycan Dead 

(N=489) 

Survived 

(N=740) 

Model II (AJCC, age, sex, 

time between sample and surgery, operation type, BMI, CRP, 

n=952) 

 Mean (SD) Mean (SD) HR (95% CI) p-value q-value 

Total IgG glycans (neutral and charged); Measured 

GP4 26.39 (7.33) 23.87 (6.37) 1.28 (1.14, 1.43) 2.6x10-5 0.0008 

GP6 6.34 (1.88) 5.79 (1.57) 1.19 (1.06, 1.34) 0.002 0.05 

GP8 18.26 (2.21) 18.67 (1.81) 0.87 (0.78, 0.97) 0.01 0.18 

GP9 9.38 (1.36) 9.83 (1.35) 0.83 (0.75, 0.92) 0.0003 0.009 

GP10 5.45 (1.23) 5.48 (1.15) 0.93 (0.84, 1.04) 0.2 0.74 

GP11 10.19 (3.13) 11.44 (3.13) 0.77 (0.68, 0.86) 9.6x10-6 0.0004 

GP15 1.38 (0.41) 1.50 (0.43) 0.86 (0.77, 0.96) 0.007 0.133 

GP18 7.78 (2.29) 8.47 (2.34) 0.79 (0.71, 0.89) 4.9x10-5 0.002 

GP19 1.87 (0.38) 1.90 (0.39) 0.98 (0.89, 1.08) 0.7 0.74 

Sialylation; Derived 

FGS/(FG+FGS) 24.78 (3.20) 24.95 (3.10) 0.93 (0.84, 1.03) 0.18 0.74 

FBGS/(FBG+FBGS 32.83 (6.17) 32.58 (6.34) 1.04 (0.94, 1.15) 0.47 0.74 

FGS/(F+FG+FGS) 16.35 (3.63) 17.35 (3.61) 0.81 (0.72, 0.90) 0.0001 0.003 

FBGS/(FB+FBG+FBGS) 21.21 (4.88) 21.82 (4.96) 0.95 (0.86, 1.05) 0.3 0.74 

FG2S1/(FG2+FG2S1+FG2S2) 40.18 (2.99) 39.51 (2.77) 1.06 (0.95, 1.18) 0.28 0.74 

FBG2S1/(FBG2+FBG2S1+FBG2S2) 37.02 (3.87) 36.41 (3.97) 1.12 (1.01, 1.24) 0.03 0.51 

Bisecting GlcNAc; Derived 

FBStotal/FStotal 0.30 (0.08) 0.28 (0.07) 1.19 (1.06, 1.33) 0.002 0.05 

FBS1/FS1 0.17 (0.05) 0.16 (0.05) 1.18 (1.06, 1.32) 0.003 0.07 

FBS1/(FS1+FBS1) 0.14 (0.04) 0.14 (0.03) 1.19 (1.06, 1.32) 0.002 0.05 

FBS2/FS2 1.35 (0.32) 1.27 (0.30) 1.17 (1.05, 1.31) 0.005 0.11 
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FBS2/(FS2+FBS2) 0.56 (0.06) 0.55 (0.06) 1.17 (1.05, 1.30) 0.005 0.11 

Neutral IgG glycans; Measured 

GP4n 32.33 (8.02) 29.56 (7.02) 1.28 (1.14, 1.43) 2.6x10-5 0.0008 

GP6n 7.78 (2.07) 7.18 (1.76) 1.17 (1.05, 1.31) 0.006 0.12 

GP8n 22.59 (3.09) 23.32 (2.52) 0.83 (0.74, 0.92) 0.001 0.028 

GP9n 11.60 (1.81) 12.28 (1.75) 0.79 (0.71, 0.88) 1.5x10-5 0.0005 

GP10n 6.73 (1.54) 6.85 (1.46) 0.90 (0.81, 1.01) 0.06 0.74 

GP14n 12.70 (4.29) 14.39 (4.37) 0.76 (0.68, 0.86) 7.4x10-6 0.0003 

GP15n 1.72 (0.54) 1.89 (0.59) 0.85 (0.76, 0.95) 0.003 0.07 

Galactosylation; Derived 

G0n 41.15 (9.19) 37.69 (8.09) 1.31 (1.16, 1.47) 5.5x10-6 0.0002 

G1n 42.72 (4.71) 44.26 (3.56) 0.78 (0.69, 0.87) 1.3x10-5 0.0005 

G2n 15.65 (5.00) 17.61 (5.15) 0.78 (0.69, 0.87) 2.4x10-5 0.0008 

Core fucosylation and bisecting GlcNAc; Derived 

Fn 79.47 (3.74) 79.77 (3.46) 0.96 (0.86, 1.07) 0.48 0.74 

FG0n/G0n 78.81 (4.29) 78.69 (4.11) 1.04 (0.93, 1.16) 0.46 0.74 

FG1n/G1n 80.03 (3.79) 80.45 (3.56) 0.94 (0.85, 1.05) 0.31 0.74 

FBn 17.29 (3.20) 16.97 (2.90) 1.02 (0.91, 1.14) 0.73 0.74 

FBG0n/G0n 19.15 (3.88) 19.30 (3.65) 0.94 (0.84,  1.05) 0.25 0.74 

FBG1n/G1n 18.20 (3.46) 17.82 (3.25) 1.04 (0.93, 1.16) 0.5 0.74 

FBn/Fn   0.22 (0.05) 0.21 (0.05) 1.02 (0.92, 1.14) 0.68 0.74 

FBn/Fn total  17.88 (3.38) 17.55 (3.07) 1.02 (0.92 , 1.14) 0.68 0.74 

Fn/(Bn + FBn) 4.65 (1.09) 4.71 (1.01) 0.98 (0.88, 1.09) 0.74 0.74 
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Table 4. All cause analysis 

Code Glycan Dead 

(N=489) 

Survived 

(N=740) 

Crude model (n=1229) Model I (AJCC, age, sex, n=1229) Model II (AJCC, age, sex, 

time between sample and 

surgery, operation type, bmi, 

CRP n=952) 

  Mean (SD) Mean (SD) HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

Total IgG glycans (neutral and charged); Measured 

IGP3 Continuous 26.39 (7.33) 23.87 (6.37) 1.04 (1.03, 1.06) 4.7x10
-12 

1.04 (1.03, 1.06) 7.5x10
-11

 1.04 (1.02, 1.05) 7.5x10
-6

 

 RT   1.36 (1.24, 1.48) 5.9x10-11 1.35 (1.23, 1.48) 5.0x10-10 1.28 (1.14, 1.43) 2.6x10-5 

IGP5 Continuous 6.34 (1.88) 5.79 (1.57) 1.15 (1.09, 1.21) 1.5x10-8 1.14 (1.08, 1.20) 3.5x10-7 1.11 (1.04,  1.18) 0.001 

 RT   1.28 (1.17, 1.40) 9.7x10-8 1.27 (1.15, 1.39) 1.4x10-6 1.19 (1.06, 1.34) 0.002 

IGP7 Continuous 18.26 (2.21) 18.67 (1.81) 0.91 (0.87, 0.96) 0.0001 0.93 (0.88, 0.97) 0.001 0.92 (0.87, 0.97) 0.003 

 RT   0.85 (0.77, 0.93) 0.001 0.87 (0.79, 0.95) 0.003 0.87 (0.78, 0.97) 0.01 

IGP8 Continuous 9.38 (1.36) 9.83 (1.35) 0.83 (0.78, 0.89) 3.4x10-8 0.86 (0.80, 0.91) 2.6x10-6 0.87 (0.81, 0.94) 0.0002 

 RT   0.78 (0.74, 0.85) 3.4x10-8 0.81 (0.74, 0.89) 4.4x10-6 0.83 (0.75, 0.92) 0.0003 

IGP9 Continuous 5.45 (1.23) 5.48 (1.15) 0.96 (0.89, 1.04) 0.35 0.96 (0.88, 1.03) 0.26 0.95 (0.87, 1.04) 0.29 

 RT   0.95 (0.87, 1.04) 0.25 0.94 (0.85, 1.03) 0.16 0.93 (0.84, 1.04) 0.20 

IGP13 Continuous 10.19 (3.13) 11.44 (3.13) 0.89 (0.87, 0.92) 8.9x10-13 0.90 (0.87, 0.93) 1.4x10-10 0.92 (0.89, 0.96) 4.0x10-5 

 RT   0.70 (0.64, 0.77) 5.2x10-14 0.71 (0.65, 0.79) 1.6x10-11 0.77 (0.68, 0.86) 9.6x10-6 

IGP14 Continuous 1.38 (0.41) 1.50 (0.43) 0.55 (0.44, 0.70) 4.0x10-7 0.59 (0.46, 0.74) 5.9x10-6 0.70 (0.53, 0.92) 0.01 

 RT   0.78 (0.71, 0.85) 9.0x10-8 0.80 (0.73, 0.88) 2.0x10-6 0.86 (0.77, 0.96) 0.007 

IGP17 Continuous 7.78 (2.29) 8.47 (2.34) 0.89 (0.85, 0.93) 9.3x10-8 0.89 (0.85, 0.93) 1.3x10-7 0.91 (0.86, 0.96) 0.0002 

 RT   0.76 (0.70, 0.83) 4.4x10-9 0.76 (0.69, 0.83) 8.4x10-9 0.79 (0.71, 0.89) 4.9x10-5 

IGP18 Continuous 1.87 (0.38) 1.90 (0.39) 0.85 (0.67, 1.08) 0.18 0.81 (0.65, 1.02) 0.08 0.94 (0.73, 1.22) 0.64 

 RT   0.94 (0.86, 1.03) 0.18 0.93 (0.85, 1.01) 0.10 0.98 (0.89, 1.08) 0.70 

Sialylation 

IGP24 Continuous 24.78 (3.20) 24.95 (3.10) 0.99 (0.96, 1.01) 0.33 0.97 (0.95, 1.00) 0.06 0.98 (0.95, 1.01) 0.18 

 RT   0.95 (0.87, 1.04) 0.29 0.92 (0.84, 1.00) 0.06 0.93 (0.84, 1.03) 0.18 

IGP25 Continuous 32.83 (6.17) 32.58 (6.34) 1.01 (0.99, 1.02) 0.38 1.00 (0.99, 1.02) 0.67 1.01 (0.99, 1.02) 0.48 

 RT   1.04 (0.95, 1.14) 0.37 1.02 (0.93, 1.12) 0.65 1.04 (0.94, 1.15) 0.47 
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IGP26 Continuous 16.35 (3.63) 17.35 (3.61) 0.94 (0.91, 0.96) 7.3x10-7 0.93 (0.91, 0.96) 2.7x10-7 0.94 (0.92, 0.97) 0.0003 

 RT   0.79 (0.72, 0.86) 1.6x10
-7 

0.77 (0.71, 0.85) 6.2x10
-8 

0.81 (0.72, 0.90) 0.0001 

IGP27 Continuous 21.21 (4.88) 21.82 (4.96) 0.98 (0.96, 1.00) 0.04 0.98 (0.96, 1.00) 0.03 0.99 (0.97, 1.01) 0.30 

 RT   0.91 (0.83, 0.99) 0.04 0.91 (0.83, 0.99) 0.03 0.95 (0.86, 1.05) 0.30 

IGP29 Continuous 40.18 (2.99) 39.51 (2.77) 1.07 (1.04, 1.10) 1.2x10-5 1.03 (1.00, 1.06) 0.03 1.01 (0.98, 1.05) 0.47 

 RT   1.23 (1.12, 1.35) 9.2x10-6 1.12 (1.03, 1.23) 0.10 1.06 (0.95, 1.18) 0.28 

IGP31 Continuous 37.02 (3.87) 36.41 (3.97) 1.04 (1.01, 1.06) 0.002 1.03 (1.01, 1.05) 0.006 1.03 (1.00, 1.05) 0.04 

 RT   1.15 (1.05, 1.26) 0.002 1.14 (1.04, 1.24) 0.004 1.12 (1.01, 1.24) 0.03 

Bisecting GlcNAc 

IGP36 Continuous 0.30 (0.08) 0.28 (0.07) 8.74 (2.87, 26.66) 0.0001 7.95 (2.43, 26.01) 0.001 9.40 (2.30, 38.49) 0.002 

 RT   1.19 (1.09, 1.30) 0.0001 1.18 (1.07, 1.29) 0.001 1.19 (1.06, 1.33) 0.002 

IGP37 Continuous 0.17 (0.05) 0.16 (0.05) 19.00 (3.31, 109.06) 0.001 19.22 (3.12, 118.60) 0.001 30.56 (3.50, 267.02) 0.002 

 RT   1.16 (1.06, 1.27) 0.001 1.16 (1.06, 1.27) 0.002 1.18 (1.06, 1.32) 0.003 

IGP38 Continuous 0.14 (0.04) 0.14 (0.03) 76.90 (6.38, 927.03) 0.001 73.95 (5.58, 980.16) 0.001 126.7 (5.94, 2701) 0.002 

 RT   1.17 (1.07, 1.28) 0.001 1.16 (1.06, 1.28) 0.001 1.19 (1.06, 1.32) 0.002 

IGP39 Continuous 1.35 (0.32) 1.27 (0.30) 1.82 (1.39, 2.39) 1.5x10-5 1.66 (1.26, 2.19) 0.0003 1.62 (1.16, 2.27) 0.005 

 RT   1.22 (1.11, 1.33) 1.4x10-5 1.19 (1.09, 1.30) 0.0002 1.17 (1.05, 1.31) 0.005 

IGP40 Continuous 0.56 (0.06) 0.55 (0.06) 30.19 (6.24, 146.08) 2.3x10-5 19.39 (3.90, 96.34) 0.0003 13.96 (2.03, 96.03) 0.007 

 RT   1.22 (1.11, 1.33) 1.9x10-5 1.19 (1.08, 1.30) 0.0002 1.17 (1.05, 1.30) 0.005 

Neutral IgG glycans 

IGP43 Continuous 32.33 (8.02) 29.56 (7.02) 1.04 (1.03, 1.05) 3.7x10-12 1.04 (1.03, 1.05) 1.2x10-10 1.03 (1.02, 1.05) 1.0x10-5 

 RT   1.36 (1.24, 1.49) 4.3x10-11 1.35 (1.22, 1.48) 6.9x10-10 1.28 (1.14, 1.43) 2.6x10-5 

IGP45 Continuous 7.78 (2.07) 7.18 (1.76) 1.13 (1.08, 1.18) 4.9x10-8 1.12 (1.07, 1.17) 2.0x10-6 1.09 (1.03, 1.15) 0.002 

 RT   1.27 (1.16, 1.39) 2.9x10-7 1.24 (1.13, 1.37) 9.2x10-6 1.17 (1.05, 1.31) 0.006 

IGP47 Continuous 22.59 (3.09) 23.32 (2.52) 0.92 (0.89, 0.95) 1.1x10-6 0.93 (0.90, 0.96) 5.0x10-6 0.93 (0.90, 0.97) 0.0002 

 RT   0.81 (0.74, 0.88) 4.7x10-6 0.81 (0.74, 0.89) 1.4x10-5 0.83 (0.74, 0.92) 0.001 

IGP48 Continuous 11.60 (1.81) 12.28 (1.75) 0.85 (0.81, 0.89) 1.6x10-10 0.86 (0.82, 0.91) 8.8x10-9 0.88 (0.83, 0.93) 1.3x10-5 

 RT   0.74 (0.68, 0.81) 1.5x10-10 0.76 (0.70, 0.84) 1.0x10-8 0.79 (0.71, 0.88) 1.5x10-5 

IGP49 Continuous 6.73 (1.54) 6.85 (1.46) 0.95 (0.89, 1.01) 0.08 0.94 (0.88, 1.00) 0.04 0.94 (0.87, 1.01) 0.09 

 RT   0.91 (0.83, 1.00) 0.05 0.90 (0.82, 0.98) 0.02 0.90 (0.81, 1.01) 0.06 

IGP53 Continuous 12.70 (4.29) 14.39 (4.37) 0.92 (0.90, 0.94) 3.9x10-12 0.93 (0.91, 0.95) 1.9x10-10 0.94 (0.92, 0.97) 4.7x10-5 

 RT   0.70 (0.64, 0.77) 8.5x10-14 0.71 (0.65, 0.79) 1.0x10-11 0.76 (0.68, 0.86) 7.4x10-6 
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IGP54 Continuous 1.72 (0.54) 1.89 (0.59) 0.64 (0.54, 0.75) 1.7x10-7 0.66 (0.55, 0.78) 1.5x10-6 0.75 (0.61, 0.92) 0.005 

 RT   0.77 (0.71, 0.85) 3.4x10
-8 

0.79 (0.72, 0.87) 4.5x10
-7 

0.85 (0.76, 0.95) 0.003 

Galactosylation 

IGP55 Continuous 41.15 (9.19) 37.69 (8.09) 1.04 (1.03, 1.05) 1.2x10-13 1.04 (1.03, 1.05) 5.9x10-12 1.03 (1.02, 1.04) 2.0x10-6 

 RT   1.39 (1.27, 1.53) 1.0x10-12 1.38 (1.26, 1.52) 2.7x10-11 1.31 (1.16, 1.47) 5.5x10-6 

IGP56 Continuous 42.72 (4.71) 44.26 (3.56) 0.93 (0.91, 0.95) 1.7x10-12 0.93 (0.92, 0.95) 2.2x10-11 0.94 (0.92, 0.96) 2.1x10-7 

 RT   0.75 (0.69, 0.83) 2.2x10-9 0.76 (0.69, 0.83) 8.3x10-9 0.78 (0.69, 0.87) 1.3x10-5 

IGP57 Continuous 15.65 (5.00) 17.61 (5.15) 0.94 (0.92, 0.95) 5.9x10-12 0.94 (0.92, 0.96) 4.2x10-10 0.95 (0.93, 0.98) 0.0001 

 RT   0.71 (0.65, 0.78) 2.5x10-13 0.72 (0.66, 0.80) 3.6x10-11 0.78 (0.69, 0.87) 2.4x10-5 

Core fucosylation and bisecting GlcNAc 

IGP62 Continuous 79.47 (3.74) 79.77 (3.46) 0.99 (0.96, 1.01) 0.27 0.99 (0.96, 1.02) 0.42 0.99 (0.96, 1.02) 0.41 

 RT   0.96 (0.87, 1.05) 0.32 0.97 (0.88, 1.06) 0.52 0.96 (0.86, 1.07) 0.48 

IGP63 Continuous 78.81 (4.29) 78.69 (4.11) 1.01 (0.99, 1.03) 0.34 1.01 (0.99, 1.03) 0.29 1.01 (0.98, 1.04) 0.51 

 RT   1.05 (0.96, 1.15) 0.30 1.06 (0.96, 1.16) 0.24 1.04 (0.93, 1.16) 0.46 

IGP64 Continuous 80.03 (3.79) 80.45 (3.56) 0.98 (0.96, 1.00) 0.10 0.98 (0.96, 1.01) 0.18 0.98 (0.95, 1.01) 0.25 

 RT   0.93 (0.85, 1.02) 0.12 0.95 (0.86, 1.04) 0.24 0.94 (0.85, 1.05) 0.31 

IGP66 Continuous 17.29 (3.20) 16.97 (2.90) 1.02 (0.99, 1.05) 0.14 1.01 (0.98, 1.05) 0.38 1.01 (0.97, 1.05) 0.64 

 RT   1.06 (0.97, 1.16) 0.19 1.03 (0.94, 1.13) 0.50 1.02 (0.91, 1.14) 0.73 

IGP67 Continuous 19.15 (3.88) 19.30 (3.65) 0.99 (0.96, 1.01) 0.26 0.98 (0.96, 1.01) 0.17 0.98 (0.96, 1.01) 0.28 

 RT   0.95 (0.86, 1.03) 0.22 0.93 (0.85, 1.02) 0.13 0.94 (0.84,  1.05) 0.25 

IGP68 Continuous 18.20 (3.46) 17.82 (3.25) 1.02 (0.99, 1.05) 0.12 1.02 (0.99, 1.04) 0.27 1.01 (0.98, 1.05) 0.44 

 RT   1.07 (0.98, 1.17) 0.13 1.05 (0.95, 1.15) 0.34 1.04 (0.93, 1.16) 0.50 

IGP70 Continuous 0.22 (0.05) 0.21 (0.05) 4.33 (0.71, 26.41) 0.11 2.73 (0.41, 18.15) 0.30 2.05 (0.23, 18.63) 0.52 

 RT   1.06 (0.97, 1.16) 0.19 1.03 (0.94, 1.14) 0.49 1.02 (0.92, 1.14) 0.68 

IGP71 Continuous 17.88 (3.38) 17.55 (3.07) 1.02 (0.99, 1.05) 0.16 1.01 (0.98, 1.04) 0.38 1.01 (0.98, 1.04) 0.59 

 RT   1.06 (0.97, 1.16) 0.21 1.03 (0.94, 1.14) 0.49 1.02 (0.92 , 1.14) 0.68 

IGP72 Continuous 4.65 (1.09) 4.71 (1.01) 0.97 (0.89, 1.06) 0.51 1.00 (0.91, 1.09) 0.93 0.99 (0.89, 1.10) 0.85 

 RT   0.96 (0.87, 1.05) 0.32 0.98 (0.89, 1.07) 0.64 0.98 (0.88, 1.09) 0.74 
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Table 5. CRC-specific analysis for rank transformed glycans. Q value represents the adjusted p-values using the false discovery rate 

method (Benjamini– Hochberg procedure). 

Glycan Dead 

(N=385) 

Survived 

(N=844) 

Model II (AJCC, age, sex, 

time between sample and surgery, operation type, CRP, bmi, 

n=971) 

 Mean (SD) Mean (SD) HR (95% CI) p-value q-value 

Total IgG glycans (neutral and charged); Measured 

GP4 26.20 (7.31) 24.27 (6.59) 1.23 (1.09, 1.40) 0.001 0.04 

GP6 6.23 (1.85) 5.91 (1.63) 1.10 (0.97, 1.25) 0.14 0.99 

GP8 18.33 (2.13) 18.59 (1.91) 0.92 (0.81, 1.04) 0.16 0.99 

GP9 9.46 (1.35) 9.74 (1.38) 0.90 (0.80, 1.01) 0.06 0.99 

GP10 5.40 (1.19) 5.50 (1.18) 0.90 (0.80, 1.02) 0.11 0.99 

GP11 10.30 (3.19) 11.24 (3.15) 0.81 (0.71, 0.92) 0.002 0.06 

GP15 1.38 (0.40) 1.49 (0.43) 0.86 (0.76, 0.98) 0.02 0.46 

GP18 7.87 (2.31) 8.35 (2.34) 0.82 (0.72, 0.93) 0.002 0.06 

GP19 1.87 (0.37) 1.90 (0.39) 1.00 (0.90, 1.12) 0.98 0.99 

Sialylation; Derived 

FGS/(FG+FGS) 24.84 (3.24) 24.90 (3.09) 0.90 (0.80, 1.01) 0.08 0.99 

FBGS/(FBG+FBGS 32.93 (6.13) 32.56 (6.34) 1.05 (0.94, 1.19) 0.38 0.99 

FGS/(F+FG+FGS) 16.47 (3.64) 17.17 (3.63) 0.82 (0.72, 0.92) 0.001 0.04 

FBGS/(FB+FBG+FBGS) 21.38 (4.93) 21.66 (4.94) 0.99 (0.88, 1.11) 0.8 0.99 

FG2S1/(FG2+FG2S1+FG2S2) 40.22 (3.05) 39.57 (2.77) 1.00 (0.89., 1.13) 0.99 0.99 

FBG2S1/(FBG2+FBG2S1+FBG2S2) 37.11 (3.80) 36.44 (3.99) 1.17 (1.04, 1.31) 0.009 0.25 

Bisecting GlcNAc; Derived 

FBStotal/FStotal 0.30 (0.07) 0.29 (0.08) 1.17 (1.03, 1.33) 0.02 0.46 

FBS1/FS1 0.17 (0.05) 0.16 (0.05) 1.19 (1.05, 1.35) 0.006 0.17 

FBS1/(FS1+FBS1) 0.14 (0.03) 0.14 (0.03) 1.19 (1.06, 1.35) 0.005 0.15 

FBS2/FS2 1.33 (0.32) 1.29 (0.30) 1.10 (0.98, 1.25) 0.12 0.99 
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FBS2/(FS2+FBS2) 0.56 (0.06) 0.55 (0.06) 1.10 (0.97, 1.25) 0.13 0.99 

Neutral IgG glycans; Measured 

GP4n 32.14 (8.00) 29.98 (7.24) 1.24 (1.09, 1.41) 0.001 0.04 

GP6n 7.65 (2.07) 7.31 (1.83) 1.08 (0.94, 1.22) 0.27 0.99 

GP8n 22.71 (3.01) 23.18 (2.66) 0.87 (0.77, 0.98) 0.02 0.46 

GP9n 11.72 (1.81) 12.14 (1.79) 0.85 (0.76, 0.97) 0.01 0.26 

GP10n 6.68 (1.49) 6.85 (1.50)  0.88 (0.77, 0.99) 0.03 0.66 

GP14n 12.86 (4.38) 14.11 (4.38) 0.80 (0.71, 0.92) 0.001 0.04 

GP15n 1.72 (0.53) 1.87 (0.59) 0.85 (0.75, 0.97) 0.01 0.26 

Galactosylation; Derived 

G0n 40.83 (9.18) 38.26 (8.36) 1.24 (1.09, 1.41) 0.001 0.04 

G1n 42.90 (4.63) 43.99 (3.83) 0.82 (0.72, 0.94) 0.003 0.09 

G2n 15.79 (5.09) 17.30 (5.16) 0.81 (0.71, 0.93) 0.002 0.06 

Core fucosylation and bisecting GlcNAc; Derived 

Fn 79.68 (3.70) 79.63 (3.52) 1.02 (0.90, 1.15) 0.77 0.99 

FG0n/G0n 79.01 (4.23) 78.62 (4.16) 1.10 (0.97, 1.24) 0.13 0.99 

FG1n/G1n 80.24 (3.73) 80.30 (3.62) 1.00 (0.89, 1.14) 0.94 0.99 

FBn 17.10 (3.15) 17.09 (2.97) 0.95 (0.84, 1.08) 0.44 0.99 

FBG0n/G0n 18.98 (3.81) 19.36 (3.70) 0.89 (0.79, 1.01) 0.07 0.99 

FBG1n/G1n 18.01 (3.39) 17.96 (3.32) 0.97 (0.86, 1.10) 0.64 0.99 

FBn/Fn   0.21 (0.05) 0.21 (0.05) 0.95 (0.84, 1.08) 0.47 0.99 

FBn/Fn total  17.68 (3.33) 17.68 (3.14) 0.96 (0.85, 1.09) 0.5 0.99 

Fn/(Bn + FBn) 4.71 (1.06) 4.68 (1.03) 1.05 (0.92, 1.18) 0.47 0.99 
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Table 6. CRC-specific analysis 

Code Glycan Dead 

(N=385) 

Survived 

(N=844) 

Crude model (n=1229) Model I (AJCC, age, sex, 

n=1229) 

Model II (AJCC, age, sex, 

time between sample and 

surgery, operation type, CRP, 

bmi, n=971) 

  Mean (SD) Mean (SD) HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

Total IgG glycans (neutral and charged); Measured 

IGP3 Continuous 26.20 (7.31) 24.27 (6.59) 1.04 (1.02, 1.05) 5.9x10-8 1.04 (1.03, 1.06) 2.2x10-8 1.03 (1.01, 1.05) 0.001 

 RT   1.31 (1.18, 1.45) 2.8x10-7 1.33 (1.20, 1.48) 5.5x10-8 1.23 (1.09, 1.40) 0.001 

IGP5 Continuous 6.23 (1.85) 5.91 (1.63) 1.10 (1.04, 1.17) 0.0004 1.12 (1.05, 1.18) 0.0002 1.06 (0.99,  1.14) 0.10 

 RT   1.18 (1.07, 1.31) 0.001 1.22 (1.09, 1.35) 0.0003 1.10 (0.97, 1.25) 0.14 

IGP7 Continuous 18.33 (2.13) 18.59 (1.91) 0.94 (0.89, 0.99) 0.01 0.94 (0.89, 0.99) 0.01 0.95 (0.89, 1.01) 0.10 

 RT   0.89 (0.80, 0.99) 0.03 0.89 (0.80, 0.98) 0.02 0.92 (0.81, 1.04) 0.16 

IGP8 Continuous 9.46 (1.35) 9.74 (1.38) 0.87 (0.81, 0.94) 0.003 0.90 (0.84, 0.97) 0.006 0.92 (0.84, 1.00) 0.05 

 RT   0.83 (0.75, 0.92) 0.0003 0.88 (0.79, 0.97) 0.009 0.90 (0.80, 1.01) 0.06 

IGP9 Continuous 5.40 (1.19) 5.50 (1.18) 0.93 (0.85, 1.01) 0.10 0.93 (0.85, 1.02) 0.11 0.92 (0.83, 1.03) 0.15 

 RT   0.91 (0.82, 1.01) 0.08 0.91 (0.82, 1.01) 0.07 0.90 (0.80, 1.02) 0.11 

IGP13 Continuous 10.30 (3.19) 11.24 (3.15) 0.91 (0.88, 0.94) 3.5x10-8 0.91 (0.88, 0.94) 5.3x10-8 0.94 (0.90, 0.98) 0.004 

 RT   0.73 (0.66, 0.81) 5.3x10-9 0.73 (0.66, 0.81) 1.5x10-8 0.81 (0.71, 0.92) 0.002 

IGP14 Continuous 1.38 (0.40) 1.49 (0.43) 0.54 (0.42, 0.70) 2.9x10-6 0.56 (0.43, 0.72) 1.2x10-5 0.70 (0.51, 0.96) 0.03 

 RT   0.77 (0.70, 0.86) 9.7x10-7 0.79 (0.71, 0.87) 5.7x10-6 0.86 (0.76, 0.98) 0.02 

IGP17 Continuous 7.87 (2.31) 8.35 (2.34) 0.91 (0.87, 0.96) 0.0001 0.90 (0.85, 0.94) 5.2x10
-6
 0.92 (0.87, 0.97) 0.003 

 RT   0.80 (0.72, 0.89) 2.4x10-5 0.77 (0.70, 0.86) 1.4x10-6 0.82 (0.72, 0.93) 0.002 

IGP18 Continuous 1.87 (0.37) 1.90 (0.39) 0.85 (0.65, 1.10) 0.22 0.78 (0.60, 1.02) 0.07 0.99 (0.74, 1.33) 0.97 

 RT   0.94 (0.85, 1.04) 0.24 0.92 (0.83, 1.01) 0.08 1.00 (0.90, 1.12) 0.98 

Sialylation; Derived 

IGP24 Continuous 24.84 (3.24) 24.90 (3.09) 0.99 (0.96, 1.02) 0.63 0.97 (0.94, 1.00) 0.06 0.97 (0.93, 1.00) 0.09 

 RT   0.97 (0.88, 1.07) 0.56 0.91 (0.83, 1.01) 0.07 0.90 (0.80, 1.01) 0.08 

IGP25 Continuous 32.93 (6.13) 32.56 (6.34) 1.01 (0.99, 1.03) 0.27 1.00 (0.99, 1.02) 0.67 1.01 (0.99, 1.03) 0.37 
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 RT   1.06 (0.96, 1.17) 0.26 1.02 (0.92, 1.13) 0.65 1.05 (0.94, 1.19) 0.38 

IGP26 Continuous 16.47 (3.64) 17.17 (3.63) 0.95 (0.92, 0.98) 0.0003 0.94 (0.91, 0.96) 7.4x10
-6
 0.95 (0.92, 0.98) 0.002 

 RT   0.82 (0.74, 0.91) 0.0001 0.78 (0.71, 0.87) 3.4x10-6 0.82 (0.72, 0.92) 0.001 

IGP27 Continuous 21.38 (4.93) 21.66 (4.94) 0.99 (0.97, 1.01) 0.29 0.98 (0.96, 1.00) 0.08 1.00 (0.97, 1.02) 0.79 

 RT   0.95 (0.86, 1.05) 0.30 0.92 (0.83, 1.01) 0.09 0.99 (0.88, 1.11) 0.80 

IGP29 Continuous 40.22 (3.05) 39.57 (2.77) 1.07 (1.04, 1.11) 4.0x10-5 1.02 (0.99, 1.06) 0.13 0.99 (0.96, 1.03) 0.75 

 RT   1.24 (1.12, 1.38) 3.7x10-5 1.10 (1.00, 1.22) 0.05 1.00 (0.89., 1.13) 0.99 

IGP31 Continuous 37.11 (3.80) 36.44 (3.99) 1.04 (1.01, 1.07) 0.002 1.04 (1.01, 1.06) 0.006 1.04 (1.01, 1.07) 0.01 

 RT   1.18 (1.06, 1.30) 0.001 1.15 (1.05, 1.27) 0.004 1.17 (1.04, 1.31) 0.009 

Bisecting GlcNAc; Derived 

IGP36 Continuous 0.30 (0.07) 0.29 (0.08) 4.42 (1.23, 15.89) 0.02 5.06 (1.30, 19.60) 0.02 7.14 (1.41, 36.18) 0.02 

 RT   1.13 (1.03, 1.25) 0.01 1.14 (1.03, 1.27) 0.01 1.17 (1.03, 1.33) 0.02 

IGP37 Continuous 0.17 (0.05) 0.16 (0.05) 7.92 (1.06, 58.84) 0.04 11.26 (1.42, 89.56) 0.02 30.51 (2.53, 367.34) 0.007 

 RT   1.12 (1.01, 1.23) 0.03 1.13 (1.02, 1.26) 0.02 1.19 (1.05, 1.35) 0.006 

IGP38 Continuous 0.14 (0.03) 0.14 (0.03) 24.79 (1.45, 423.15) 0.03 40.48 (2.19, 748.37) 0.01 138.34 (4.24, 4509) 0.006 

 RT   1.12 (1.02, 1.24) 0.02 1.14 (1.03, 1.27) 0.01 1.19 (1.06, 1.35) 0.005 

IGP39 Continuous 1.33 (0.32) 1.29 (0.30) 1.53 (1.12, 2.08) 0.008 1.42 (1.04, 1.94) 0.03 1.35 (0.92, 1.98) 0.13 

 RT   1.15 (1.04, 1.27) 0.006 1.13 (1.02, 1.25) 0.02 1.10 (0.98, 1.25) 0.12 

IGP40 Continuous 0.56 (0.06) 0.55 (0.06) 10.50 (1.78, 61.78) 0.009 7.90 (1.32, 47.39) 0.02 4.87 (0.55, 43.15) 0.16 

 RT   1.15 (1.04, 1.27) 0.008 1.13 (1.02, 1.25) 0.02 1.10 (0.97, 1.25) 0.13 

Neutral IgG glycans; Derived 

IGP43 Continuous 32.14 (8.00) 29.98 (7.24) 1.04 (1.02, 1.05) 3.5x10-8 1.02 (1.03, 1.05) 2.8x10-8 1.03 (1.01, 1.05) 0.001 

 RT   1.32 (1.19, 1.46) 1.6x10-7 1.33 (1.20, 1.48) 6.4x10-8 1.24 (1.09, 1.41) 0.001 

IGP45 Continuous 7.65 (2.07) 7.31 (1.83) 1.09 (1.04, 1.14) 0.0009 1.10 (1.04, 1.15) 0.001 1.04 (0.98, 1.11) 0.19 

 RT   1.17 (1.06, 1.30) 0.002 1.19 (1.07, 1.33) 0.001 1.08 (0.94, 1.22) 0.27 

IGP47 Continuous 22.71 (3.01) 23.18 (2.66) 0.94 (0.91, 0.98) 0.001 0.93 (0.90, 0.97) 0.0002 0.95 (0.91, 0.99) 0.02 

 RT   0.85 (0.77, 0.95) 0.003 0.83 (0.75, 0.92) 0.0003 0.87 (0.77, 0.98) 0.02 

IGP48 Continuous 11.72 (1.81) 12.14 (1.79) 0.89 (0.84, 0.94) 2.2x10-5 0.90 (0.85, 0.95) 0.0002 0.92 (0.86, 0.98) 0.01 

 RT   0.80 (0.72, 0.89) 2.1x10-5 0.82 (0.74, 0.91) 0.0002 0.85 (0.76, 0.97) 0.01 

IGP49 Continuous 6.68 (1.49) 6.85 (1.50) 0.92 (0.86, 0.99) 0.03 0.91 (0.85, 0.98) 0.01 0.92 (0.84, 1.00) 0.04 

 RT   0.89 (0.80, 0.98) 0.02 0.87 (0.78, 0.97) 0.009 0.88 (0.77, 0.99) 0.03 

IGP53 Continuous 12.86 (4.38) 14.11 (4.38) 0.93 (0.91, 0.96) 1.1x10-7 0.93 (0.91, 0.96) 5.6x10-8 0.95 (0.93, 0.98) 0.003 
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 RT   0.74 (0.67, 0.82) 9.1x10-9 0.73 (0.66, 0.81) 9.7x10-9 0.80 (0.71, 0.92) 0.001 

IGP54 Continuous 1.72 (0.53) 1.87 (0.59) 0.63 (0.52, 0.76) 2.4x10
-6

 0.63 (0.52, 0.77) 3.9x10
-6
 0.76 (0.60, 0.95) 0.02 

 RT   0.77 (0.70, 0.86) 8.5x10-11 0.78 (0.70, 0.86) 2.0x10-6 0.85 (0.75, 0.97) 0.01 

Galactosylation; Derived 

IGP55 Continuous 40.83 (9.18) 38.26 (8.36) 1.03 (1.02, 1.04) 1.7x10-8 1.03 (1.02, 1.05) 1.0x10-8 1.02 (1.01, 1.04) 0.001 

 RT   1.33 (1.20, 1.47) 7.0x10-8 1.35 (1.22, 1.50) 2.3x10-8 1.24 (1.09, 1.41) 0.001 

IGP56 Continuous 42.90 (4.63) 43.99 (3.83) 0.94 (0.92, 0.96) 2.5x10-7 0.94 (0.92, 0.96) 1.1x10-7 0.95 (0.92, 0.98) 0.0004 

 RT   0.80 (0.72, 0.88) 1.5x10-5 0.78 (0.70, 0.86) 2.4x10-6 0.82 (0.72, 0.94) 0.003 

IGP57 Continuous 15.79 (5.09) 17.30 (5.16) 0.94 (0.92, 0.96) 6.5x10-8 0.94 (0.92, 0.96) 6.1x10-8 0.96 (0.94, 0.99) 0.005 

 RT   0.74 (0.66, 0.82) 7.0x10-9 0.73 (0.66, 0.82) 1.2x10-8 0.81 (0.71, 0.93) 0.002 

Core fucosylation and bisecting GlcNAc; Derived 

IGP62 Continuous 79.68 (3.70) 79.63 (3.52) 1.00 (0.98, 1.03) 0.79 1.00 (0.97, 1.03) 0.94 1.00 (0.97, 1.04) 0.88 

 RT   1.02 (0.92, 1.13) 0.71 1.01 (0.91, 1.13) 0.80 1.02 (0.90, 1.15) 0.77 

IGP63 Continuous 79.01 (4.23) 78.62 (4.16) 1.02 (1.00, 1.05) 0.07 1.02 (1.00, 1.05) 0.10 1.02 (0.99, 1.05) 0.17 

 RT   1.10 (1.00, 1.22) 0.06 1.10 (0.99, 1.22) 0.07 1.10 (0.97, 1.24) 0.13 

IGP64 Continuous 80.24 (3.73) 80.30 (3.62) 1.00 (0.97, 1.02) 0.84 1.00 (0.97, 1.02) 0.75 1.00 (0.96, 1.03) 0.94 

 RT   0.99 (0.90, 1.10) 0.92 0.99 (0.89, 1.11) 0.90 1.00 (0.89, 1.14) 0.94 

IGP66 Continuous 17.10 (3.15) 17.09 (2.97) 1.00 (0.97, 1.03) 0.99 1.00 (0.96, 1.03) 0.95 0.99 (0.95, 1.03) 0.51 

 RT   0.99 (0.90, 1.10) 0.89 0.99 (0.89, 1.10) 0.80 0.95 (0.84, 1.08) 0.44 

IGP67 Continuous 18.98 (3.81) 19.36 (3.70) 0.97 (0.95, 1.00) 0.06 0.97 (0.95, 1.00) 0.06 0.97 (0.94, 1.00) 0.08 

 RT   0.90 (0.82, 1.00) 0.05 0.90 (0.81, 1.00) 0.04 0.89 (0.79, 1.01) 0.07 

IGP68 Continuous 18.01 (3.39) 17.96 (3.32) 1.00 (0.97, 1.03) 0.87 1.00 (0.97, 1.03) 0.93 0.99 (0.96, 1.03) 0.73 

 RT   1.00 (0.91, 1.11) 0.94 1.00 (0.90, 1.11) 0.93 0.97 (0.86, 1.10) 0.64 

IGP70 Continuous 0.21 (0.05) 0.21 (0.05) 1.08 (0.13, 8.62) 0.94 1.06 (0.12, 9.53) 0.30 0.50 (0.04, 6.76) 0.60 

 RT   0.99 (0.90, 1.10) 0.87 0.99 (0.89, 1.10) 0.79 0.95 (0.84, 1.08) 0.47 

IGP71 Continuous 17.68 (3.33) 17.68 (3.14) 1.00 (0.97, 1.03) 0.96 1.00 (0.97, 1.03) 0.96 0.99 (0.95, 1.03) 0.58 

 RT   0.99 (0.89, 1.10) 0.85 0.99 (0.89, 1.10) 0.80 0.96 (0.85, 1.09) 0.50 

IGP72 Continuous 4.71 (1.06) 4.68 (1.03) 1.03 (0.93, 1.13) 0.61 1.03 (0.93, 1.14) 0.54 1.05 (0.93, 1.18) 0.42 

 RT   1.02 (0.92, 1.13) 0.68 1.02 (0.92, 1.14) 0.67 1.05 (0.92, 1.18) 0.47 
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These results show that IgG glycans linked to mainly galactosylation are strongly associated 

with all-cause mortality and CRC mortality.  

In particular an increase in the percentage of agalactosylated structures (G0
n
) and a decrease 

in mono- and di-galactosylated structures (G1
n
, G2

n
) was associated with poorer all-cause 

and CRC-specific mortality. Statistically significant associations were also observed for 

decreased sialylation and increase in the incidence of bisecting GlcNAc (Tables 3 and 5).  

 

Results were similar when AJCC stage 4 patients were excluded from the analysis (Tables 7 

and 8) . The minus logarithm of the q-values (FDR corrected p-values) of all 39 glycan traits 

for all-cause mortality and CRC-specific model III are presented in a Manhattan-like plot 

(Figure  6).  
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Table 7. All-cause mortality analysis for stages 1-3. 

 

Code Glycan Dead 

(N=355) 

Survived 

(N=728) 

Crude model (n=1083) Model I (AJCC, age, sex, 

n=1083) 

Model II (AJCC, age, sex, 

time between sample and surgery, 

operation type, bmi, CRP n=850) 

  Mean (SD) Mean (SD) HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

Total IgG glycans (neutral and charged); Measured 

IGP3 Continuous 26.11 (7.30) 23.90 (6.34) 1.04 (1.03, 1.06) 9.5x10-8 1.04 (1.02, 1.05) 1.6x10-6 1.04 (1.02, 1.06) 9.6x10-5 

 RT   1.32 (1.18, 1.47) 4.4x10-7 1.29 (1.16, 1.45) 8.13x10-6 1.28 (1.11, 1.46) 0.0004 

IGP5 Continuous 6.43 (1.86) 5.80 (1.86) 1.18 (1.12, 1.25) 3.3x10-9 1.16 (1.10, 1.24) 7.6x10-7 1.16 (1.08, 1.25) 3.8x10-5 

 RT   1.35 (1.22, 1.51) 3.0x10-8 1.30 (1.16, 1.47) 7.2x10-6 1.30 (1.13, 1.49) 0.0002 

IGP7 Continuous 18.25 (2.18) 18.66 (1.80) 0.91 (0.86, 0.96) 0.001 0.92 (0.87, 0.98) 0.006 0.91 (0.85, 0.97) 0.002 

 RT   0.84 (0.75, 0.93) 0.001 0.87 (0.78, 0.97) 0.01 0.84 (0.74, 0.96) 0.008 

IGP8 Continuous 9.35 (1.39) 9.84 (1.34) 0.81 (0.75, 0.87) 5.9x10-8 0.81 (0.75, 0.88) 2.1x10-7 0.80 (0.73, 0.87) 7.9x10-7 

 RT   0.75 (0.67, 0.83) 6.9x10-8 0.75 (0.68, 0.84) 2.8x10-7 0.73 (0.65, 0.83) 1.0x10-6 

IGP9 Continuous 5.57 (1.27) 5.48 (1.16) 1.05 (0.96, 1.14) 0.32 1.02 (0.93, 1.12) 0.65 1.00 (0.91, 1.11) 0.94 

 RT   1.04 (0.94, 1.16) 0.44 1.01 (0.91, 1.13) 0.81 1.00 (0.88, 1.13) 0.95 

IGP13 Continuous 10.29 (3.07) 11.42 (3.11) 0.90 (0.87, 0.93) 8.1x10-9 0.91 (0.87, 0.94) 7.9x10-7 0.92 (0.88, 0.96) 0.0003 

 RT   0.71 (0.64, 0.80) 1.6x10-9 0.73 (0.65, 0.82) 1.6x10-7 0.75 (0.65, 0.87) 7.5x10-5 

IGP14 Continuous 1.41 (0.41) 1.50 (0.43) 0.64 (0.49, 0.83) 0.001 0.67 (0.51, 0.87) 0.003 0.73 (0.53, 1.00) 0.05 

 RT   0.83 (0.74, 0.92) 0.0004 0.84 (0.75, 0.94) 0.002 0.87 (0.76, 0.99) 0.03 

IGP17 Continuous 7.83 (2.30) 8.45 (2.28) 0.90 (0.86, 0.94) 2.6x10-5 0.91 (0.86, 0.96) 0.0005 0.92 (0.87, 0.99) 0.02 

 RT   0.77 (0.70, 0.86) 3.2x10-6 0.79 (0.70, 0.89) 5.7x10-5 0.81 (0.71, 0.93) 0.003 

IGP18 Continuous 1.88 (0.39) 1.90 (0.39) 0.89 (0.67, 1.16) 0.38 0.87 (0.67, 1.13) 0.31 0.89 (0.66, 1.20) 0.43 

 RT   0.95 (0.86, 1.05) 0.33 0.95 (0.86, 1.05) 0.33 0.95 (0.85, 1.07) 0.40 

Sialylation 

IGP24 Continuous 24.78 (3.18) 24.93 (3.04) 0.99 (0.95, 1.02) 0.49 0.99 (0.96, 1.03) 0.58 1.00 (0.96, 1.04) 0.88 

 RT   0.96 (0.86, 1.06) 0.40 0.96 (0.86, 1.07) 0.48 1.00 (0.88, 1.13) 0.99 

IGP25 Continuous 32.49 (6.30) 32.58 (6.38) 1.00 (0.98, 1.02) 0.91 1.00 (0.98, 1.02) 0.94 1.00 (0.98, 1.02 0.90 

 RT   0.99 (0.90, 1.10) 0.91 1.00 (0.90, 1.10) 0.96 1.01 (0.90, 1.13) 0.89 

IGP26 Continuous 16.43 (3.64) 17.32 (3.55) 0.94 (0.91, 0.97) 0.0001 0.95 (0.92, 0.98) 0.001 0.95 (0.92, 0.99) 0.02 

 RT   0.80 (0.72, 0.89) 4.0x10-5 0.81 (0.73, 0.91) 0.0002 0.83 (0.73, 0.95) 0.007 

IGP27 Continuous 21.01 (5.01) 21.81 (4.97) 0.97 (0.95, 1.00) 0.02 0.98 (0.96, 1.00) 0.05 0.98 (0.96, 1.01) 0.14 

 RT   0.87 (0.79, 0.97) 0.01 0.90 (0.81, 1.00) 0.05 0.91 (0.81, 1.02) 0.12 
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IGP29 Continuous 40.09 (2.90) 39.49 (2.70) 1.07 (1.03, 1.11) 0.0001 1.06 (1.02, 1.10) 0.001 1.06 (1.01, 1.10) 0.009 

 RT   1.23 (1.10, 1.37) 0.0002 1.20 (1.07, 1.34) 0.001 1.19 (1.05, 1.35) 0.007 

IGP31 Continuous 36.78 (3.86) 36.40 (3.97) 1.02 (1.00, 1.05) 0.10 1.02 (0.99, 1.05) 0.12 1.01 (0.98, 1.04) 0.58 

 RT   1.10 (0.99, 1.21) 0.08 1.09 (0.98, 1.21) 0.10 1.04 (0.92, 1.17) 0.53 

Bisecting GlcNAc 

IGP36 Continuous 0.30 (0.08) 0.28 (0.07) 10.21 (2.80, 37.30) 0.0004 7.18 (1.82, 28.32) 0.005 7.26 (1.42, 37.22) 0.02 

 RT   1.20 (1.09, 1.34) 0.0004 1.17 (1.05, 1.30) 0.006 1.16 (1.02, 1.32) 0.02 

IGP37 Continuous 0.17 (0.05) 0.16 (0.05) 20.26 (2.63, 155.9) 0.004 13.32 (1.57, 112.9) 0.02 11.89 (0.94, 150.5) 0.06 

 RT   1.16 (1.05, 1.29) 0.005 1.13 (1.02, 1.26) 0.02 1.12 (0.99, 1.28) 0.08 

IGP38 Continuous 0.14 (0.04) 0.14 (0.03) 84.20 (4.58, 1549) 0.003 43.03 (2.04, 909.9) 0.02 33.95 (0.92, 12.46) 0.06 

 RT   1.17 (1.05, 1.30) 0.003 1.14 (1.02, 1.27) 0.02 1.13 (0.99, 1.28) 0.07 

IGP39 Continuous 1.36 (0.33) 1.27 (0.30) 2.04 (1.49, 2.81) 1.0x10-5 1.86 (1.34, 2.58) 0.0002 1.84 (1.24, 2.73) 0.002 

 RT   1.26 (1.13, 1.40) 2.0x10-5 1.22 (1.10, 1.36) 0.0003 1.21 (1.06, 1.37) 0.005 

IGP40 Continuous 0.56 (0.06) 0.55 (0.06) 55.05 (8.57, 353.6) 2.4x10-5 32.58 (4.82, 220.4) 0.0004 24.66 (2.52, 241.26) 0.006 

 RT   1.26 (1.13, 1.40) 2.2x10-5 1.22 (1.09, 1.36) 0.0003 1.20 (1.06, 1.37) 0.005 

Neutral IgG glycans 

IGP43 Continuous 31.97 (7.93) 29.59 (6.98) 1.04 (1.02, 1.05) 1.3x10-7 1.04 (1.02, 1.05) 2.4x10-6 1.03 (1.02, 1.05) 0.0001 

 RT   1.32 (1.18, 1.47) 5.3x10-7 1.29 (1.15, 1.45) 1.0x10-5 1.28 (1.12, 1.47) 0.0004 

IGP45 Continuous 7.88 (2.08) 7.18 (1.75) 1.16 (1.10, 1.22) 5.4x10-9 1.14 (1.08, 1.21) 1.6x10-6 1.14 (1.07, 1.22) 5.8x10-5 

 RT   1.35 (1.21, 1.50) 4.8x10-8 1.29 (1.15, 1.45) 1.5x10-5 1.29 (1.12, 1.48) 0.0003 

IGP47 Continuous 22.58 (3.07) 23.30 (2.50) 0.92 (0.88, 0.95) 1.3x10-5 0.93 (0.89, 0.97) 0.0004 0.92 (0.88, 0.97) 0.0004 

 RT   0.79 (0.71, 0.89) 3.8x10-5 0.82 (0.73, 0.92) 0.001 0.81 (0.71, 0.92) 0.002 

IGP48 Continuous 11.56 (1.84) 12.29 (1.74) 0.83 (0.78, 0.88) 8.8x10-10 0.84 (0.79, 0.89) 6.5x10-9 0.83 (0.77, 0.89) 1.1x10-7 

 RT   0.72 (0.64, 0.80) 8.0x10-10 0.72 (0.65, 0.81) 7.0x10-9 0.71 (0.63, 0.81) 1.2x10-7 

IGP49 Continuous 6.88 (1.60) 6.84 (1.47) 1.01 (0.94, 1.08) 0.80 0.99 (0.93, 1.07) 0.88 0.99 (0.91, 1.07) 0.73 

 RT   1.00 (0.90, 1.12) 0.95 0.98 (0.88, 1.09) 0.72 0.97 (0.86, 1.10) 0.63 

IGP53 Continuous 12.82 (4.23) 14.36 (4.34) 0.93 (0.90, 0.95) 2.0x10-8 0.93 (0.91, 0.96) 1.5x10-6 0.94 (0.91, 0.97) 0.001 

 RT   0.72 (0.64, 0.80) 1.8x10-9 0.73 (0.65, 0.82) 1.5x10-7 0.75 (0.65, 0.87) 7.8x10-5 

IGP54 Continuous 1.76 (0.55) 1.88 (0.59) 0.70 (0.58, 0.85) 0.0004 0.73 (0.60, 0.89) 0.002 0.78 (0.62, 0.99) 0.04 

 RT   0.82 (0.73, 0.91) 0.0002 0.83 (0.75, 0.93) 0.001 0.86 (0.76, 0.98) 0.02 

Galactosylation 

IGP55 Continuous 40.89 (9.04) 37.72 (8.04) 1.04 (1.03, 1.05) 1.7x10-9 1.04 (1.02, 1.05) 7.1x10-8 1.04 (1.02, 1.05) 8.4x10-6 

 RT   1.38 (1.24, 1.54) 6.7x10-9 1.35 (1.21, 1.52) 2.9x10-7 1.34 (1.17, 1.54) 2.9x10-5 

IGP56 Continuous 42.83 (4.68) 42.25 (3.54) 0.93 (0.91, 0.96) 6.5x10-9 0.94 (0.91, 0.96) 6.9x10-8 0.93 (0.90, 0.96) 3.3x10-7 
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 RT   0.76 (0.68, 0.85) 9.3x10-7 0.77 (0.69, 0.87) 1.0x10-5 0.75 (0.65, 0.86) 2.6x10-5 

IGP57 Continuous 15.81 (4.93) 17.58 (5.12) 0.94 (0.92, 0.96) 4.1x10
-8 

0.94 (0.92, 0.97) 2.5x10
-6 

0.95 (0.93, 0.98) 0.001 

 RT   0.72 (0.65, 0.81) 5.4x10-9 0.74 (0.66, 0.83) 3.6x10-7 0.76 (0.66, 0.88) 0.0002 

Core fucosylation and bisecting GlcNAc 

IGP62 Continuous 79.17 (3.89) 79.77 (3.47) 0.97 (0.94, 0.99) 0.02 0.98 (0.95, 1.01) 0.11 0.97 (0.94, 1.01) 0.12 

 RT   0.89 (0.80, 0.99) 0.03 0.92 (0.83, 1.03) 0.15 0.91 (0.81, 1.03) 0.15 

IGP63 Continuous 78.42 (4.42) 78.69 (4.14) 0.99 (0.97, 1.01) 0.41 1.00 (0.97, 1.02) 0.74 0.99 (0.96, 1.02) 0.54 

 RT   0.96 (0.86, 1.07) 0.46 0.99 (0.89, 1.10) 0.81 0.96 (0.85, 1.09) 0.57 

IGP64 Continuous 79.71 (3.94) 80.45 (3.57) 0.96 (0.93, 0.99) 0.003 0.97 (0.94, 1.00) 0.03 0.97 (0.94, 1.00) 0.04 

 RT   0.86 (0.77, 0.96) 0.005 0.89 (0.80, 0.99) 0.04 0.88 (0.78, 1.00) 0.05 

IGP66 Continuous 17.58 (3.31) 16.97 (2.91) 1.05 (1.02, 1.09) 0.002 1.04 (1.00, 1.07) 0.04 1.04 (1.00, 1.08) 0.08 

 RT   1.16 (1.05, 1.29) 0.005 1.11 (1.00, 1.24) 0.06 1.11 (0.98, 1.26) 0.10 

IGP67 Continuous 19.52 (3.98) 19.29 (3.67) 1.01 (0.98, 1.04) 0.44 1.00 (0.98, 1.03) 0.83 1.01 (0.97, 1.04) 0.67 

 RT   1.04 (0.93, 1.15) 0.51 1.00 (0.90, 1.12) 0.93 1.02 (0.90, 1.16) 0.71 

IGP68 Continuous 18.52 (3.59) 17.82 (3.27) 1.05 (1.02, 1.08) 0.002 1.04 (1.01, 1.07) 0.02 1.04 (1.00, 1.08) 0.04 

 RT   1.17 (1.05, 1.30) 0.003 1.13 (1.01, 1.25) 0.03 1.13 (1.00, 1.28) 0.05 

IGP70 Continuous 0.22 (0.05) 0.21 (0.05) 27.42 (3.53, 213.1) 0.002 10.93 (1.32, 90.70) 0.03 10.14 (0.88, 116.8) 0.06 

 RT   1.16 (1.05, 1.29) 0.005 1.11 (0.99, 1.24) 0.06 1.11 (0.98, 1.26) 0.10 

IGP71 Continuous 18.18 (3.50) 17.55 (3.08) 1.05 (1.02, 1.08) 0.003 1.03 (1.00, 1.07) 0.04 1.03 (1.00, 1.07) 0.08 

 RT   1.16 (1.04, 1.29) 0.006 1.10 (0.99, 1.23) 0.07 1.11 (0.98, 1.26) 0.11 

IGP72 Continuous 4.57 (1.10) 4.72 (1.01) 0.90 (0.81, 1.00) 0.04 0.94 (0.84, 1.05) 0.25 0.92 (0.81, 1.04) 0.19 

 RT   0.88 (0.79, 0.97) 0.01 0.92 (0.82, 1.02) 0.12 0.91 (0.80, 1.03) 0.15 
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Table 8. CRC-specific mortality analysis for stages 1-3. 
 

Code Glycan Dead 

(N=257) 

Survived 

(N=826) 

Crude model (n=1083) Model I (AJCC, age, sex, 

n=1083) 

Model II (AJCC, age, sex, 

time between sample and 

surgery, operation type, bmi, 

CRP n=850) 

  Mean (SD) Mean (SD) HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

Total IgG glycans (neutral and charged); Measured 

IGP3 Continuous 25.76 (7.28) 24.27 (6.53) 1.03 (1.01, 1.05) 0.0004 1.04 (1.02, 1.05) 0.0001 1.03 (1.01, 1.06) 0.004 

 RT   1.24 (1.10, 1.40) 0.001 1.28 (1.12, 1.46) 0.002 1.24 (1.05, 1.45) 0.01 

IGP5 Continuous 6.29 (1.85) 5.91 (1.63) 1.13 (1.05, 1.21) 0.005 1.13 (1.05, 1.22) 0.001 1.10 (1.01, 1.20) 0.04 

 RT   1.23 (1.09, 1.40) 0.001 1.23 (1.08, 1.42) 0.002 1.17 (0.99, 1.37) 0.06 

IGP7 Continuous 18.33 (2.09) 18.59 (1.90) 0.93 (0.88, 1.00) 0.04 0.94 (0.88, 1.00) 0.05 0.93 (0.86, 1.00) 0.07 

 RT   0.89 (0.78, 1.01) 0.07 0.89 (0.78, 1.02) 0.09 0.88 (0.76, 1.03) 0.11 

IGP8 Continuous 9.46 (1.38) 9.75 (1.37) 0.86 (0.79, 0.94) 0.001 0.86 (0.79, 0.95) 0.002 0.84 (0.75, 0.93) 0.001 

 RT   0.82 (0.72, 0.92) 0.001 0.82 (0.73, 0.93) 0.002 0.79 (0.68, 0.91) 0.001 

IGP9 Continuous 5.54 (1.25) 5.50 (1.18) 1.02 (0.92, 1.13) 0.67 0.99 (0.89, 1.10) 0.83 0.97 (0.85, 1.10) 0.59 

 RT   1.02 (0.90, 1.15) 0.77 0.98 (0.86, 1.11) 0.73 0.95 (0.82, 1.10) 0.52 

IGP13 Continuous 10.48 (3.14) 11.23 (3.13) 0.92 (0.89, 0.96) 0.0001 0.91 (0.87, 0.96) 8.3x10-5 0.93 (0.88, 0.99) 0.02 

 RT   0.77 (0.68, 0.87) 6.0x10-5 0.74 (0.65, 0.85) 3.1x10-5 0.79 (0.67, 0.93) 0.006 

IGP14 Continuous 1.41 (0.41) 1.49 (0.43) 0.66 (0.48, 0.89) 0.007 0.64 (0.47, 0.87) 0.004 0.73 (0.50, 1.06) 0.10 

 RT   0.84 (0.74, 0.95) 0.005 0.83 (0.73, 0.94) 0.003 0.87 (0.75, 1.01) 0.07 

IGP17 Continuous 7.99 (2.33) 8.33 (2.29) 0.93 (0.88, 0.99) 0.02 0.92 (0.87, 0.98) 0.007 0.95 (0.88, 1.02) 0.16 

 RT   0.84 (0.74, 0.95) 0.007 0.81 (0.71, 0.93) 0.003 0.86 (0.73, 1.01) 0.07 

IGP18 Continuous 1.88 (0.38) 1.89 (0.39) 0.89 (0.65, 1.23) 0.49 0.86 (0.63, 1.17) 0.34 0.94 (0.66, 1.33) 0.71 

 RT   0.96 (0.85, 1.08) 0.47 0.95 (0.85, 1.07) 0.40 0.97 (0.85, 1.11) 0.69 

Sialylation 

IGP24 Continuous 24.87 (3.25) 24.88 (3.03) 1.00 (0.96, 1.04) 0.93 0.99 (0.95, 1.03) 0.66 1.00 (0.96, 1.05) 0.85 

 RT   0.98 (0.87, 1.12) 0.81 0.96 (0.85, 1.09) 0.56 1.00 (0.86, 1.16) 0.99 

IGP25 Continuous 32.52 (6.35) 32.56 (6.35) 1.00 (0.98, 1.02) 0.98 1.00 (0.98, 1.02) 0.91 1.01 (0.98, 1.03) 0.62 

 RT   1.00 (0.89, 1.13) 0.99 1.01 (0.90, 1.13) 0.90 1.04 (0.90, 1.19) 0.62 

IGP26 Continuous 16.64 (3.67) 17.15 (3.58) 0.96 (0.93, 0.99) 0.02 0.95 (0.92, 0.99) 0.007 0.96 (0.92, 1.01) 0.11 

 RT   0.85 (0.75, 0.97) 0.01 0.83 (0.73, 0.94) 0.004 0.86 (0.74, 1.01) 0.06 

IGP27 Continuous 21.19 (5.12) 21.66 (4.95) 0.98 (0.96, 1.01) 0.17 0.98 (0.96, 1.01) 0.20 0.99 (0.96, 1.02) 0.63 

 RT   0.91 (0.81, 1.03) 0.14 0.92 (0.82, 1.04) 0.20 0.96 (0.84, 1.11) 0.59 
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IGP29 Continuous 40.13 (2.97) 39.55 (2.71) 1.08 (1.03, 1.12) 0.001 1.06 (1.02, 1.10) 0.008 1.05 (1.00, 1.10) 0.05 

 RT   1.24 (1.09, 1.41) 0.001 1.19 (1.05, 1.36) 0.007 1.17 (1.01, 1.36) 0.04 

IGP31 Continuous 36.84 (3.79) 36.43 (3.97) 1.03 (1.00, 1.06) 0.10 1.03 (1.00, 1.06) 0.06 1.02 (0.98, 1.05) 0.32 

 RT   1.11 (0.98, 1.26) 0.09 1.13 (1.00, 1.27) 0.05 1.08 (0.94, 1.24) 0.28 

Bisecting GlcNAc 

IGP36 Continuous 0.29 (0.07) 0.29 (0.08) 4.00 (0.84, 19.03) 0.08 3.86 (0.75, 19.74) 0.11 4.17 (0.58, 29.87) 0.16 

 RT   1.12 (0.99, 1.27) 0.06 1.12 (0.99, 1.27) 0.08 1.12 (0.96, 1.31) 0.14 

IGP37 Continuous 0.17 (0.05) 0.16 (0.05) 6.17 (0.53, 72.39) 0.15 6.98 (0.55, 89.35) 0.14 7.93 (0.37, 168.5) 0.18 

 RT   1.10 (0.97, 1.24) 0.13 1.11 (0.98, 1.26) 0.11 1.11 (0.95, 1.29) 0.19 

IGP38 Continuous 0.14 (0.03) 0.14 (0.03) 17.82 (0.55, 577.2) 0.11 20.69 (0.56, 761.0) 0.10 21.73 (0.29, 1602) 0.16 

 RT   1.11 (0.98, 1.26) 0.10 1.12 (0.98, 1.27) 0.09 1.12 (0.96, 1.30) 0.16 

IGP39 Continuous 1.34 (0.33) 1.29 (0.30) 1.61 (1.10, 2.35) 0.02 1.52 (1.03, 2.25) 0.04 1.45 (0.90, 2.35) 0.13 

 RT   1.16 (1.03, 1.32) 0.02 1.15 (1.01, 1.30) 0.03 1.11 (0.95, 1.30) 0.17 

IGP40 Continuous 0.56 (0.06) 0.55 (0.06) 13.15 (1.49, 116.1) 0.02 10.21 (1.10, 95.12) 0.04 5.86 (0.39, 88.93) 0.20 

 RT   1.16 (1.03, 1.31) 0.02 1.14 (1.01, 1.30) 0.04 1.11 (0.95, 1.30) 0.18 

Neutral IgG glycans 

IGP43 Continuous 31.61 (7.90) 29.98 (7.18) 1.03 (1.01, 1.05) 0.0004 1.03 (1.02, 1.05) 0.0001 1.03 (1.01, 1.05) 0.004 

 RT   1.24 (1.10, 1.41) 0.001 1.28 (1.12, 1.46) 0.0002 1.24 (1.06, 1.46) 0.008 

IGP45 Continuous 7.73 (2.07) 7.31 (1.83) 1.11 (1.05, 1.18) 0.001 1.11 (1.04, 1.19) 0.001 1.08 (1.00, 1.17) 0.05 

 RT   1.23 (1.08, 1.39) 0.001 1.22 (1.07, 1.40) 0.004 1.16 (0.98, 1.36) 0.08 

IGP47 Continuous 22.73 (2.97) 23.17 (2.63) 0.94 (0.90, 0.99) 0.01 0.94 (0.90, 0.98) 0.009 0.94 (0.89, 1.00) 0.04 

 RT   0.86 (0.75, 0.97) 0.02 0.85 (0.74, 0.97) 0.02 0.86 (0.74, 1.00) 0.06 

IGP48 Continuous 11.72 (1.84) 12.15 (1.78) 0.88 (0.82, 0.94) 0.0002 0.88 (0.82, 0.94) 0.0003 0.86 (0.79, 0.94) 0.0004 

 RT   0.79 (0.70, 0.90) 0.0002 0.79 (0.70, 0.90) 0.0003 0.76 (0.66, 0.89) 0.0004 

IGP49 Continuous 6.86 (1.56) 6.85 (1.50) 1.00 (0.92, 1.08) 0.96 0.97 (0.89, 1.05) 0.47 0.96 (0.87, 1.06) 0.42 

 RT   0.99 (0.87, 1.12) 0.88 0.95 (0.84, 1.07) 0.41 0.93 (0.81, 1.08) 0.36 

IGP53 Continuous 13.10 (4.34) 14.10 (4.35) 0.94 (0.92, 0.97) 0.0002 0.94 (0.91, 0.97) 0.0001 0.95 (0.92, 0.99) 0.02 

 RT   0.77 (0.68, 0.88) 7.4x10-5 0.75 (0.65, 0.86) 3.2x10-5 0.79 (0.67, 0.94) 0.007 

IGP54 Continuous 1.76 (0.54) 1.87 (0.59) 0.72 (0.58, 0.91) 0.005 0.70 (0.56, 0.88) 0.003 0.78 (0.59, 1.04) 0.09 

 RT   0.83 (0.73, 0.94) 0.004 0.82 (0.73, 0.93) 0.002 0.87 (0.74, 1.01) 0.07 

Galactosylation 

IGP55 Continuous 40.35 (9.00) 38.27 (8.29) 1.03 (1.01, 1.04) 8.3x10-5 1.03 (1.02, 1.05) 2.4x10-5 1.03 (1.01, 1.05) 0.002 

 RT   1.28 (1.12, 1.45) 0.0002 1.32 (1.15, 1.51) 5.3x10-5 1.27 (1.08, 1.50) 0.005 

IGP56 Continuous 43.11 (4.56) 43.99 (3.79) 0.95 (0.92, 0.98) 0.0003 0.94 (0.92, 0.97) 6.8x10-5 0.94 (0.91, 0.97) 0.0005 
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 RT   0.82 (0.72, 0.93) 0.003 0.80 (0.70, 0.91) 0.001 0.79 (0.67, 0.93) 0.004 

IGP57 Continuous 16.08 (5.03) 17.29 (5.12) 0.95 (0.93, 0.98) 0.0002 0.95 (0.92, 0.97) 0.0001 0.96 (0.93, 0.99) 0.02 

 RT   0.77 (0.68, 0.88) 6.2x10-5 0.75 (0.65, 0.86) 2.9x10-5 0.80 (0.67, 0.94) 0.008 

Core fucosylation and bisecting GlcNAc 

IGP62 Continuous 79.40 (3.90) 79.63 (3.54) 0.98 (0.95, 1.02) 0.34 0.99 (0.96, 1.03) 0.68 0.99 (0.95, 1.04) 0.77 

 RT   0.95 (0.84, 1.08) 0.43 0.98 (0.87, 1.12) 0.80 0.99 (0.85, 1.15) 0.87 

IGP63 Continuous 78.59 (4.39) 78.61 (4.18) 1.00 (0.97, 1.03) 0.99 1.01 (0.98, 1.04) 0.57 1.01 (0.97, 1.04) 0.67 

 RT   1.01 (0.89, 1.14) 0.93 1.04 (0.92, 1.18) 0.51 1.04 (0.90, 1.21) 0.61 

IGP64 Continuous 79.92 (3.92) 80.30 (3.65) 0.98 (0.94, 1.01) 0.14 0.98 (0.95, 1.02) 0.33 0.98 (0.95, 1.01) 0.43 

 RT   0.92 (0.81, 1.04) 0.18 0.95 (0.84, 1.08) 0.41 0.95 (0.82, 1.10) 0.50 

IGP66 Continuous 17.41 (3.29) 17.09 (2.98) 1.03 (0.99, 1.07) 0.12 1.02 (0.98, 1.06) 0.37 1.01 (0.96, 1.06) 0.68 

 RT   1.09 (0.96, 1.23) 0.17 1.05 (0.92, 1.19) 0.49 1.02 (0.88, 1.19) 0.77 

IGP67 Continuous 19.40 (3.95) 19.36 (3.72) 1.00 (0.97, 1.03) 0.94 0.99 (0.96, 1.02) 0.57 0.99 (0.95, 1.03) 0.62 

 RT   1.00 (0.88, 1.13) 0.99 0.96 (0.85, 1.09) 0.51 0.96 (0.83, 1.11) 0.58 

IGP68 Continuous 18.35 (3.54) 17.95 (3.34) 1.03 (1.00, 1.07) 0.08 1.02 (0.98, 1.06) 0.26 1.02 (0.97, 1.06) 0.44 

 RT   1.10 (0.98, 1.25) 0.12 1.06 (0.94, 1.20) 0.34 1.05 (0.91, 1.22) 0.52 

IGP70 Continuous 0.22 (0.05) 0.21 (0.05) 7.65 (0.66, 88.88) 0.10 3.42 (0.27, 42.66) 0.34 2.01 (0.10, 39.38) 0.65 

 RT   1.09 (0.96, 1.23) 0.19 1.04 (0.92, 1.18) 0.53 1.02 (0.88, 1.19) 0.79 

IGP71 Continuous 18.00 (3.49) 17.68 (3.15) 1.03 (0.99, 1.07) 0.14 1.02 (0.98, 1.06) 0.42 1.01 (0.96, 1.06) 0.68 

 RT   1.08 (0.96, 1.23) 0.21 1.04 (0.92, 1.18) 0.55 1.03 (0.88, 1.19) 0.78 

IGP72 Continuous 4.62 (1.06) 4.68 (1.04) 0.95 (0.84, 1.07) 0.40 0.99 (0.87, 1.12) 0.82 1.00 (0.86, 1.15) 0.95 

 RT   0.94 (0.83, 1.06) 0.30 0.97 (0.86, 1.11) 0.69 0.99 (0.85, 1.15) 0.88 
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Figure 6. Minus logarithm of the FDR corrected p-values (q values) of all 39 glycan variables for all 

causes and CRC-specific mortality (Model III). Q- value threshold of significance <0.05. 

 

Stratified analysis by stage for all-cause and CRC-specific mortality is presented in (Tables 9 

and 10). 
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Table 9. All-cause mortality analysis by stage [Model II; rank transformed variables] 
 

Code AJCC stage 1 (n=210) AJCC stage 2 (n=327) AJCC stage 3 (n=313) AJCC stage 4 (n=102) 

 HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

Total IgG glycans (neutral and charged); Measured 

IGP3 1.32 (0.96, 1.81) 0.09 1.93 (0.99, 3.78) 0.05 1.27 (1.05, 1.55) 0.02 1.15 (0.93, 1.42) 0.21 

IGP5 1.29 (0.92, 1.82) 0.14 1.46 (1.16, 1.84) 0.001 1.20 (0.99, 1.47) 0.07 1.01 (0.83, 1.24) 0.90 

IGP7 0.65 (0.47, 0.90) 0.009 0.76 (0.61, 0.96) 0.02 0.95 (0.79, 1.13) 0.55 1.00 (0.81, 1.22) 0.97 

IGP8 0.77 (0.56, 1.06) 0.11 0.57 (0.46, 0.72) 9.3x10-7 0.84 (0.71, 0.99) 0.04 1.25 (1.00, 1.57) 0.05 

IGP9 0.95 (0.70, 1.29) 0.73 1.03 (0.83, 1.28) 0.77 0.98 (0.82, 1.18) 0.85 0.89 (0.70, 1.12) 0.32 

IGP13 0.76 (0.55, 1.05) 0.09 0.72 (0.57, 0.93) 0.01 0.77 (0.62, 0.95) 0.02 0.91 (0.74, 1.12) 0.38 

IGP14 0.89 (0.64, 1.23) 0.47 0.90 (0.72, 1.13) 0.38 0.85 (0.71, 1.03) 0.09 0.93 (0.73, 1.18) 0.55 

IGP17 0.87 (0.63, 1.19) 0.38 0.79 (0.62, 1.01) 0.06 0.81 (0.67, 0.99) 0.04 0.79 (0.65, 0.97) 0.02 

IGP18 0.91 (0.67, 1.23) 0.54 0.86 (0.70, 1.07) 0.17 1.02 (0.88, 1.19) 0.77 1.09 (0.85, 1.40) 0.49 

Sialylation 

IGP24 1.19 (0.87, 1.64) 0.28 1.08 (0.86, 1.35) 0.51 0.92 (0.77, 1.09) 0.32 0.75 (0.63, 0.91) 0.003 

IGP25 1.04 (0.76, 1.42) 0.80 0.97 (0.78, 1.20) 0.76 1.03 (0.88, 1.21) 0.70 1.00 (0.78, 1.28) 0.98 

IGP26 0.90 (0.66, 1.22) 0.49 0.86 (0.68, 1.08) 0.20 0.80 (0.67, 0.97) 0.02 0.78 (0.63, 0.95) 0.01 

IGP27 0.91 (0.66, 1.25) 0.57 0.84 (0.68, 1.03) 0.10 0.96 (0.82, 1.13) 0.66 0.98 (0.78, 1.23) 0.88 

IGP29 1.43 (1.05, 1.96) 0.03 1.19 (0.95, 1.50) 0.13 1.11 (0.93, 1.33) 0.24 0.73 (0.60, 0.89) 0.002 

IGP31 0.97 (0.71, 1.33) 0.84 0.87 (0.70, 1.07) 0.19 1.17 (0.99, 1.38) 0.06 1.39 (1.09, 1.76) 0.008 

Bisecting GlcNAc 

IGP36 1.12 (0.81, 1.55) 0.48 1.18 (0.93, 1.49) 0.18 1.18 (0.98, 1.41) 0.08 1.24 (0.98, 1.57) 0.07 

IGP37 1.04 (0.76, 1.42) 0.81 1.05 (0.85, 1.33) 0.70 1.19 (1.00, 1.43) 0.05 1.36 (1.09, 1.71) 0.008 

IGP38 1.06 (0.77, 1.46) 0.72 1.06 (0.83, 1.35) 0.64 1.19 (1.00, 1.43) 0.05 1.36 (1.08, 1.71) 0.008 

IGP39 1.17 (0.86, 1.59) 0.33 1.26 (1.00, 1.59) 0.05 1.23 (1.02, 1.47) 0.03 1.05 (0.86, 1.30) 0.63 

IGP40 1.16 (0.85, 1.59) 0.34 1.25 (0.99, 1.58) 0.06 1.22 (1.02, 1.47) 0.03 1.05 (0.85, 1.29) 0.65 

Neutral IgG glycans 

IGP43 1.35 (0.98, 1.85) 0.07 1.25 (0.98, 1.60) 0.07 1.27 (1.04, 1.54) 0.02 1.12 (0.91, 1.39) 0.29 

IGP45 1.29 (0.92, 1.82) 0.14 1.49 (1.18, 1.88) 0.001 1.17 (0.96, 1.43) 0.11 0.96 (0.78, 1.19) 0.74 

IGP47 0.67 (0.48, 0.92) 0.02 0.75 (0.60, 0.95) 0.02 0.89 (0.74, 1.07) 0.20 0.90 (0.74, 1.09) 0.29 

IGP48 0.78 (0.57, 1.06) 0.12 0.57 (0.46, 0.72) 8.1x10-7 0.79 (0.66, 0.95) 0.01 1.16 (0.92, 1.47) 0.20 

IGP49 0.94 (0.68, 1.28) 0.68 1.01 (0.82, 1.25) 0.92 0.95 (0.80, 1.14) 0.58 0.83 (0.66, 1.05) 0.12 

IGP53 0.77 (0.56, 1.06) 0.11 0.73 (0.57, 0.93) 0.01 0.77 (0.62, 0.94) 0.01 0.89 (0.72, 1.09) 0.25 
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IGP54 0.88 (0.64, 1.23) 0.46 0.90 (0.71, 1.12) 0.34 0.85 (0.70, 1.01) 0.07 0.90 (0.71, 1.12) 0.34 

Galactosylation 

IGP55 1.39 (1.00, 1.92) 0.05 1.38 (1.08, 1.76) 0.009 1.31 (1.07, 1.60) 0.01 1.10 (0.89, 1.35) 0.38 

IGP56 0.71 (0.51, 0.98) 0.04 0.69 (0.54, 0.87) 0.002 0.80 (0.66, 0.98) 0.03 0.95 (0.77, 1.17) 0.64 

IGP57 0.78 (0.56, 1.07) 0.12 0.78 (0.61, 0.99) 0.05 0.76 (0.66, 0.93) 0.008 0.91 (0.73, 1.12) 0.35 

Core fucosylation and bisecting GlcNAc 

IGP62 0.94 (0.68, 1.31) 0.73 0.75 (0.60, 0.94) 0.01 1.00 (0.84, 1.19) 0.99 1.03 (0.80, 1.32) 0.82 

IGP63 1.03 (0.76, 1.41) 0.85 0.84 (0.64, 1.01) 0.06 1.03 (0.87, 1.23) 0.74 1.14 (0.91, 1.44) 0.25 

IGP64 0.83 (0.60, 1.15) 0.26 0.77 (0.62, 0.96) 0.02 0.97 (0.81, 1.15) 0.69 1.09 (0.85, 1.41) 0.50 

IGP66 1.13 (0.82, 1.55) 0.47 1.25 (1.00, 1.55) 0.05 1.03 (0.86, 1.23) 0.73 0.87 (0.70, 1.10) 0.24 

IGP67 0.99 (0.73, 1.35) 0.97 1.15 (0.95, 1.49) 0.13 0.96 (0.80, 1.14) 0.64 0.84 (0.68, 1.05) 0.12 

IGP68 1.20 (0.87, 1.66) 0.26 1.24 (1.00, 1.53) 0.05 1.05 (0.88, 1.25) 0.58 0.86 (0.68, 1.10) 0.23 

IGP70 1.13 (0.81, 1.57) 0.47 1.28 (1.02, 1.59) 0.03 1.02 (0.86, 1.22) 0.79 0.88 (0.69, 1.11) 0.28 

IGP71 1.11 (0.81, 1.53) 0.52 1.27 (1.02, 1.58) 0.03 1.02 (0.86, 1.22) 0.79 0.89 (0.71, 1.12) 0.32 

IGP72 0.91 (0.66, 1.26) 0.59 0.79 (0.63, 0.98) 0.03 0.99 (0.83, 1.18) 0.92 1.11 (0.88, 1.40) 0.38 
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Table 10. CRC-specific mortality analysis by stage [Model II; rank transformed variables] 

Code AJCC stage 1 (n=210) AJCC stage 2 (n=327) AJCC stage 3 (n=313) AJCC stage 4 (n=102) 

 HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

Total IgG glycans (neutral and charged); Measured 

IGP3 1.14 (0.67, 1.95) 0.63 1.21 (0.90, 1.62) 0.21 1.26 (1.02, 1.55) 0.04 1.15 (0.92, 1.43) 0.21 

IGP5 0.94 (0.55, 1.61) 0.82 1.35 (1.01, 1.80) 0.04 1.10 (0.88, 1.36) 0.40 1.01 (0.82, 1.24) 0.94 

IGP7 0.81 (0.48, 1.35) 0.42 0.74 (0.56, 0.98) 0.04 0.96 (0.79, 1.17) 0.71 1.00 (0.81, 1.24) 0.97 

IGP8 0.72 (0.42, 1.24) 0.24 0.67 (0.51, 0.88) 0.004 0.85 (0.71, 1.02) 0.09 1.25 (0.99, 1.57) 0.06 

IGP9 0.86 (0.52, 1.42) 0.56 1.00 (0.77, 1.31) 0.98 0.92 (0.76, 1.12) 0.42 0.88 (0.69, 1.12) 0.30 

IGP13 0.98 (0.57, 1.69) 0.95 0.76 (0.56, 1.03) 0.08 0.78 (0.62, 0.98) 0.04 0.91 (0.71, 1.13) 0.39 

IGP14 0.85 (0.50, 1.46) 0.56 0.91 (0.69, 1.20) 0.51 0.86 (0.70, 1.05) 0.13 0.92 (0.72, 1.18) 0.53 

IGP17 1.12 (0.65, 1.94) 0.68 0.82 (0.61, 1.11) 0.20 0.85 (0.68, 1.05) 0.13 0.79 (0.64, 0.97) 0.02 

IGP18 1.03 (0.62, 1.70) 0.92 0.84 (0.64, 1.08) 0.18 1.04 (0.88, 1.23) 0.64 1.07 (0.83, 1.38) 0.61 

Sialylation 

IGP24 1.29 (0.77, 2.18) 0.34 1.05 (0.79, 1.39) 0.74 0.96 (0.79, 1.16) 0.64 0.75 (0.62, 0.90) 0.003 

IGP25 1.23 (0.72, 2.11) 0.44 0.93 (0.71, 1.22) 0.61 1.08 (0.91, 1.29) 0.39 1.00 (0.78, 1.28) 0.99 

IGP26 1.08 (0.64, 1.82) 0.77 0.87 (0.66, 1.16) 0.35 0.84 (0.68, 1.03) 0.09 0.77 (0.62, 0.95) 0.01 

IGP27 1.19 (0.69, 2.05) 0.53 0.84 (0.64, 1.08) 0.18 1.02 (0.86, 1.22) 0.79 0.98 (0.77, 1.23) 0.85 

IGP29 1.40 (0.85, 2.31) 0.19 1.17 (0.88, 1.55) 0.28 1.14 (0.94, 1.38) 0.20 0.73 (0.60, 0.90) 0.002 

IGP31 1.05 (0.63, 1.73) 0.86 0.89 (0.69, 1.16) 0.41 1.18 (0.98, 1.42) 0.07 1.38 (1.08, 1.76) 0.01 

Bisecting GlcNAc 

IGP36 1.02 (0.61, 1.72) 0.94 1.10 (0.82, 1.46) 0.53 1.15 (0.95, 1.40) 0.15 1.23 (0.97, 1.57) 0.09 

IGP37 0.98 (0.59, 1.63) 0.94 0.99 (0.74, 1.33) 0.96 1.18 (0.97, 1.44) 0.10 1.36 (1.07, 1.71) 0.01 

IGP38 0.99 (0.59, 1.65) 0.96 1.01 (0.75, 1.36) 0.93 1.18 (0.98, 1.44) 0.09 1.35 (1.07, 1.71) 0.01 

IGP39 0.91 (0.55, 1.49) 0.71 1.22 (0.91, 1.63) 0.18 1.11 (0.91, 1.36) 0.29 1.05 (0.85, 1.30) 0.64 

IGP40 0.91 (0.55, 1.50) 0.71 1.21 (0.90, 1.61) 0.21 1.11 (0.91, 1.36) 0.29 1.05 (0.85, 1.30) 0.66 

Neutral IgG glycans 

IGP43 1.20 (0.70, 2.05) 0.51 1.21 (0.90, 1.63) 0.21 1.22 (1.02, 1.56) 0.03 1.12 (0.90, 1.40) 0.30 

IGP45 0.95 (0.55, 1.63) 0.85 1.37 (1.02, 1.83) 0.03 1.08 (0.87, 1.33) 0.51 0.96 (0.77, 1.19) 0.69 

IGP47 0.87 (0.51, 1.47) 0.60 0.74 (0.56, 0.99) 0.04 0.92 (0.75, 1.12) 0.41 0.90 (0.74, 1.10) 0.32 

IGP48 0.78 (0.46, 1.31) 0.34 0.67 (0.51, 0.88) 0.003 0.82 (0.67, 0.99) 0.04 1.16 (0.91, 1.47) 0.23 
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IGP49 0.87 (0.53, 1.45) 0.60 0.99 (0.76, 1.29) 0.93 0.90 (0.74, 1.10) 0.30 0.82 (0.65, 1.04) 0.11 

IGP53 1.00 (0.58, 1.72) 0.99 0.77 (0.57, 1.04) 0.09 0.79 (0.63, 0.98) 0.04 0.88 (0.72, 1.09) 0.26 

IGP54 0.88 (0.51, 1.50) 0.63 0.91 (0.69, 1.20) 0.49 0.85 (0.70, 1.04) 0.12 0.89 (0.70, 1.12) 0.32 

Galactosylation 

IGP55 1.14 (0.66, 1.97) 0.64 1.30 (0.96, 1.75) 0.09 1.27 (1.02, 1.59) 0.03 1.10 (0.89, 1.36) 0.40 

IGP56 0.76 (0.45, 1.29) 0.32 0.73 (0.55, 0.98) 0.04 0.82 (0.66, 1.02) 0.07 0.95 (0.77, 1.18) 0.65 

IGP57 0.96 (0.56, 1.65) 0.88 0.82 (0.61, 1.10) 0.18 0.78 (0.62, 0.97) 0.03 0.90 (0.73, 1.12) 0.36 

Core fucosylation and bisecting GlcNAc 

IGP62 1.19 (0.69, 2.05) 0.53 0.80 (0.61, 1.05) 0.11 1.06 (0.88, 1.29) 0.52 1.04 (0.81, 1.33) 0.78 

IGP63 1.23 (0.73, 2.06) 0.44 0.87 (0.65, 1.15) 0.33 1.10 (0.91, 1.33) 0.32 1.15 (0.91, 1.45) 0.25 

IGP64 0.99 (0.58, 1.68) 0.96 0.80 (0.61, 1.06) 0.12 1.03 (0.85, 1.24) 0.77 1.11 (0.85, 1.43) 0.45 

IGP66 0.88 (0.52, 1.47) 0.61 1.18 (0.90, 1.55) 0.22 0.96 (0.79, 1.17) 0.68 0.86 (0.69, 1.09) 0.21 

IGP67 0.84 (0.50, 1.38) 0.49 1.14 (0.86, 1.50) 0.36 0.90 (0.74, 1.09) 0.29 0.84 (0.67, 1.04) 0.12 

IGP68 0.98 (0.58, 1.64) 0.93 1.19 (0.91, 1.55) 0.19 0.98 (0.81, 1.19) 0.84 0.85 (0.67, 1.09) 0.20 

IGP70 0.87 (0.51, 1.47) 0.61 1.22 (0.92, 1.60) 0.16 0.95 (0.78, 1.15) 0.61 0.87 (0.68, 1.10) 0.25 

IGP71 0.87 (0.52, 1.46) 0.59 1.20 (0.92, 1.58) 0.18 0.95 (0.79, 1.16) 0.64 0.88 (0.70, 1.11) 0.29 

IGP72 1.17 (0.70, 1.98) 0.55 0.83 (0.63, 1.09) 0.17 1.06 (0.88, 1.29) 0.54 1.12 (0.89, 1.42) 0.33 
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An increase in the percentage of agalactosylated structures (G0
n
) and a decrease in mono- and 

di-galactosylated structures (G1
n
, G2

n
) was associated with poorer all-cause and CRC-

specific mortality in stages 1, 2 and 3 (p-values from all-cause mortality models for G0
n
: 

stage 1: 0.05, stage 2: 0.009 and stage 3: 0.01) but not in stage 4 (p-value for G0
n
: 0.38). 

In contrast, decrease in sialylation and increase in incidence of bisecting GlcNAc were 

statistically significantly associated with all-cause and CRC-specific mortality only in stage 4 

(p-values from all-cause mortality models for stage 4 for FGS/(FG+FGS): 0.03;  

FGS/(F+FG+FGS): 0.01; FG2S1/(FG2+FG2S1+FG2S2): FBG2S1/(FBG2+FBG2S1+FBG2S 

2): 0.008; FBS1/FS1: 0.008). 

Finally, only in stage 2 disease IgG glycans linked to core fucosylation were associated with 

all-cause and CRC-specific mortality (Tables 9 and 10).  

Multivariate Cox regression clinical algorithms (including all the covariates of model III) 

showed good prediction of subsequent all cause (Harrell’s C=0.73, AUC= 0.75, IDI=0.02 [as 

compared to model II that included AJCC stage, age and sex]) and CRC-mortality (Harrell’s 

C=0.77, AUC= 0.79, IDI=0.04 [as compared to model II that included AJCC stage, age and 

sex]).  Using glycans in addition to the clinical factors (that were selected by generalised 

boosted regression) did not lead to any statistically significant improvements for the whole 

sample analysis (Table 11) or after stage stratification (Tables 12 and 13). This was 

reconfirmed by using Cox regression with L1 (LASSO) penalties on model parameters 
191

, as 

there were no significant differences in the validation deviances of models with and without 

glycans both for the whole sample and stage-stratified designs. 
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Table 11. Multivariate Cox regression of the a) clinical parameters and b) clinical and glycan parameters. 
 

Clinical 

algorithm 

All-cause mortality Clinical 

algorithm 

CRC mortality 

HR (95% CI) p-value HR (95% CI) p-value 

Age 1.03 (1.01-1.04) 9.2x10-6 Age 1.02 (1.00-1.03) 0.02 

Sex 0.91 (0.74-1.12) 0.36 Sex 1.03 (0.82-1.29) 0.82 

AJCC stage 2 vs 1 1.30 (0.92-1.83) 0.14 AJCC stage 2 vs 1 2.22 (1.33-3.72) 0.002 

AJCC stage 3 vs 1  2.44 (1.77-3.38) 7.3x10-8 AJCC stage 3 vs 1  5.02 (3.09-8.15) 6.7x10-11 

AJCC stage 4 vs 1 15.92 (11.16-22.70)  <2.0x10-16 AJCC stage 4 vs 1 34.05 (20.60-56.29) <2.0x10-16 

CRP  1.96 (1.47-2.62) 4.9 x10-6 CRP  2.08 (1.52-2.86) 4.8 x10-6 

BMI    1.04 (1.01-1.06) 0.002 BMI   1.05 (1.02-1.08) 0.0001 

Harrell's C 0.73  Harrell's C 0.77  

IDI* 0.02  IDI* 0.04  

AUC 0.74  AUC 0.79  

Clinical/glycans algorithm All-cause mortality Clinical/glycans 

algorithm 

CRC mortality 

HR (95% CI) p-value HR (95% CI) p-value 

Age  1.02 (1.01-1.03) 0.003 Age  1.01 (0.99-1.02) 0.28 

Sex  0.91 (0.74-1.12) 0.36 Sex 1.04 (0.82-1.30) 0.77 

AJCC stage 2 vs 1 1.33 (0.94-1.88) 0.11 AJCC stage 2 vs 1  2.24 (1.34-3.74) 0.002 

AJCC stage 3 vs 1  2.49 (1.80-3.45) 4.1x10-8 AJCC stage 3 vs 1  5.01 (3.09-8.14) 7.1x10-11 

AJCC stage 4 vs 1  15.72 (10.99-22.49) <2.0x10-16 AJCC stage 4 vs 1  33.63 (20.18-56.04) <2.0x10-16 

CRP 1.66 (1.23-2.25) 0.001 CRP  1.84 (1.31-2.59) 0.0004 

BMI  1.03 (1.01-1.06) 0.006 BMI   1.05 (1.02-1.07) 0.0007 

IGP48  1.69 (0.64-4.47) 0.29 IGP29 0.92 (0.81-1.05) 0.21 
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IGP26  0.72 (0.55-0.95) 0.02 IGP13  0.85 (0.74-0.97) 0.01 

IGP8 0.53 (0.21-1.30) 0.16 
IGP8  0.91 (0.81-1.03) 0.14 

Harrell's C 0.73  Harrell's C 0.77  

IDI** 0.05  IDI** 0.03  

AUC 0.75  AUC 0.79  

* The IDI was calculated based on the comparison of model II (adjusted for stage, sex and age) and the full clinical model III (adjusted for stage, age, sex, bmi and CRP – 

presented here). 

** The IDI was calculated based on the comparison of the full clinical model III (adjusted for stage, age, sex, bmi and CRP) and the full clinical model III with the three 

top selected glycans. 
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Table 12. Multivariate Cox regression and estimate of the Harrell’s concordance coefficient of the a) clinical parameters and b) clinical 

and glycan parameters by AJCC stage for all-cause mortality. 

 

  Stage 1 Stage 2 Stage 3  Stage 4  

Clinical algorithm 
All-cause mortality All-cause mortality All-cause mortality All-cause mortality 

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

Age 1.07 (1.03, 1.11) 0.0006 1.04 (1.02, 1.07) 0.0009  1.02 (1.00, 1.04) 0.03  1.01 (0.99, 1.03) 0.44 

Sex 0.73 (0.40, 1.34) 0.31  0.96 (0.63, 1.46) 0.85  0.95 (0.68, 1.33) 0.77 0.94 (0.63, 1.40) 0.76 

CRP  2.84 (1.20, 6.78) 0.02  1.96 (1.06, 3.63) 0.18  1.70 (1.02, 2.83) 0.04  1.95 (1.18, 3.22) 0.01 

BMI  1.02 (0.95, 1.10) 0.61 1.09 (1.04, 1.14)  0.0005  1.01 (0.97, 1.05) 0.49 1.04 (0.99, 1.08) 0.10 

Harrell's C 0.68   0.65   0.55   0.61   

IDI   n/a*   0.09§    0.08§    0.13§   

AUC  n/a*   0.66   0.58   0.63   

Clinical & glycans 

algorithm 

All-cause mortality* All-cause mortality All-cause mortality All-cause mortality 

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

Age   1.04 (1.01, 1.06) 0.006  1.01 (0.99, 1.03) 0.23 1.00 (0.98, 1.02) 0.45 

Sex    0.98 (0.64, 1.50) 0.93  0.94 (0.67, 1.32) 0.73 1.00 (0.66, 1.52) 0.67 

CRP   2.33 (1.24, 4.39) 0.01 1.47 (0.88, 2.47) 0.14 1.53 (0.86, 2.73) 0.03 

BMI     1.07 (1.02, 1.12)  0.003  1.01 (0.97, 1.05) 0.65 1.03 (0.98, 1.08) 0.05 

Top Glycan 1**   0.59 (0.46, 0.76) 2.6x10-5 1.06 (0.85,1.32) 0.61  1.11 (0.81, 1.51) 0.53 

Top Glycan 2**   0.95 (0.77, 1.17) 0.63 1.39 (1.03, 1.89) 0.03  0.98 (0.72, 1.33) 0.90 

Top Glycan 3**    1.06 (0.83, 1.35) 0.62 0.75 (0.55, 1.01) 0.06  0.77 (0.58, 1.02) 0.07 

Harrell's C   0.67   0.53   0.61   

IDI    0.15§§     0.12§§     0.41§§    

AUC    0.72   0.60   0.69   
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* Due to the low number of observations, cross-validation was not possible and therefore we could not calculate the IDI and AUC values. Harrell's C coefficient were 

calculated based on the fitting all dataset 

§ The IDI was calculated based on the comparison of the model II (adjusted for AJCC, age and sex) and the full clinical model III (adjusted for stage, age, sex, BMI and CRP 

– presented here). 

** Top Glycans for: Stage 2 IGP48, IGP18, IGP43; Stage 3 IGP43, IGP29, IGP24; Stage 4 IGP27, IGP49, IGP17 

§§ The IDI was calculated based on the comparison of full clinical model III (adjusted for stage, age, sex, bmi and CRP) and the model with these clinical factors plus the 

three top selected glycans. 

 

 

Table 13. Multivariate Cox regression and estimate of the Harrell’s concordance coefficient of the a) clinical parameters and b) clinical 

and glycan parameters by AJCC stage for CRC mortality. 

 

  Stage 1 Stage 2 Stage 3  Stage 4  

Clinical algorithm 
CRC mortality CRC mortality CRC mortality CRC mortality 

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

Age 1.06 (1.00, 1.12) 0.05 1.03 (1.00, 1.06) 0.05 1.01 (0.99-1.03) 0.23 1.01 (0.99, 1.03) 0.48 

Sex  0.59 (0.21, 1.64) 0.31 1.35 (0.82, 2.22) 0.24  1.02 (0.71-1.46) 0.92  0.97 (0.65, 1.44) 0.86 

CRP 1.04 (0.93, 1.16) 0.49 2.09 (1.02, 4.3) 0.04 1.92 (1.13-3.25) 0.02 1.04 (0.99, 1.08) 0.09 

BMI  2.52 (0.57, 11.19) 0.22 1.13 (1.07, 1.19) 7.9x10-6 1.02 (0.98-1.06) 0.34 1.04 (0.99, 1.08) 0.07 

Harrell's C 0.68   0.63   0.55   0.56   

IDI   n/a*   0.11§    0.06§    0.12§   

AUC  n/a*   0.68   0.56   0.63   

Clinical & glycans 

algorithm 

CRC mortality* CRC mortality CRC mortality CRC mortality 

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value 

Age    1.02 (0.99,1.05) 0.17 1.01 (0.99, 1.03) 0.22   1.01 (0.99, 1.03) 0.42 

Sex   1.38 (0.83,2.27) 0.21 1.03 (0.71, 1.49) 0.87    1.09 (0.71, 1.66) 0.70 

CRP   2.32 (1.10,4.87) 0.03  1.80 (1.06, 3.07) 0.03  2.22 (1.21, 4.06) 0.01 

BMI    1.11 (1.05,1.17) 8.34E-05  1.02 (0.98, 1.06) 0.39    1.04 (0.99, 1.09) 0.12 
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Top Glycan 1**   0.81 (0.24,2.68) 0.73  0.91 (0.62, 1.34) 0.64   1.17 (0.87, 1.59) 0.29 

Top Glycan 2**   0.87 (0.59,1.29) 0.50  1.15 (0.95, 1.40) 0.16 
 0.70 (0.55,0.90) 0.005 

Top Glycan 3**   0.88 (0.29,2.63) 0.82  0.97 (0.66, 1.41) 0.87  0.87 (0.67, 1.13) 0.30 

Harrell's C   0.61   0.51   0.61   

IDI    0.14§§    0.08§§    0.43§§   

AUC    0.71   0.59   0.71   

 

* Due to the low number of observations, cross-validation was not possible and therefore we could not calculate the IDI and AUC values. Harrell's C coefficient were 

calculated based on the fitting all dataset 

§ The IDI was calculated based on the comparison of the model II (adjusted for AJCC, age and sex) and the full clinical model III (adjusted for stage, age, sex, BMI and CRP 

– presented here). 

** Top Glycans for: Stage 2 IGP48, IGP56, IGP8; Stage 3 IGP67, IGP29, IGP49. IGP49, IGP63 and IGP9 were prioritised equally by generalised boosted 

approach, but results for IGP49 is only presented; Stage 4 IGP27, IGP24, IGP49 
§§ The IDI was calculated based on the comparison of full clinical model III (adjusted for stage, age, sex, bmi and CRP) and the model with these clinical factors plus the 

three top selected glycans  

 

 
Similarly, predictions of the 5-year risk of death using the clinical factors stage, age, sex, BMI and CRP (e.g. AUC=0.80, Positive Predictive 

Value [PPV or precision] =0.80, using the Naïve Bayes classifier with a kernel density estimator for the marginal distributions) were not 

significantly improved by the addition of glycans data to the clinical factors Tables 14 and 15. 
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Table 14. Predictions of 5 year risk of CRC death for models with clinical factors and 

clinical and glycan factors using k-nearest neighbours, LASSO, Naïve Bayes, PAM, 

Support Vector Machines, Decision Trees, and Boosted Stump classifiers. The results 

are summarized over 10 cross-validation folds. 

Clinical model with age, sex and stage (n=950) 

 AUC Accuracy PPV Sensitivity Specificity 

Maximum Prior 0.5 0.7379 - 0 1 

k Nearest Neighbours 0.6619 0.7284 0.4833 0.5221 0.8017 

LASSO 0.7786 0.8189 0.8738 0.3614 0.9815 

Naive Bayes normal 0.7627 0.8179 0.8654 0.3614 0.9800 

Naive Bayes kernel 0.7587 0.8179 0.8654 0.3614 0.9800 

PAM 0.7626 0.7379 - 0 1 

SVM linear 0.6831 0.7253 0.4805 0.5944 0.7718 

SVM quadratic 0.6854 0.7000 0.4503 0.6546 0.7161 

SVM cubic 0.7047 0.6884 0.4434 0.7390 0.6705 

SVM RBF 0.7014 0.7389 0.5016 0.6125 0.7803 

Decision Trees 0.6430 0.8189 0.8738 0.3614 0.9815 

Boosted stumps 0.7691 0.8200 0.8750 0.3655 0.9815 

Clinical model with age, sex, stage, BMI, CRP (n=950) 

 AUC Accuracy PPV Sensitivity Specificity 

Maximum Prior 0.5 0.7379 - 0 1 

k Nearest Neighbours 0.6310 0.7211 0.4661 0.4418 0.8203 

LASSO 0.8052 0.8105 0.7315 0.4378 0.9429 

Naive Bayes normal 0.8076 0.8116 0.7108 0.4739 0.9315 

Naive Bayes kernel 0.7962 0.8095 0.7931 0.3695 0.9658 

PAM 0.8039 0.7379 - 0 1 

SVM linear 0.7237 0.7337 0.4944 0.7028 0.7447 

SVM quadratic 0.7096 0.7568 0.5315 0.6104 0.8088 

SVM cubic 0.6884 0.7274 0.4840 0.6064 0.7703 

SVM RBF 0.6965 0.7221 0.4776 0.6426 0.7504 

Decision Trees 0.6476 0.8189 0.8738 0.3614 0.9815 

Boosted stumps 0.7978 0.8189 0.7770 0.4337 0.9558 
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Table 15. Predictions of 5 year risk of CRC death for models with the extended set of 

clinical factors with and without glycans using k-nearest neighbours, LASSO, PAM, 

Support Vector Machines, Decision Trees, and Boosted Stump classifiers. The results 

are summarized over 10 cross-validation folds. 

Clinical model with age, sex, BMI, CRP, type of operation, time between operation and blood 

collection, and stage of cancer (n=949) 

 AUC Accuracy PPV Sensitivity Specificity 

Maximum Prior 0.5 0.7379 - 0 1 

k Nearest Neighbours 0.6174 0.7081 0.4398 0.4274 0.8074 

LASSO 0.8042 0.8061 0.7192 0.4234 0.9415 

PAM 0.8036 0.7492 0.9167 0.0444 0.9986 

SVM linear 0.7229 0.7292 0.4875 0.7097 0.7361 

SVM cubic 0.7047 0.7408 0.5032 0.6290 0.7803 

SVM RBF 0.6764 0.7144 0.4639 0.5968 0.7561 

Decision Trees 0.6331 0.8188 0.8725 0.3589 0.9815 

Boosted stumps 0.8086 0.8124 0.7431 0.4315 0.9472 

Clinical model with age, sex, BMI, CRP, type of operation, time between operation and blood 

collection, stage of cancer, and log-transformed glycans (n=949) 

 AUC Accuracy PPV Sensitivity Specificity 

Maximum Prior 0.5 0.7387 - 0 1 

k Nearest Neighbours 0.5713 0.6881 0.3857 0.3266 0.8160 

LASSO 0.7980 0.8093 0.7557 0.3992 0.9544 

PAM 0.6918 0.7576 0.6667 0.1452 0.9743 

SVM linear 0.7068 0.7208 0.4759 0.6774 0.7361 

SVM cubic 0.6449 0.7218 0.4688 0.4839 0.8060 

SVM RBF 0.5 0.7387 - 0 1 

Decision Trees 0.6447 0.8188 0.8725 0.3589 0.9815 

Boosted stumps 0.7849 0.8072 0.7305 0.4153 0.9458 
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When patients were stratified by stage, adding glycans to the clinical variables improved the 

prediction results, did not change them, or made them worse, depending on the stage of 

cancer and on the chosen models. We tested whether independently of the choice of a model 

class, adding glycans to clinical covariates would improve predictions of a model of the same 

class estimated on independent test data using cross-validation. We performed two instances 

of the paired Wilcoxon sign-rank test comparing models with and without glycans, including 

all the considered models (W), or including only the models of disparate classes (Wd) as 

discussed in Methods. We showed that there was no significant improvement in the prediction 

of the rapid progressors using glycans (in addition to the clinical factors) for stage 2 

(pW ~ 0.99, pWd ~ 0.98) as measured by cumulative (merged) AUC on the validation data 

(Table 16). Similarly, for stage 3 the impact of the glycans was not consistent across the 

models, varied depending on the modelling assumptions, and was not significant overall 

(pW ~ 0.75, pWd ~ 0.58; (Table 17).   

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908421/#S1
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Table 16. Predictions of rapid progressors in stage 2 for models with extending set of 

clinical factors with and without glycan using k-nearest neighbours, LASSO, PAM, 

Support Vector Machines, Decision Trees, and Boosted Stump classifiers. The results 

are summarized over 10 cross-validation folds. 

Clinical model for stage 2 with age, sex, BMI, CRP, type of operation, time between operation and 

blood collection, and stage of cancer (n=326) 

 AUC Accuracy PPV Sensitivity Specificity 

Maximum Prior 0.5 0.9356 - 0 1 

k Nearest Neighbours 0.5863 0.8896 0.2000 0.2381 0.9344 

LASSO 0.7820 0.9356 0.5000 0.0476 0.9967 

PAM 0.7066 0.9356 - 0 1 

SVM linear 0.7440 0.7699 0.1786 0.7143 0.7738 

SVM quadratic 0.6939 0.8006 0.1765 0.5714 0.8164 

SVM cubic 0.6200 0.8282 0.1569 0.3810 0.8590 

SVM RBF 0.6331 0.8528 0.1860 0.3810 0.8852 

Decision Trees 0.4746 0.9356 - 0 1 

Boosted stumps 0.6911 0.9325 0.4286 0.1429 0.9869 

Clinical model for stage 2 with age, sex, BMI, CRP, type of operation, time between operation and 

blood collection, stage of cancer, and log-transformed glycans (n=326) 

 AUC Accuracy PPV Sensitivity Specificity 

Maximum Prior 0.5 0.9356 - 0 1 

k Nearest Neighbours 0.5912 0.8988 0.2273 0.2381 0.9443 

LASSO 0.7369 0.9356 0.5000 0.0476 0.9967 

PAM 0.6623 0.9356 - 0 1 

SVM linear 0.6537 0.7669 0.1429 0.5238 0.7836 

SVM quadratic 0.5674 0.8957 0.1905 0.1905 0.9443 

SVM cubic 0.4976 0.8896 0.0588 0.0476 0.9475 

SVM RBF 0.5 0.9356 - 0 1 

Decision Trees 0.4746 0.9356 - 0 1 

Boosted stumps 0.5864 0.9294 0.2500 0.0476 0.9902 
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Table 17. Predictions of rapid progressors in stage 3 for models with the extended set of 

clinical factors with and without glycans using k-nearest neighbour, LASSO, PAM, 

Support Vector Machines, Decision Trees, and Boosted Stump classifiers. The results 

are summarized over 10 cross-validation folds. 
 

Clinical model for stage 3 with age, sex, BMI, CRP, type of operation, time between operation and 

blood collection, and stage of cancer (n=312) 

 AUC Accuracy PPV Sensitivity Specificity 

Maximum Prior 0.5 0.8782 - 0 1 

k Nearest Neighbours 0.4438 0.7596 0.0256 0.0263 0.8613 

LASSO 0.6259 0.8782 - 0 1 

PAM 0.4802 0.8782 - 0 1 

SVM linear 0.5864 0.7115 0.1905 0.4211 0.7518 

SVM quadratic 0.5412 0.6122 0.1453 0.4474 0.6350 

SVM cubic 0.5133 0.6827 0.1325 0.2895 0.7372 

SVM RBF 0.5360 0.6827 0.1494 0.3421 0.7299 

Decision Trees 0.4901 0.8782 - 0 1 

Boosted stumps 0.5965 0.8782 - 0 1 

Clinical model for stage 3 with age, sex, BMI, CRP, type of operation, time between operation and 

blood collection, stage of cancer, and log-transformed glycans (n=312) 

 AUC Accuracy PPV Sensitivity Specificity 

Maximum Prior 0.5 0.8782 - 0 1 

k Nearest Neighbours 0.4972 0.7949 0.1176 0.1053 0.8905 

LASSO 0.5953 0.8782 - 0 1 

PAM 0.5645 0.8814 1 0.0263 1 

SVM linear 0.5941 0.7051 0.1932 0.4474 0.7409 

SVM quadratic 0.5169 0.7885 0.1500 0.1579 0.8759 

SVM cubic 0.5107 0.8173 0.1481 0.1053 0.9161 

SVM RBF 0.5000 0.8782 - 0 1 

Decision Trees 0.4745 0.8782 - 0 1 

Boosted stumps 0.4483 0.8494 0.2353 0.1053 0.9526 
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On the other hand, there was a significant improvement in the prediction of the rapid 

progressors using glycans for stage 4 (Table 18), with pW ~ 0.01, pWd ~ 0.04, leading to the 

median gain in the test AUC of 0.08. Importantly, the inclusion of glycans in the models 

consistently resulted in the improved quality of predictions across the range of the considered 

models, and independently of whether the restricted or extended sets of clinical variables were 

used in the adjustments. The results were qualitatively similar for multiple repetitions of 10-

fold cross-validation with random partitions into non-overlapping test folds, and 

independently of whether 10-fold or two-fold cross-validation was used to estimate the AUC 

on test data for the considered models. The best extended clinical model had the test AUC of 

0.58, with the PPV of 0.35. The best model augmented with unfiltered log-transformed 

glycans had the test AUC of 0.66, with the PPV of 0.62.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

77 

  

Table 18. Predictions of rapid progressors in stage 4 for models with the extended set of 

clinical factors with and without glycans using k-nearest neighbour, LASSO, PAM, 

Support Vector Machines, Decision Trees, and Boosted Stump classifiers. The results 

are summarized over 10 cross-validation folds. 

Clinical model for stage 4 with age, sex, BMI, CRP, type of operation, time between operation and 

blood collection, and stage of cancer (n=102) 

 AUC Accuracy PPV Sensitivity Specificity 

Maximum Prior 0.5 0.7059 - 0 1 

k Nearest Neighbours 0.5 0.5686 0.2941 0.3333 0.6667 

LASSO 0.4331 0.6961 0.3333 0.0333 0.9722 

PAM 0.4535 0.7059 - 0 1 

SVM linear 0.5514 0.5588 0.3404 0.5333 0.5694 

SVM quadratic 0.5819 0.6569 0.4138 0.4000 0.7639 

SVM cubic 0.5472 0.6078 0.3529 0.4000 0.6944 

SVM RBF 0.5278 0.6078 0.3333 0.3333 0.7222 

Decision Trees 0.4899 0.7059 - 0 1 

Boosted stumps 0.5505 0.6471 0.3125 0.1667 0.8472 

Clinical model for stage 4 with age, sex, BMI, CRP, type of operation, time between operation and 

blood collection, stage of cancer, and log-transformed glycans (n=102) 

 AUC Accuracy PPV Sensitivity Specificity 

Maximum Prior 0.5 0.7059 - 0 1 

k Nearest Neighbours 0.5819 0.6569 0.4138 0.4000 0.7639 

LASSO 0.5815 0.6863 0 0 0.9722 

PAM 0.5257 0.6765 0 0 0.9583 

SVM linear 0.5972 0.6373 0.4054 0.5000 0.6944 

SVM quadratic 0.5778 0.6373 0.3939 0.4333 0.7222 

SVM cubic 0.6486 0.7647 0.6875 0.3667 0.9306 

SVM RBF 0.5000 0.7059 - 0 1 

Decision Trees 0.6569 0.7353 0.6154 0.2667 0.9306 

Boosted stumps 0.5565 0.6863 0.4500 0.3000 0.8472 
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5.3. IgG glycome composition in CRC patients and matching controls. 

To test whether alteration on IgG glycome composition between CRC patients and controls 

could potentially have relevance as a clinically useful biomarker of CRC risk, analyses of 

clinical characteristics among 760 patients and 538 matching controls were done. 

 

Descriptive information on CRC patients and healthy controls are presented in (Table 19). 

In addition to 24 directly measured glycan structures, 12 derived traits were calculated from 

the directly measured glycans. These derived traits average particular glycosylation features 

(galactosylation, fucosylation, sialylation) across different individual glycan structures and 

consequently they are more related to individual enzymatic activities and underlying genetic 

polymorphisms (Table 20).  

 

Table 19. Descriptive information on CRC patient and healthy controls 

 

 

 

 

 

  Cases (n = 760) Control (n = 538) p-value 

Age                      (median[IQR]) 52 (48-56) 53 (48-56) 0,274 

Sex                     (Men/Women) 
415 (54.6%) / 345 

(45.4%) 
289 (53.7%) / 248 (46.2%) 0,821 

Smoking status (Current/Ex/ 

Non/unknown) 
133/172/271/184 94/139/211/103 0,836 

BMI             (median[IQR]) 26,3 (23,4-26,8) 27,8 (25,8-28,6) 2,69E-10 

Family History (Low/Medium or 

High/unknown) 
524/197/39 517/6/15 6,50E-44 
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Table 20. Derived glycan traits 

Derived glycan 

traits 

Description 

 

Formula 

G0 total Proportion of agalactosylated structures in total       in total IgG glycans (GP1+GP2+GP4+GP6)/GPt 

G1 total Proportion  of monogalactosylated structures in total IgG glycans (GP7+GP8+GP9+GP10+GP11)/GPt 

G2 total Proportion of digalactosylated structures in total IgG glycans (GP12+GP13+GP14+GP15)/GPt 

F total Proportion of fucosylated structures in total IgG glycans (GP1+GP4+GP6+GP8+GP9+GP10+GP11+ 

GP14+GP15+GP16+GP18+GP19+GP23+GP24)/GPt 

F neutral Proportion of fucosylated structures in total neutral glycans (GP1+GP4+GP6+GP8+GP9+GP10+GP11+GP14+GP15)/GPn 

F sialo Proportion of fucosylated structures in total sialylated glycans (GP16+GP18+GP19+GP23+GP24)/GPs 

B total Proportion of structures with bisecting GlcNAc in total IgG glycans (GP3+GP6+GP10+GP11+GP13+GP15+GP19+GP22+GP24)/GPt 

B neutral Proportion of structures with bisecting GlcNAc in total neutral IgG glycans (GP3+GP6+GP10+GP11+GP13+GP15)/GPn 

B sialo Proportion of structures with bisecting GlcNAc in total sialylated IgG glycans (GP19+GP22+GP24)/GPs 

S total Proportion of sialylated structures in total IgG glycans (GP16+GP17+GP18+GP19+GP20+GP21+GP22+GP23+GP24)/GPt 

S1 total Proportion of monosialylated structures in total IgG glycans (GP16+GP17+GP18+GP19)/GPt 

S2 total Proportion of disialylated structures in total IgG glycans (GP21+GP22+GP23+GP24)/GPt 
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Significant differences were observed in several features of the glycome (Table 21, Figure 7), primarily reflecting decreased galactosylation 

(OR=2.35, p=2.39E-22 for G0 and OR=0.36, p=6.59E-29 for G2) and sialylation (OR=0.72, p=2.73E-05 for S total), as well as increased 

fucosylation of neutral IgG glycans (OR=1.24, p=3.57E-03 for F total) and decreased fucosylation of sialylated glycans (OR=0.72, p=5.85E-05 

for F sialo). 
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Table 21. IgG glycome composition in CRC patients and controls. Only the main derived traits describing glycome composition are 

shown. 

 

 

 

 

Glycan Control (median[IQR]) Patient (median[IQR]) OddsRatio 95%ConfInt p.value p.adjusted 

G0 total 25,35 (20,67-29,24) 29,24 (24,62-34,74) 2,35 (1,95 - 2,82) 2,65E-23 2,39E-22 

G1 total 36,62 (34,87-38,09) 35,94 (34,49-37,39) 0,64 (0,55 - 0,74) 8,09E-10 3,64E-09 

G2 total 16,65 (14,41-19,62) 14,12 (11,71-16,78) 0,36 (0,30 - 0,44) 1,83E-30 6,59E-29 

F total 95,27 (94,42-95,97) 95,39 (94,40-96,11) 1,11 (0,97 - 1,28) 1,27E-01 1,53E-01 

F neutral 97,07 (96,38-97,66) 97,32 (96,50-97,97) 1,24 (1,08 - 1,43) 1,98E-03 3,57E-03 

F sialo 88,47 (86,69-89,79) 87,58 (85,39-89,29) 0,72 (0,62 - 0,84) 2,44E-05 5,85E-05 

B total 18,25 (16,81-20,22) 18,11 (16,49-20,02) 0,88 (0,76 - 1,01) 7,68E-02 9,87E-02 

B neutral 17,97 (16,35-20,54) 17,89 (16,07-19,93) 0,84 (0,73 - 0,97) 1,86E-02 2,91E-02 

B sialo 18,64 (16,48-21,33) 19,19 (16,99-21,71) 1,17 (1,01 - 1,35) 3,85E-02 5,13E-02 

S total 20,71 (18,64-23,62) 19,85 (17,39-21,96) 0,72 (0,62 - 0,83) 1,06E-05 2,73E-05 

S1 total 15,9 (14,07-18,07) 14,97 (12,94-16,74) 0,64 (0,54 - 0,75) 9,16E-09 3,66E-08 

S2 total 4,41 (3,66-5,32) 4,34 (3,65-5,08) 0,96 (0,84 - 1,11) 6,03E-01 6,03E-01 
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Figure 7. IgG glycome composition in CRC patients and matching controls.  

 

 

IgG glycome was analysed in 760 patients with CRC and 538 matching controls. Main 

features of the IgG glycome are presented as box plots showing median values and 25% (box) 

and 75% (line) percentiles for patients and controls. 

Additional information is available in (Table 21 and 22). 
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Table  22. IgG glycome composition in CRC patients and controls 

Glycan 

peak Control (median[IQR]) Patient (median[IQR]) OddsRatio 95%ConfInt p.value p.adjusted 

GP1 
0,12 (0,08-0,22) 0,15 (0,10-0,26) 1,28 (1,11 - 1,48) 5,20E-04 1,17E-03 

GP2 0,49 (0,34-0,71) 0,54 (0,36-0,79) 1,18 (1,03 - 1,37) 2,10E-02 3,15E-02 

GP3 0,37 (0,29-0,52) 0,46 (0,34-0,65) 1,5 (1,29 - 1,74) 4,79E-08 1,72E-07 

GP4 18,68 (15,42-21,98) 22,34 (18,34-26,87) 2,33 (1,94 - 2,79) 1,83E-23 2,20E-22 

GP5 0,29 (0,24-0,37) 0,32 (0,26-0,41) 1,26 (1,09 - 1,46) 1,30E-03 2,47E-03 

GP6 4,97 (4,02-6,01) 5,39 (4,53-6,45) 1,44 (1,23 - 1,69) 4,13E-06 1,24E-05 

GP7 0,57 (0,43-0,75) 0,54 (0,39-0,76) 0,88 (0,77 - 1,02) 8,42E-02 1,05E-01 

GP8 18,9 (17,73-20,18) 18,82 (17,59-19,97) 0,85 (0,74 - 0,98) 2,43E-02 3,51E-02 

GP9 9,87 (8,89-11,04) 9,66 (8,80-10,54) 0,78 (0,68 - 0,90) 5,52E-04 1,17E-03 

GP10 5,62 (4,95-6,43) 5,37 (4,66-6,27) 0,72 (0,62 - 0,83) 4,65E-06 1,29E-05 

GP11 0,82 (0,72-0,95) 0,8 (0,70-0,91) 0,78 (0,68 - 0,91) 8,05E-04 1,61E-03 

GP12 0,68 (0,50-0,93) 0,55 (0,37-0,77) 0,6 (0,51 - 0,70) 9,93E-12 5,11E-11 

GP13 0,45 (0,36-0,57) 0,4 (0,31-0,53) 0,68 (0,58 - 0,78) 1,09E-07 3,55E-07 

GP14 13,59 (11,57-15,90) 11,45 (9,40-13,80) 0,37 (0,30 - 0,45) 4,21E-29 7,57E-28 

GP15 1,73 (1,47-2,06) 1,47 (1,20-1,82) 0,49 (0,41 - 0,57) 6,94E-20 5,00E-19 

GP16 3,27 (2,95-3,65) 3,37 (2,99-3,76) 1,17 (1,02 - 1,34) 2,65E-02 3,67E-02 
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GP17 0,94 (0,82-1,08) 0,92 (0,80-1,07) 0,92 (0,79 - 1,06) 2,39E-01 2,60E-01 

GP18 9,52 (8,09-11,43) 8,47 (6,98-9,99) 0,56 (0,47 - 0,66) 8,05E-13 4,83E-12 

GP19 1,88 (1,65-2,15) 1,81 (1,61-2,07) 0,82 (0,72 - 0,95) 5,63E-03 9,64E-03 

GP20 0,36 (0,25-0,51) 0,38 (0,27-0,52) 1,12 (0,96 - 1,30) 1,41E-01 1,64E-01 

GP21 0,89 (0,74-1,06) 0,92 (0,77-1,10) 1,11 (0,96 - 1,28) 1,71E-01 1,93E-01 

GP22 0,16 (0,11-0,24) 0,15 (0,10-0,21) 0,84 (0,73 - 0,97) 1,62E-02 2,66E-02 

GP23 1,45 (1,14-1,85) 1,4 (1,11-1,72) 0,96 (0,84 - 1,11) 5,96E-01 6,03E-01 

GP24 1,78 (1,48-2,13) 1,74 (1,43-2,08) 0,95 (0,82 - 1,09) 4,44E-01 4,71E-01 
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As many glycan structures showed strong association with CRC, we attempted to build a 

predictive model using regularized logistic regression. Only the 24 directly measured glycan 

traits were used as predictors in the model. Evaluation of model performance was conducted 

using a 10-cross validation procedure. While a model based on age and sex did not show 

significant discriminative power (AUC = 0.499), the addition of glycan variables into the 

model considerably increased the discriminative power of the model (AUC = 0.755, P < 

1x10E-16) (Figure 8). 

 

Figure 8. ROC curve illustrating the performance of regularized logistic regression 

model in predicting disease status for CRC patients and healthy controls. While models 

based only on age and gender did not show predictive power (red line), addition of 

glycan traits increased predictive power of model (black line). 
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Glycome composition is known to change in acute inflammation 
215 

and to evaluate potential 

effects of surgery on the IgG glycome in CRC patients we analysed IgG glycome composition 

in 28 patients (i) before surgery, (ii) 24 after surgery), (iii) 48 h after surgery and (iv) 7 days 

after surgery. We did not observe any consistent and statistically significant changes in the 

IgG glycome that were caused by the surgery. 

To determine whether the observed changes were present before the disease onset, we 

identified 39 individuals from the FINNRISK cohort that were sampled before the initial 

diagnosis. However, when compared to matching controls, no statistically significant changes 

were found. 
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6. DISCUSSION 

This study represents the first comprehensive analysis of IgG glycosylation in CRC. By 

applying the recently developed method for high-throughput glyco-profiling of IgG 
20

 on a 

well-characterized large cohort of 1229 CRC patients and 538 matching controls an important 

gap in knowledge which may have relevance for understanding the immunosurveilance of 

CRC was filled 
178

.  

The research presented here provides results regarding the relationship between the IgG 

glycome composition in plasma of CRC patients with survival outcomes and also it provides 

results about  differences in IgG glycome composition between patients and controls. 

Univariate and multivariate statistical models were applied to examine the associations 

between specific glycan changes and CRC-specific or all-cause mortality. IgG glycans linked 

to galactosylation, sialylation and bisecting GlcNAc were strongly associated with all-cause 

mortality and CRC mortality. Multivariate Cox regression clinical algorithms showed good 

prediction of outcome for all cause and CRC-mortality, but using glycans in addition to the 

clinical factors did not lead to any statistically significant improvements. However, when we 

investigated the prediction of rapid progressors within each AJCC stage, there was an 

improvement in the prediction of the rapid progressors using glycans for stages 3 and 4. 

 

By analysing 760 CRC patients and 538 matching controls it is found that CRC is associated 

with three major alterations in the IgG glycome composition: (i) decrease in IgG 

galactosylation, (ii) decrease in IgG sialylation and (iii) increase in core-fucosylation of 

neutral glycans with concurrent decrease of core fucosylation of sialylated glycans. 

6.1. Stage differences 

It is well established that glycosylation changes are involved in the aetiology of cancer, and 

specifically mark tumor proliferation and metastasis 
26

. IgG is produced and secreted by CRC 

cells and the expression levels of CRC-tumor derived IgG correlated with many clinical and 

pathological characteristics of the tumor (including stage) 
192

. In particular it has been shown 

that expression of IgG was stronger in CRC tissues with TNM stage III–IV, than in those with 

TNM I–II. Similarly, in this study we observed different changes in IgG glycosylation status 

(levels of sialylation and incidence of bisecting GlcNAC) in late-stage disease and we saw an 

improvement in the prediction algorithms using glycans in addition to clinical factors in 

AJCC stage 3 and 4. 
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6.2. Galactosylation, sialylation, GlcNAc and core fucosylation residues present on IgG 

glycans in cancer 

The immune system can identify and destroy new tumor cells through cancer 

immunosurveillance, which functions as an important defence against cancer. A recent review 

on the natural innate and adaptive immunity to cancer has presented evidence from mouse 

models that B cells (which create and release IgG) are important in the surveillance of the 

CRC
 178

. Currently, it is known that inflammation is one of the features of cancer 
193

, but it is 

not known whether the inflammatory process mainly plays an important role in the 

development of cancer, or whether the cancer induces an inflammatory response, or both. IgG 

can demonstrate both pro and anti-inflammatory activity depending on its different glycan 

composition 
81

. Alteration in IgG galactosylation, sialylation, bisecting GlcNAc and 

fucosylation have been previously reported in cancer studies (Table 23).. In particular, a 

decline in plasma IgG glycosylation has predominantly been observed with tumor progression 

and metastasis in gastric, lung, prostate and ovarian cancers 
194, 164, 167, 162, 148, 161, 160, 195 

as well 

as in chronic inflammatory diseases such as rheumatoid arthritis 
143

 and osteoarthritis 
143

, 

inflammatory bowel disease 
196, 197

, systemic lupus erithematosis 
198

, vasculitis 
142

 and some 

other disease 
77

. All previous studies in cancer research had small sample sizes (<100 cancer 

cases) and this is the first time that similar changes in IgG galactosylation were observed in 

CRC prognosis in a study with more than 1000 CRC patients (Table 23).  
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Table 23. Studies on IgG glycosylation changes in cancer  

Author Year Cancer Method Samples Cases Controls Results 

Galactosylation 

Kanoh Y1 2004 Prostate cancer 

Fluorophore-assocd. 

carbohydrate electrophoresis 

(FACE) serum 12 10 

Fr 1 (monogalactosyl oligosaccharide) and 

Fr 2 (digalactosyl oligosaccharide) 

decreased significantly (p<0.05), while Fr 4 

(agalactosyl IgG oligosaccharide) increased 

with PCa tumor progression. The Fr 4 / Fr 1 

+ 2 ratio in metastatic PCa patients was 

significantly higher than in healthy controls 

(p<0.05) 

Aurer I2 2007 Multiple myeloma 

Lectin blotting and 

densitometry blood 16 16 

IgG galactosylation was reduced in multiple 

myeloma 

Kodar K3 2011 Gastric cancer LC-ESI-MS serum 80 51 

Significant increase of agalactosylated 

(GnGnF, GnGn(bi)F), and decrease of 

galactosylated (AGn(bi), AGn(bi)F, AA(bi), 

AAF) 

Bones J4 2011 Gastric cancer 

Hydrophilic interaction liquid 

chromatography with 

fluorescence detection serum 80 30 

The data indicates that in the cancerous state 

there is a switch in IgG production toward 

the more pro-inflammatory IgG G0 

glycoform (agalactosyl). 

Gercel-Taylor C5 2001 Ovarian cancer 

Concanavalin A affinity 
columns and sodium dodecyl 

sulfate-polyacrylamide gel 

electrophoresis serum 62 50 

This report demonstrated the presence of an 

aberrantly glycosylated IgG population in 

cancer patients. 

Saldova R6 2007 Ovarian cancer 

Quantitative NPHPLC and 

exoglycosidase digestion serum 27 34 

 IgG containing agalactosylated structures 

(G0) (mostly represented by FA2) were 

doubled; monogalactosylated (G1) 

decreased; digalactosylated (G2) structures 

decreased  

Alley WR7 2012 Ovarian cancer 

MALDI-TOF Mass-

spectrometric Analysis serum 19 20 

Increased levels of a-galactosylation 

structures were obsd. on N-linked glycans 

derived from IgG, which were independent 

of the presence of fucose residues. 
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Qian Y8 2013 Ovarian cancer 

MALDI-TOF Mass-

spectrometric Analysis serum 32 26 

G0/(G1 + G2·2) was found significantly 

higher in the malignant group than in the 

benign group (0.74 vs 0.34; p < 0.0001) 

Sialylation 

Flemming SC9  1998 Multiple myeloma 

High pressure anion exchange 

chromatography with pulsed 

electrochemical detection 

(HPAE-PED) serum 47 14 

Patients with myeloma showed an increase 

in the proportion of sialylated 

oligosaccharides in comparison with patients 

with MGUS 

Saldova R6 2007 Ovarian cancer 

Quantitative NPHPLC and 

exoglycosidase digestion serum 27 34 The overall sialylation decreased 

Kodar K3 2011 Gastric cancer LC-ESI-MS serum 80 51 

Decrease of monosialylated IgG glycoforms 

(NaAF, NaA(bi)) in cancer patients. 

Bisecting GlcNAC        

Kodar K3 2011 Gastric cancer LC-ESI-MS serum 80 51 

A statistically significant decrease  of 

bisecting GlcNAc was observed in tumor 

stage II and III  
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 It has been reported that the environmental factors could modulate glycosylation of IgG Fc 

199
. Since the composition of IgG Fc glycans is dependent on the regulation of 

glycosyltransferases and glycosidases, it is speculated that the expression and activity of these 

enzymes are differentially regulated in response to stimulation of environmental factors 

Furthermore, it has been hypothesised that decreased IgG galactosylation leads to a more pro-

inflammatory antibody response 
77, 119

, which might influence cancer survival after diagnosis. 

Decreased of IgG galactosylation is caused by decreased Gal T-activity in plasma cells 
200

 or 

due to increased production of specific clones of plasma cells with low expression levels of 

galactosyltransferases 
201

. It was shown that the decrease of Gal-T in B- lymphocyte caused 

the increase of IgG G0 glycoforms in rheumatoid arthritis and other rheumatic diseases
 202, 203

. 

Thus, it was hypothesized that Gal-T activity in plasma cells is down-regulated during tumor 

progression and that this causes the significant increase of agalactosylated IgG, indicating that 

in cancerous state there could be a switch in IgG production toward the more pro-

inflammatory IgG G0 glycoforms. Interestingly, in rheumatoid arthritis patients an increase in 

galactosylation of IgG during combined treatment of infliximab (anti-TNF-α neutralizing 

antibody) and methotrexate was shown, indicating that TNF-α may be involved in regulating 

IgG glycosylation patterns 
204, 205

. Furthermore, experimental and clinical studies on the role 

of TNF- α have demonstrated that the TNF- α is a key player in progression of human CRC 

206, 207
. Increased levels of TNF- α in patients with CRC were associated with poor prognosis 

208
.  Similar to galactosylation, decreased sialylation of IgG results in a proinflammatory IgG 

phenotype 
119

. The key enzyme for the addition of α2,6-sialic acid to glycan termini is β-

galactoside α2,6-sialyltransferase 1 (ST6Gal-1) Removal of the enzyme ST6Gal-1 in a mouse 

model, has been reported to results in more severe pulmonary inflammation 
209

 consistent 

with the importance of sialic acid in anti-inflammation 
81

. Likewise, the same pattern of 

decreased IgG galactosylation and sialylation also occurs with aging in the general population 

210
, generating the hypothesis that decrease in IgG galactosylation and sialylation in CRC may 

be indicative of an inflammatory state. 

 

Currently, there is a gap in knowledge whether the disease affects the glycosylation of all or 

just antigen-specific IgG, which then are responsible for the overall change observed in total 

IgG. There have been reports that agalactosylated and asialylated antigen-specific IgG are 

involved in the pathogenesis of some diseases, such as anti-citrullinated protein antibodies in 

RA and anti-proteinase 3 antibodies in Wegener’s granulomatosis 
211, 212

. A study further 

showed that there is a variability between glycosylation pattern of antigen-specific IgG and 
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total IgG. In our study we found that in the same manner as decreased galactosylation is 

associated with poorer prognosis, decreased sialylation was also linked to poorer prognosis, 

which replicated findings of two small studies on ovarian 
195

 and gastric cancer 
162

, but the 

opposite was found, in a study of multiple myeloma 
213

 where increased sialylation of IgG 

was linked to higher risk of multiple myeloma. Therefore, through both decreased 

galactosylation and decreased sialylation, IgG in CRC patients with poorer prognosis had 

significantly greater pro-inflammatory properties (decreased galactosylation and sialylation) 

than CRC patients with better prognosis. Furthermore elevated occurrence of bisecting 

GlcNAc and lack of core fucose results in increased ADCC activity. In our study we found 

higher occurrence of bisecting GlcNAc in CRC patients of poorer prognosis, but IgG core 

fucosylation changes were associated with all-cause or CRC-specific mortality only in stage 2 

CRC patients. 

Likewise, when comparing CRC patients with matching controls, we have observed 

consistent decreases in all structures with two terminal galactoses (A2BG2 (GP13), FA2G2 

(GP14) and FA2BG2 (GP15)) and an increase in structures without galactoses (A2 (GP2), 

A2B (GP3), FA2 (GP4) and FA2B (GP6)) (Table 22). The decrease in galactosylation was 

also evident in the derived traits G0 and G2 that average galactosylation of several individual 

glycans (G0: OR=2,35; p =2,39E-22; G2: OR=0,36; p=6,59E-29). Several directly measured 

IgG glycans containing sialic acid, as well as the derived trait “S1 total” (measuring all 

monosialylated IgG glycans) were also decreased in CRC patients (Table 21). 

Since decreases in galactosylation and sialylation have also been observed in a number of 

other diseases 
77

, this pattern of glycan changes (which are consistent with a decrease in the 

immunosuppressive potential of IgG) is not specific for CRC. 

Taking into consideration that little is known about the mechanisms of regulation of IgG 

glycosylation 
214

, and since IgG N-glycosylation is controlled through a complex interplay 

between loci affecting an overlapping spectrum of glycome measurements, and through 

interection of genes directly involved in glycosylation and those that presumably have 

‘higher-level’’regulatory function 
189

, it is very difficult to speculate about potential 

mechanisms and causes of differences in IgG glycosylation in CRC patients. Another feature 

of human IgG glycome is its possibility to change particularly in the stituation of disturbed 

homeostasis 
215

, despite the fact that the heritability of IgG glycosylation is relatively high (up 

to 80%) 
20

. The heritability of galactosylation is estimated to be between 40% and 70% and of 

sialylation between 30% and 60% 
20, 210

. Besides this, galactosylation of IgG can change quite 

rapidly in acute inflammation 
215

. Recently, it was reported that in rheumatic arthritis, 
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decreased galactosylation has been demonstrated to predate the onset of disease 
197

, indicating 

that they may be a part of the disease pathophysiology. In an analogous attempt to address 

causality in this study we were able to identify 39 individuals that were sampled before the 

initial diagnosis of CRC. However, when compared to matching controls (individuals of the 

same age that did not develop CRC in the same period after recruitment) we did not identify 

any statistically significant differences. Since the sample size was very small it was hard to 

derive any conclusions from this exploratory part of the study, beside the fact that we were 

not able to show any differences in IgG glycome composition before the onset of CRC. 

It is unquestionable that N-linked IgG Fc glycans are essential in determining distinct effector 

functions. Recently, Barb, A.W.A et al. 
216

 in their study using Nuclear Magnetic Rezonance 

(NMR) revealed that glycans attached to Fc part of IgG are more exposed structurally than 

previously shown, providing detailed description of the interaction between glycans on IgG 

Fc and the respective receptor, and give further insight into the immunomodulatory role of 

IgG Fc glycans. Furthermore,as ADCC is one of the crucial mechanisms in killing tumor 

cells, activation of ADCC is believed to be an important mechanism of therapeutic 

monoclonal antibodies, as indicated by the fact that a common single-nucleotide 

polymorphism in FcγRIIIa (V158F) is correlated with clinical responses to cetuximab 
217

 and 

rituximab
 218

. Core-fucose is added to glycans by the fucosyltransferase 8 enzyme (encoded 

by FUT8 gene), which has recently been reported to be functionally relevant in some cancers 

219, 220
. The levels of IgG molecules without core-fucose vary between 1.3% and 19% and we 

postulated that this may have a significant impact on antibody-dependent cellular cytotoxicity 

(ADCC) and thus capacity to eliminate cancer cells 
20

. The recently developed therapeutic 

IgG antibodies for cancer therapy are glyco-engineered to remove core-fucose on the Fc 

glycans in order to increase clinical efficacy of monoclonal antibodies due to enhancement of 

their therapeutic effect through ADCC mediated killing
 221, 222

. Recently it has been shown 

that properly glyco-engineered antibodies 
221

 can efficiently elicit ADCC even in 

immunocompromised CRC patients 
223

. This observation indicates that efficient 

immunosurveilance of tumor cells depends on antibody/Fc receptor affinity. Thus, increased 

levels of core-fucose on neutral IgG glycans in CRC patients may influence disease risk and 

course by decreasing the ability of IgG to activate ADCC.  

Interestingly, core-fucose was decreased in sialylated glycans. The increase in core fucose on 

neutral glycans, with concurrent decrease of core-fucose on sialylated glycans has not been 

previously reported. This is the first report of different direction of changes in fucosylation in 

sialylated and neutral glycans. Recent studies clearly demonstrated that some antigen-specific 
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antibodies can have significantly different levels of fucose 
224

 but it is hard to evaluate the 

importance in the different fucosylation of sialylated and neutral IgGs, since the relevance of 

sialylation on the impact of fucose on IgG function is currently not known 
225

. This is further 

supported by the observation that polymorphisms in the FUT8 gene seem to be associated 

with increased risk for CRC 
226

. Additional evidence supporting a possible functional 

importance of  FUT8 in colorectal cancer is the recent observation that micro RNA MiR-198 

represses tumor growth and metastasis in colorectal cancer by targeting FUT8 
227

. The finding 

that similar pattern of changes in FUT8 expression can be observed or inferred in both the 

tumor tissue and the antibody-producing B lymphocytes 
226

 points to the importance of 

general mechanisms controlling fucosylation in CRC and implies that the same features of 

genetic makeup influence  glyco-gene expression (and thereby glycosylation profile) in both 

the tumor tissue and in B cells. This view is further strengthened by the observation of 

differential expression of the B-cell-specific transcription factor Ikaros IKZF1- which has 

been reported to be associated with the risk of various cancers 
228

 in tumor tissue of CRC 

patients. 
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7. CONCLUSION  

Alteration in IgG glycosylation has a significant impact in the pathogenesis of numerous 

diseases providing insights into disease state and progression. Consequently, there is an 

indispensable need to search for new IgG glycan biomarkers that could serve as more 

sensitive diagnostic and prognostic tools which could be used to distinguish between different 

forms/stages of disease and to monitor the efficacy of various new treatment options. Inter-

individual differences in IgG glycome are very important in this aspect, by virtue of their role 

in understanding the host defence reaction responses to the presence of the disease. 

 

1. The plasma IgG glycan differences which we observed at the time of CRC diagnosis are 

consistent with significantly increased IgG pro-inflammatory activity being associated with 

poorer CRC prognosis, especially in late stage (stages 3 and 4) CRC. In the absence of 

validated biomarkers to improve upon prognostic information from existing 

clinicopathological factors the potential of these novel IgG glycan biomarkers merits further 

investigation. 

In particular, the improved predictive power in models including glycan factors in stage 4 

patients is interesting. Currently, there are various strategies that are employed when using 

chemotherapy 
229

 in stage 4 disease. Therefore having a novel biomarker or prediction model 

that could help selected patients that may have a better prognosis and a more indolent disease 

course would be useful as these patients could perhaps be offered sequential single agent 

chemotherapy with lower toxicity when compared to a more aggressive combination strategy. 

Furtheremore, there is a great interest in novel immunotherapies in cancer and therefore it 

would be useful to identify a more ‘immunogenic’ tumor based on identified IgG glyco-

markers with a particular response to immunotherapy. Certainly to date the most encouraging 

results for immunotherapies (incl. PD-1 inhibitors) have been in tumors such as melanoma 

that are thought to be highly immunogenic and there is interest in investigating mismatch 

repair deficient colon cancer which are often associated histologically with a heavy immune 

infiltrate. Recent studies 
215

 demonstrated that IgG glycosylation changes are very dynamic 

and variable between individuals, thus longitudinal studies are needed to fully investigate the 

prognostic potential of IgG glycosylation changes in CRC. 

 

2. Significant plasma IgG glycome composition differences are demonstrated between CRC 

patients and controls. We were not able to detect these differences in historical samples (taken 
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before CRC had developed in these patients). This could indicate that the changes are due to 

reverse causality (due to the disease process or treatment effects). However, it may also be 

due to inadequate study power in this small sub-study and so additional studies are required to 

investigate this further.  

Considering the functional relevance of IgG glycosylation for both tumor immunosurveilance 

and clinical efficacy of therapy with monoclonal antibodies, individual variation in IgG 

glycosylation may turn out to be important for prediction of disease course or the choice of 

therapy, thus warranting further, more detailed studies of IgG glycosylation in CRC. 
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8. SAŽETAK / ABSTRACT IN CROATIAN 

UVOD: Rak debelog crijeva je zloćudna novotvorina debelog crijeva i rektuma, te je još 

uvijek povezan s lošom prognozom, niskom stopom preživljavanja i vrlo često relativno 

kasnom dijagnozom. 

 

MATERIJALI I METODE: Analizirali smo glikozilaciju imunoglobulina G (IgG) u 

populaciji od 1229 ljudi oboljenih od raka debelog crijeva te 538 odgovarajućih kontrolnih 

uzoraka. Utjecaj operacije na glikozilaciju procjenjen je kod 28 bolesnika uzorkovanih prije i 

tri puta nakon operacije. Nadalje, glikozilacija IgG-a analizirana je i u 39 uzoraka krvne 

plazme izuzete prije prve dijagnoze. 

 

REZULTATI: Klinički algoritmi pokazali su dobro predviđanje ukupne smrtnosti kao i 

smrtnosti uzrokovane rakom debelog crijeva. Uključivanje podataka o IgG glikanima u 

regresijske modele nije dovelo do statistički značajnog poboljšanja u ukupnoj prognozi 

preživljavanja (Harrellov C indeks: 0.73, 0.77; AUC: 0.75, 0.79; IDI: 0.02, 0.04). Međutim, u 

odnosu na modele temeljene isključivo na kliničkim podacima uključivanjem podataka o IgG 

glikanima značajno je poboljšano predviđanje “rapidnih progresora” kod bolesnika u AJCC 

četvrtoj fazi (AUC 0.53 vs 0.75, IDI 0.21). Analizom kliničkih podataka 760 pacijenata i 538 

odgovarajućih kontrola utvrđena je povezanost raka debelog crijeva s padom stupnja 

galaktozilacije i sijalinizacije IgG glikana, s porastom fukozilacije neutralnih IgG glikana te 

padom fukozilacije sijaliniziranih IgG glikana.  

 

ZAKLJUČAK: Karakteristike glikozilacije IgG-a kod pacijenata oboljelih od raka debelog 

crijeva u skladu su sa značajno povećanom proupalnom aktivnošću IgG-a povezanom s 

lošijom prognozom, pogotovo u kasnijem stadiju. S obzirom na funkcionalnu važnost 

glikozilacije IgG-a u imunološkom nadzoru i učinkovitosti terapije monoklonskim 

antitijelima, individualne varijacije u glikozilaciji IgG-a mogle bi imati važnu ulogu u 

predviđanju tijeka bolesti ili izboru terapije.   
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9. ABSTRACT IN ENGLISH 

IMMUNOGLOBULIN G GLYCOSYLATION IN PATIENTS WITH COLORECTAL 

CANCER 

 

PhD candidate: Kujtim Thaçi 

Year: 2017 

 

INTRODUCTION: Colorectal cancer (CRC) is a malignant neoplasm of the colon and the 

rectum. CRC is still associated with poor prognosis, low survival rate and usually relatively 

late diagnosis. 

 

MATERIALS AND METHODS: We analysed IgG glycome composition in 1229 patients 

with CRC and 538 matching controls. Effects of surgery were evaluated in 28 patients 

sampled before and three times after surgery. Furthermore, IgG glycome composition was 

analysed in 39 plasma samples collected before initial diagnosis of CRC.  

 

RESULTS: Clinical algorithms showed good prediction of all cause and CRC mortality. The 

inclusion of IgG glycan data in regression models did not lead to any statistically significant 

improvements in overall prediction of survival (Harrell’s C: 0.73, 0.77; AUC: 0.75, 0.79, IDI: 

0.02, 0.04 respectively). However, the inclusion of IgG glycan data substantially improved 

the prediction of rapid progressors over clinical models in AJCC stage 4 patients (AUC 0.53 

vs. 0.75, IDI 0.21). When analysing clinical characteristics among 760 patients and 538 

matching controls it was found that CRC associates with decrease in IgG galactosylation, IgG 

sialylation and increase in core-fucosylation of neutral glycans with concurrent decrease of 

core fucosylation of sialylated glycans.  

 

COCLUSION: The glycan differences among CRC patients are consistent with significantly 

increased IgG pro-inflammatory activity being associated with poorer CRC prognosis, 

especially in late stage CRC. Considering the functional relevance of IgG glycosylation for 

both tumor immunosurveilance and clinical  efficacy of therapy with monoclonal antibodies, 

individual variation in IgG glycosylation may turn out to be important for prediction of 

disease course or the choice of therapy. 

 



 

99 

  

10. REFERENCES 

 

1.  Lebrilla CB, An HJ. The prospects of glycan biomarkers for the diagnosis of diseases. 

Mol Biosyst. 2009;5(1):17.  

2.  Werz DB, Ranzinger R, Herget S, Adibekian A, von der Lieth C-W, Seeberger PH. 

Exploring the structural diversity of mammalian carbohydrates (“glycospace”) by 

statistical databank analysis. ACS Chem Biol. 2007 Oct 19;2(10):685–91.  

3.  Ohtsubo K, Marth JD. Glycosylation in Cellular Mechanisms of Health and Disease. Cell. 

2006 Sep;126(5):855–67.  

4.  Dwek RA. Glycobiology: Toward Understanding the Function of Sugars. Chem Rev. 

1996 Jan;96(2):683–720.  

5.  Cummings RD. The repertoire of glycan determinants in the human glycome. Mol 

Biosyst. 2009;5(10):1087.  

6.  Skropeta D. The effect of individual N-glycans on enzyme activity. Bioorg Med Chem. 

2009 Apr;17(7):2645–53.  

7.  Lee RT, Lauc G, Lee YC. Glycoproteomics: protein modifications for versatile functions. 

EMBO Rep. 2005 May;6(11):1018–22.  

8.  Marth JD, Grewal PK. Mammalian glycosylation in immunity. Nat Rev Immunol. 2008 

Nov;8(11):874–87.  

9.  Freeze HH. Genetic defects in the human glycome. Nat Rev Genet. 2006 Jul;7(7):537–51.  

10.  Abu-Qarn M, Eichler J, Sharon N. Not just for Eukarya anymore: protein glycosylation in 

Bacteria and Archaea. Curr Opin Struct Biol. 2008 Oct;18(5):544–50.  

11.  Helenius A. Intracellular Functions of N-Linked Glycans. Science. 2001 Mar 

23;291(5512):2364–9.  

12.  Zielinska DF, Gnad F, Wiśniewski JR, Mann M. Precision Mapping of an In Vivo N-

Glycoproteome Reveals Rigid Topological and Sequence Constraints. Cell. 2010 

May;141(5):897–907.  



 

100 

  

13.  Marek KW, Vijay IK, Marth JD. A recessive deletion in the GlcNAc-1-

phosphotransferase gene results in peri-implantation embryonic lethality. Glycobiology. 

1999 Nov;9(11):1263–71.  

14.  Lauc G, Rudan I, Campbell H, Rudd PM. Complex genetic regulation of protein 

glycosylation. Mol Biosyst. 2010;6(2):329.  

15.  Abbott KL, Nairn AV, Hall EM, Horton MB, McDonald JF, Moremen KW, et al. 

Focused glycomic analysis of the N-linked glycan biosynthetic pathway in ovarian 

cancer. PROTEOMICS. 2008 Aug;8(16):3210–20.  

16.  Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, 

synthesis and function. Nat Rev Mol Cell Biol. 2012 Jun 22;13(7):448–62.  

17.  Knezevic A, Gornik O, Polasek O, Pucic M, Redzic I, Novokmet M, et al. Effects of 

aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans. 

Glycobiology. 2010 Aug 1;20(8):959–69.  

18.  Lauc G, Zoldoš V. Protein glycosylation—an evolutionary crossroad between genes and 

environment. Mol Biosyst. 2010;6(12):2373.  

19.  Knežević A, Polašek O, Gornik O, Rudan I, Campbell H, Hayward C, et al. Variability, 

Heritability and Environmental Determinants of Human Plasma N-Glycome. J Proteome 

Res. 2009 Feb 6;8(2):694–701.  

20.  Pucic M, Knezevic A, Vidic J, Adamczyk B, Novokmet M, Polasek O, et al. High 

Throughput Isolation and Glycosylation Analysis of IgG-Variability and Heritability of 

the IgG Glycome in Three Isolated Human Populations. Mol Cell Proteomics. 2011 Oct 

1;10(10):M111.010090–M111.010090.  

21.  Huffman JE, Knezevic A, Vitart V, Kattla J, Adamczyk B, Novokmet M, et al. 

Polymorphisms in B3GAT1, SLC9A9 and MGAT5 are associated with variation within 

the human plasma N-glycome of 3533 European adults. Hum Mol Genet. 2011 Dec 

15;20(24):5000–11.  

22.  Varki A. Biological roles of oligosaccharides: all of the theories are correct. 

Glycobiology. 1993 Apr;3(2):97–130.  



 

101 

  

23.  Dhiman N, Haralambieva IH, Kennedy RB, Vierkant RA, O’Byrne MM, Ovsyannikova 

IG, et al. SNP/haplotype associations in cytokine and cytokine receptor genes and 

immunity to rubella vaccine. Immunogenetics. 2010 Apr;62(4):197–210.  

24.  National Research Council (U.S.), National Research Council (U.S.), National Research 

Council (U.S.). Transforming glycoscience: a roadmap for the future. Washington, D.C: 

National Academies Press; 2012. 191 p.  

25.  Dube DH, Bertozzi CR. Glycans in cancer and inflammation — potential for therapeutics 

and diagnostics. Nat Rev Drug Discov. 2005 Jun;4(6):477–88.  

26.  Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. 

Nat Rev Cancer. 2005 Jul;5(7):526–42.  

27.  An HJ, Peavy TR, Hedrick JL, Lebrilla CB. Determination of N-glycosylation sites and 

site heterogeneity in glycoproteins. Anal Chem. 2003 Oct 15;75(20):5628–37.  

28.  Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as 

deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta. 1999 Dec 

6;1473(1):4–8.  

29.  Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer 

progression. Biochim Biophys Acta. 1999 Dec 6;1473(1):21–34.  

30.  Meany DL, Chan DW. Aberrant glycosylation associated with enzymes as cancer 

biomarkers. Clin Proteomics. 2011;8(1):7.  

31.  Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev 

Immunol. 2007 Apr;7(4):255–66.  

32.  Potapenko IO, Haakensen VD, Lüders T, Helland Å, Bukholm I, Sørlie T, et al. Glycan 

gene expression signatures in normal and malignant breast tissue; possible role in 

diagnosis and progression. Mol Oncol. 2010 Apr;4(2):98–118.  

33.  Reis CA, Osorio H, Silva L, Gomes C, David L. Alterations in glycosylation as 

biomarkers for cancer detection. J Clin Pathol. 2010 Apr 1;63(4):322–9.  



 

102 

  

34.  Packer NH, von der Lieth C-W, Aoki-Kinoshita KF, Lebrilla CB, Paulson JC, Raman R, 

et al. Frontiers in glycomics: bioinformatics and biomarkers in disease. An NIH white 

paper prepared from discussions by the focus groups at a workshop on the NIH campus, 

Bethesda MD (September 11-13, 2006). Proteomics. 2008 Jan;8(1):8–20.  

35.  Vanderschaeghe D, Szekrényes Á, Wenz C, Gassmann M, Naik N, Bynum M, et al. High-

Throughput Profiling of the Serum N-Glycome on Capillary Electrophoresis 

Microfluidics Systems: Toward Clinical Implementation of GlycoHepatoTest. Anal 

Chem. 2010 Sep;82(17):7408–15.  

36.  Wuhrer M. Glycosylation profiling in clinical proteomics: heading for glycan biomarkers. 

Expert Rev Proteomics. 2007 Apr;4(2):135–6.  

37.  Peracaula R, Tabarés G, Royle L, Harvey DJ, Dwek RA, Rudd PM, et al. Altered 

glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from 

normal and tumor origins. Glycobiology. 2003 Jun;13(6):457–70.  

38.  Sarrats A, Saldova R, Comet J, O’Donoghue N, de Llorens R, Rudd PM, et al. Glycan 

Characterization of PSA 2-DE Subforms from Serum and Seminal Plasma. OMICS J 

Integr Biol. 2010 Aug;14(4):465–74.  

39.  Arnold JN, Saldova R, Hamid UMA, Rudd PM. Evaluation of the serum N-linked 

glycome for the diagnosis of cancer and chronic inflammation. PROTEOMICS. 2008 

Aug;8(16):3284–93.  

40.  Pierce A, Saldova R, Abd Hamid UM, Abrahams JL, McDermott EW, Evoy D, et al. 

Levels of specific glycans significantly distinguish lymph node-positive from lymph 

node-negative breast cancer patients. Glycobiology. 2010 Oct 1;20(10):1283–8.  

41.  Saldova R, Wormald MR, Dwek RA, Rudd PM. Glycosylation changes on serum 

glycoproteins in ovarian cancer may contribute to disease pathogenesis. Dis Markers. 

2008;25(4-5):219–32.  

42.  Taniguchi N, Miyoshi E, Ko JH, Ikeda Y, Ihara Y. Implication of N-

acetylglucosaminyltransferases III and V in cancer: gene regulation and signaling 

mechanism. Biochim Biophys Acta. 1999 Oct 8;1455(2-3):287–300.  



 

103 

  

43.  Murata K, Miyoshi E, Kameyama M, Ishikawa O, Kabuto T, Sasaki Y, et al. Expression 

of N-acetylglucosaminyltransferase V in colorectal cancer correlates with metastasis and 

poor prognosis. Clin Cancer Res Off J Am Assoc Cancer Res. 2000 May;6(5):1772–7.  

44.  Yamamoto E, Ino K, Miyoshi E, Shibata K, Takahashi N, Kajiyama H, et al. Expression 

of N-acetylglucosaminyltransferase V in endometrial cancer correlates with poor 

prognosis. Br J Cancer. 2007 Dec 3;97(11):1538–44.  

45.  Li D, Li Y, Wu X, Li Q, Yu J, Gen J, et al. Knockdown of Mgat5 inhibits breast cancer 

cell growth with activation of CD4+ T cells and macrophages. J Immunol Baltim Md 

1950. 2008 Mar 1;180(5):3158–65.  

46.  Kim Y-S, Hwang SY, Kang H-Y, Sohn H, Oh S, Kim J-Y, et al. Functional proteomics 

study reveals that N-Acetylglucosaminyltransferase V reinforces the invasive/metastatic 

potential of colon cancer through aberrant glycosylation on tissue inhibitor of 

metalloproteinase-1. Mol Cell Proteomics MCP. 2008 Jan;7(1):1–14.  

47.  Barthel SR, Wiese GK, Cho J, Opperman MJ, Hays DL, Siddiqui J, et al. Alpha 1,3 

fucosyltransferases are master regulators of prostate cancer cell trafficking. Proc Natl 

Acad Sci. 2009 Nov 17;106(46):19491–6.  

48.  Bos PD, Zhang XH-F, Nadal C, Shu W, Gomis RR, Nguyen DX, et al. Genes that 

mediate breast cancer metastasis to the brain. Nature. 2009 Jun 18;459(7249):1005–9.  

49.  Sellers TA, Huang Y, Cunningham J, Goode EL, Sutphen R, Vierkant RA, et al. 

Association of Single Nucleotide Polymorphisms in Glycosylation Genes with Risk of 

Epithelial Ovarian Cancer. Cancer Epidemiol Biomarkers Prev. 2008 Feb 4;17(2):397–

404.  

50.  Dennis JW, Granovsky M, Warren CE. Protein glycosylation in development and disease. 

BioEssays News Rev Mol Cell Dev Biol. 1999 May;21(5):412–21.  

51.  Zhao Y, Sato Y, Isaji T, Fukuda T, Matsumoto A, Miyoshi E, et al. Branched N-glycans 

regulate the biological functions of integrins and cadherins: Biological functions of 

branched N-glycans. FEBS J. 2008 May;275(9):1939–48.  



 

104 

  

52.  Miyoshi E, Ito Y, Miyoshi Y. Involvement of Aberrant Glycosylation in Thyroid Cancer. 

J Oncol. 2010;2010:1–7.  

53.  Miyoshi E, Moriwaki K, Nakagawa T. Biological Function of Fucosylation in Cancer 

Biology. J Biochem (Tokyo). 2007 Nov 16;143(6):725–9.  

54.  Miyoshi E, Nakano M. Fucosylated haptoglobin is a novel marker for pancreatic cancer: 

Detailed analyses of oligosaccharide structures. PROTEOMICS. 2008 Aug;8(16):3257–

62.  

55.  Li D, Mallory T, Satomura S. AFP-L3: a new generation of tumor marker for 

hepatocellular carcinoma. Clin Chim Acta Int J Clin Chem. 2001 Nov;313(1-2):15–9.  

56.  Barrabés S, Pagès-Pons L, Radcliffe CM, Tabarés G, Fort E, Royle L, et al. Glycosylation 

of serum ribonuclease 1 indicates a major endothelial origin and reveals an increase in 

core fucosylation in pancreatic cancer. Glycobiology. 2007 Apr;17(4):388–400.  

57.  Thanabalasingham G, Huffman JE, Kattla JJ, Novokmet M, Rudan I, Gloyn AL, et al. 

Mutations in HNF1A Result in Marked Alterations of Plasma Glycan Profile. Diabetes. 

2013 Apr 1;62(4):1329–37.  

58.  Orntoft TF, Vestergaard EM. Clinical aspects of altered glycosylation of glycoproteins in 

cancer. Electrophoresis. 1999 Feb;20(2):362–71.  

59.  Gornik O, Gornik I, Gašparović V, Lauc G. Change in transferrin sialylation is a potential 

prognostic marker for severity of acute pancreatitis. Clin Biochem. 2008 May;41(7-

8):504–10.  

60.  Saldova R, Fan Y, Fitzpatrick JM, Watson RWG, Rudd PM. Core fucosylation and 2-3 

sialylation in serum N-glycome is significantly increased in prostate cancer comparing to 

benign prostate hyperplasia. Glycobiology. 2011 Feb 1;21(2):195–205.  

61.  Vanhooren V, Liu X-E, Franceschi C, Gao C-F, Libert C, Contreras R, et al. N-glycan 

profiles as tools in diagnosis of hepatocellular carcinoma and prediction of healthy human 

ageing. Mech Ageing Dev. 2009 Jan;130(1-2):92–7.  

62.  Gerber-Lemaire S, Juillerat-Jeanneret L. Glycosylation pathways as drug targets for 

cancer: glycosidase inhibitors. Mini Rev Med Chem. 2006 Sep;6(9):1043–52.  



 

105 

  

63.  Kim YJ, Varki A. Perspectives on the significance of altered glycosylation of 

glycoproteins in cancer. Glycoconj J. 1997 Aug;14(5):569–76.  

64.  Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on 

the biological function and structure of human immunoglobulins. Annu Rev Immunol. 

2007;25:21–50.  

65.  Schur PH. IgG subclasses. A historical perspective. Monogr Allergy. 1988;23:1–11.  

66.  Schroeder HW, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin 

Immunol. 2010 Feb;125(2):S41–52.  

67.  Nezlin R, Ghetie V. Interactions of immunoglobulins outside the antigen-combining site. 

Adv Immunol. 2004;82:155–215.  

68.  Masuda K, Yamaguchi Y, Kato K, Takahashi N, Shimada I, Arata Y. Pairing of 

oligosaccharides in the Fc region of immunoglobulin G. FEBS Lett. 2000 May 

19;473(3):349–57.  

69.  Huber R, Deisenhofer J, Colman PM, Matsushima M, Palm W. Crystallographic structure 

studies of an IgG molecule and an Fc fragment. Nature. 1976 Dec 2;264(5585):415–20.  

70.  Wright A, Morrison SL. Effect of glycosylation on antibody function: implications for 

genetic engineering. Trends Biotechnol. 1997 Jan;15(1):26–32.  

71.  Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, et al. 

Specificity and affinity of human Fc receptors and their polymorphic variants for human 

IgG subclasses. Blood. 2009 Apr 16;113(16):3716–25.  

72.  Stapleton NM, Andersen JT, Stemerding AM, Bjarnarson SP, Verheul RC, Gerritsen J, et 

al. Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 

and offers therapeutic potential. Nat Commun. 2011 Dec 20;2:599.  

73.  Lund J, Takahashi N, Pound JD, Goodall M, Jefferis R. Multiple interactions of IgG with 

its core oligosaccharide can modulate recognition by complement and human Fc gamma 

receptor I and influence the synthesis of its oligosaccharide chains. J Immunol Baltim Md 

1950. 1996 Dec 1;157(11):4963–9.  



 

106 

  

74.  Lux A, Nimmerjahn F. Impact of Differential Glycosylation on IgG Activity. In: 

Pulendran B, Katsikis PD, Schoenberger SP, editors. Crossroads between Innate and 

Adaptive Immunity III [Internet]. New York, NY: Springer New York; 2011 [cited 2015 

Feb 9]. p. 113–24. Available from: http://link.springer.com/10.1007/978-1-4419-5632-

3_10 

75.  Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F. Analysis of immunoglobulin 

glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. PROTEOMICS. 

2008 Jul;8(14):2858–71.  

76.  Wuhrer M, Stam JC, van de Geijn FE, Koeleman CAM, Verrips CT, Dolhain RJEM, et 

al. Glycosylation profiling of immunoglobulin G (IgG) subclasses from human serum. 

Proteomics. 2007 Nov;7(22):4070–81.  

77.  Gornik O, Lauc G. Glycosylation of serum proteins in inflammatory diseases. Dis 

Markers. 2008;25(4-5):267–78.  

78.  Mizuochi T, Taniguchi T, Shimizu A, Kobata A. Structural and numerical variations of 

the carbohydrate moiety of immunoglobulin G. J Immunol Baltim Md 1950. 1982 

Nov;129(5):2016–20.  

79.  Shikata K, Yasuda T, Takeuchi F, Konishi T, Nakata M, Mizuochi T. Structural changes 

in the oligosaccharide moiety of human IgG with aging. Glycoconj J. 1998 Jul;15(7):683–

9.  

80.  Raju TS. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. 

Curr Opin Immunol. 2008 Aug;20(4):471–8.  

81.  Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G 

resulting from Fc sialylation. Science. 2006 Aug 4;313(5787):670–3.  

82.  Pilar Rauter A, Křen V, Royal Society of Chemistry (Great Britain). Carbohydrate 

chemistry. chemical and biological approaches Volume 37 Volume 37 [Internet]. 

Cambridge: Royal Society of Chemistry; 2011 [cited 2015 Feb 9]. Available from: 

http://dx.doi.org/10.1039/9781849732765 



 

107 

  

83.  Horvat T, Zoldoš V, Lauc G. Evolutional and clinical implications of the epigenetic 

regulation of protein glycosylation. Clin Epigenetics. 2011 Aug;2(2):425–32.  

84.  Kobata A. The N-linked sugar chains of human immunoglobulin G: their unique pattern, 

and their functional roles. Biochim Biophys Acta. 2008 Mar;1780(3):472–8.  

85.  Jefferis R. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog. 2005 

Feb;21(1):11–6.  

86.  Zhu D, Ottensmeier CH, Du M-Q, McCarthy H, Stevenson FK. Incidence of potential 

glycosylation sites in immunoglobulin variable regions distinguishes between subsets of 

Burkitt’s lymphoma and mucosa-associated lymphoid tissue lymphoma. Br J Haematol. 

2003 Jan;120(2):217–22.  

87.  Rademacher TW, Homans SW, Parekh RB, Dwek RA. Immunoglobulin G as a 

glycoprotein. Biochem Soc Symp. 1986;51:131–48.  

88.  Del Val IJ, Kontoravdi C, Nagy JM. Towards the implementation of quality by design to 

the production of therapeutic monoclonal antibodies with desired glycosylation patterns. 

Biotechnol Prog. 2010 Nov;26(6):1505–27.  

89.  Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune 

system. Science. 2001 Mar 23;291(5512):2370–6.  

90.  Nimmerjahn F, Ravetch JV. Fcγ receptors as regulators of immune responses. Nat Rev 

Immunol. 2008 Jan;8(1):34–47.  

91.  Fanger MW, Graziano RF, Shen L, Guyre PM. Fc gamma R in cytotoxicity exerted by 

mononuclear cells. Chem Immunol. 1989;47:214–53.  

92.  Anderson CL, Shen L, Eicher DM, Wewers MD, Gill JK. Phagocytosis mediated by three 

distinct Fc gamma receptor classes on human leukocytes. J Exp Med. 1990 Apr 

1;171(4):1333–45.  

93.  Anderson CL, Guyre PM, Whitin JC, Ryan DH, Looney RJ, Fanger MW. Monoclonal 

antibodies to Fc receptors for IgG on human mononuclear phagocytes. Antibody 

characterization and induction of superoxide production in a monocyte cell line. J Biol 

Chem. 1986 Sep 25;261(27):12856–64.  



 

108 

  

94.  Anegón I, Cuturi MC, Trinchieri G, Perussia B. Interaction of Fc receptor (CD16) ligands 

induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and 

expression of their products in human natural killer cells. J Exp Med. 1988 Feb 

1;167(2):452–72.  

95.  Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, et al. Lack of fucose on 

human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and 

antibody-dependent cellular toxicity. J Biol Chem. 2002 Jul 26;277(30):26733–40.  

96.  Barbin K, Stieglmaier J, Saul D, Stieglmaier K, Stockmeyer B, Pfeiffer M, et al. Influence 

of variable N-glycosylation on the cytolytic potential of chimeric CD19 antibodies. J 

Immunother Hagerstown Md 1997. 2006 Apr;29(2):122–33.  

97.  Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev 

Immunol. 2007 Sep;7(9):715–25.  

98.  Simister NE, Story CM, Chen HL, Hunt JS. An IgG-transporting Fc receptor expressed in 

the syncytiotrophoblast of human placenta. Eur J Immunol. 1996 Jul;26(7):1527–31.  

99.  Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat 

Rev Immunol. 2008 Jan;8(1):34–47.  

100.  Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat 

Rev Drug Discov. 2009 Mar;8(3):226–34.  

101.  Karsten CM, Pandey MK, Figge J, Kilchenstein R, Taylor PR, Rosas M, et al. Anti-

inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB 

and dectin-1. Nat Med. 2012 Sep;18(9):1401–6.  

102.  Nimmerjahn F, Ravetch JV. Fcgamma receptors: old friends and new family 

members. Immunity. 2006 Jan;24(1):19–28.  

103.  Nose M, Wigzell H. Biological significance of carbohydrate chains on monoclonal 

antibodies. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6632–6.  

104.  Tao MH, Morrison SL. Studies of aglycosylated chimeric mouse-human IgG. Role of 

carbohydrate in the structure and effector functions mediated by the human IgG constant 

region. J Immunol Baltim Md 1950. 1989 Oct 15;143(8):2595–601.  



 

109 

  

105.  Feige MJ, Nath S, Catharino SR, Weinfurtner D, Steinbacher S, Buchner J. Structure 

of the Murine Unglycosylated IgG1 Fc Fragment. J Mol Biol. 2009 Aug;391(3):599–608.  

106.  Miyoshi E, Noda K, Yamaguchi Y, Inoue S, Ikeda Y, Wang W, et al. The alpha1-6-

fucosyltransferase gene and its biological significance. Biochim Biophys Acta. 1999 Dec 

6;1473(1):9–20.  

107.  Mimura Y, Ashton PR, Takahashi N, Harvey DJ, Jefferis R. Contrasting glycosylation 

profiles between Fab and Fc of a human IgG protein studied by electrospray ionization 

mass spectrometry. J Immunol Methods. 2007 Sep 30;326(1-2):116–26.  

108.  Scanlan CN, Burton DR, Dwek RA. Making autoantibodies safe. Proc Natl Acad Sci. 

2008 Mar 18;105(11):4081–2.  

109.  Shibata-Koyama M, Iida S, Okazaki A, Mori K, Kitajima-Miyama K, Saitou S, et al. 

The N-linked oligosaccharide at Fc RIIIa Asn-45: an inhibitory element for high Fc RIIIa 

binding affinity to IgG glycoforms lacking core fucosylation. Glycobiology. 2008 Oct 

24;19(2):126–34.  

110.  Iida S, Misaka H, Inoue M, Shibata M, Nakano R, Yamane-Ohnuki N, et al. 

Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum 

immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding 

to FcgammaRIIIa. Clin Cancer Res Off J Am Assoc Cancer Res. 2006 May 

1;12(9):2879–87.  

111.  Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, et al. 

The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine 

of human IgG1 complex-type oligosaccharides shows the critical role of enhancing 

antibody-dependent cellular cytotoxicity. J Biol Chem. 2003 Jan 31;278(5):3466–73.  

112.  Nimmerjahn F, Ravetch JV. Antibodies, Fc receptors and cancer. Curr Opin Immunol. 

2007 Apr;19(2):239–45.  

113.  Mimura Y, Lund J, Church S, Dong S, Li J, Goodall M, et al. Butyrate increases 

production of human chimeric IgG in CHO-K1 cells whilst maintaining function and 

glycoform profile. J Immunol Methods. 2001 Jan 1;247(1-2):205–16.  



 

110 

  

114.  Imai-Nishiya H, Mori K, Inoue M, Wakitani M, Iida S, Shitara K, et al. Double 

knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase 

(GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated 

therapeutic antibodies with enhanced ADCC. BMC Biotechnol. 2007;7(1):84.  

115.  Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, et 

al. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line 

for producing completely defucosylated antibodies with enhanced antibody-dependent 

cellular cytotoxicity. Biotechnol Bioeng. 2004 Sep 5;87(5):614–22.  

116.  Patnaik SK, Stanley P. Lectin-resistant CHO glycosylation mutants. Methods 

Enzymol. 2006;416:159–82.  

117.  Davies J, Jiang L, Pan LZ, LaBarre MJ, Anderson D, Reff M. Expression of GnTIII in 

a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered 

glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. 

Biotechnol Bioeng. 2001 Aug 20;74(4):288–94.  

118.  Mori K, Iida S, Yamane-Ohnuki N, Kanda Y, Kuni-Kamochi R, Nakano R, et al. Non-

fucosylated therapeutic antibodies: the next generation of therapeutic antibodies. 

Cytotechnology. 2007 Dec 3;55(2-3):109–14.  

119.  Gornik O, Pavić T, Lauc G. Alternative glycosylation modulates function of IgG and 

other proteins — Implications on evolution and disease. Biochim Biophys Acta BBA - 

Gen Subj. 2012 Sep;1820(9):1318–26.  

120.  Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS. Higher levels of sialylated Fc 

glycans in immunoglobulin G molecules can adversely impact functionality. Mol 

Immunol. 2007 Mar;44(7):1524–34.  

121.  Anthony RM, Kobayashi T, Wermeling F, Ravetch JV. Intravenous gammaglobulin 

suppresses inflammation through a novel TH2 pathway. Nature. 2011 Jun 

19;475(7354):110–3.  

122.  Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated 

through the inhibitory Fc receptor. Science. 2001 Jan 19;291(5503):484–6.  



 

111 

  

123.  Kleinau S. The impact of Fc receptors on the development of autoimmune diseases. 

Curr Pharm Des. 2003;9(23):1861–70.  

124.  Ravetch, J.V. 2003. Fc receptors. In Fundamental Immunology. W.E. Paul, ed-itor. 

Lippincott-Raven, Philadelphia, PA. 685-700. In.  

125.  Nimmerjahn F, Ravetch JV. Anti-Inflammatory Actions of Intravenous 

Immunoglobulin. Annu Rev Immunol. 2008 Apr;26(1):513–33.  

126.  Negi V-S, Elluru S, Sibéril S, Graff-Dubois S, Mouthon L, Kazatchkine MD, et al. 

Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J 

Clin Immunol. 2007 May;27(3):233–45.  

127.  Anthony RM, Wermeling F, Karlsson MCI, Ravetch JV. Identification of a receptor 

required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci. 2008 Dec 

16;105(50):19571–8.  

128.  Debré M, Bonnet MC, Fridman WH, Carosella E, Philippe N, Reinert P, et al. 

Infusion of Fc gamma fragments for treatment of children with acute immune 

thrombocytopenic purpura. Lancet. 1993 Oct 16;342(8877):945–9.  

129.  Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV. 

Recapitulation of IVIG Anti-Inflammatory Activity with a Recombinant IgG Fc. Science. 

2008 Apr 18;320(5874):373–6.  

130.  Kaneko Y, Nimmerjahn F, Madaio MP, Ravetch JV. Pathology and protection in 

nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J 

Exp Med. 2006 Mar 20;203(3):789–97.  

131.  Schwab I, Biburger M, Krönke G, Schett G, Nimmerjahn F. IVIg-mediated 

amelioration of ITP in mice is dependent on sialic acid and SIGNR1: HIGHLIGHTS. Eur 

J Immunol. 2012 Apr;42(4):826–30.  

132.  Bruhns P, Samuelsson A, Pollard JW, Ravetch JV. Colony-stimulating factor-1-

dependent macrophages are responsible for IVIG protection in antibody-induced 

autoimmune disease. Immunity. 2003 Apr;18(4):573–81.  



 

112 

  

133.  Hodoniczky J, Zheng YZ, James DC. Control of recombinant monoclonal antibody 

effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog. 2005 

Dec;21(6):1644–52.  

134.  Huhn C, Selman MHJ, Ruhaak LR, Deelder AM, Wuhrer M. IgG glycosylation 

analysis. PROTEOMICS. 2009 Feb;9(4):882–913.  

135.  Selman MHJ, Niks EH, Titulaer MJ, Verschuuren JJGM, Wuhrer M, Deelder AM. 

IgG Fc N - Glycosylation Changes in Lambert-Eaton Myasthenic Syndrome and 

Myasthenia Gravis. J Proteome Res. 2011 Jan 7;10(1):143–52.  

136.  Ackerman ME, Crispin M, Yu X, Baruah K, Boesch AW, Harvey DJ, et al. Natural 

variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J Clin 

Invest. 2013 May 1;123(5):2183–92.  

137.  Dubé R, Rook GA, Steele J, Brealey R, Dwek R, Rademacher T, et al. Agalactosyl 

IgG in inflammatory bowel disease: correlation with C-reactive protein. Gut. 1990 

Apr;31(4):431–4.  

138.  Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB. Glycosylation 

changes of IgG associated with rheumatoid arthritis can activate complement via the 

mannose-binding protein. Nat Med. 1995 Mar;1(3):237–43.  

139.  Arnold JN, Dwek RA, Rudd PM, Sim RB. Mannan binding lectin and its interaction 

with immunoglobulins in health and in disease. Immunol Lett. 2006 Aug 15;106(2):103–

10.  

140.  Nimmerjahn F, Anthony RM, Ravetch JV. Agalactosylated IgG antibodies depend on 

cellular Fc receptors for in vivo activity. Proc Natl Acad Sci U S A. 2007 May 

15;104(20):8433–7.  

141.  Lauc G, Pezer M, Rudan I, Campbell H. Mechanisms of disease: The human N-

glycome. Biochim Biophys Acta. 2015 Oct 21;  

142.  Holland M, Takada K, Okumoto T, Takahashi N, Kato K, Adu D, et al. 

Hypogalactosylation of serum IgG in patients with ANCA-associated systemic vasculitis. 

Clin Exp Immunol. 2002 Jul;129(1):183–90.  



 

113 

  

143.  Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, et al. 

Association of rheumatoid arthritis and primary osteoarthritis with changes in the 

glycosylation pattern of total serum IgG. Nature. 1985 Aug 1;316(6027):452–7.  

144.  Parekh RB, Roitt IM, Isenberg DA, Dwek RA, Ansell BM, Rademacher TW. 

Galactosylation of IgG associated oligosaccharides: reduction in patients with adult and 

juvenile onset rheumatoid arthritis and relation to disease activity. Lancet. 1988 Apr 

30;1(8592):966–9.  

145.  Mehta AS, Long RE, Comunale MA, Wang M, Rodemich L, Krakover J, et al. 

Increased Levels of Galactose-Deficient Anti-Gal Immunoglobulin G in the Sera of 

Hepatitis C Virus-Infected Individuals with Fibrosis and Cirrhosis. J Virol. 2008 Feb 

1;82(3):1259–70.  

146.  Moore JS, Wu X, Kulhavy R, Tomana M, Novak J, Moldoveanu Z, et al. Increased 

levels of galactose-deficient IgG in sera of HIV-1-infected individuals: AIDS. 2005 

Mar;19(4):381–9.  

147.  Bones J, Mittermayr S, O’Donoghue N, Guttman A, Rudd PM. Ultra Performance 

Liquid Chromatographic Profiling of Serum N -Glycans for Fast and Efficient 

Identification of Cancer Associated Alterations in Glycosylation. Anal Chem. 2010 Dec 

15;82(24):10208–15.  

148.  Bones J, Byrne JC, O’Donoghue N, McManus C, Scaife C, Boissin H, et al. Glycomic 

and Glycoproteomic Analysis of Serum from Patients with Stomach Cancer Reveals 

Potential Markers Arising from Host Defense Response Mechanisms. J Proteome Res. 

2011 Mar 4;10(3):1246–65.  

149.  Parekh R, Roitt I, Isenberg D, Dwek R, Rademacher T. Age-related galactosylation of 

the N-linked oligosaccharides of human serum IgG. J Exp Med. 1988 May 

1;167(5):1731–6.  

150.  Yamada E, Tsukamoto Y, Sasaki R, Yagyu K, Takahashi N. Structural changes of 

immunoglobulin G oligosaccharides with age in healthy human serum. Glycoconj J. 1997 

Apr;14(3):401–5.  



 

114 

  

151.  Ruhaak LR, Uh H-W, Beekman M, Koeleman CAM, Hokke CH, Westendorp RGJ, et 

al. Decreased Levels of Bisecting GlcNAc Glycoforms of IgG Are Associated with 

Human Longevity. Lucia A, editor. PLoS ONE. 2010 Sep 7;5(9):e12566.  

152.  Kri ti J, Vu kovi F., Menni C, Klari L, Keser T, Beceheli I, et al. Glycans Are a Novel 

Biomarker of Chronological and Biological Ages. J Gerontol A Biol Sci Med Sci. 2014 

Jul 1;69(7):779–89.  

153.  Einarsdottir HK, Selman MHJ, Kapur R, Scherjon S, Koeleman CAM, Deelder AM, 

et al. Comparison of the Fc glycosylation of fetal and maternal immunoglobulin G. 

Glycoconj J. 2013 Feb;30(2):147–57.  

154.  Williams PJ, Arkwright PD, Rudd P, Scragg IG, Edge CJ, Wormald MR, et al. Short 

communication: selective placental transport of maternal IgG to the fetus. Placenta. 1995 

Dec;16(8):749–56.  

155.  Parekh R, Isenberg D, Rook G, Roitt I, Dwek R, Rademacher T. A comparative 

analysis of disease-associated changes in the galactosylation of serum IgG. J Autoimmun. 

1989 Apr;2(2):101–14.  

156.  Young A, Sumar N, Bodman K, Goyal S, Sinclair H, Roitt I, et al. Agalactosyl IgG: 

an aid to differential diagnosis in early synovitis. Arthritis Rheum. 1991 

Nov;34(11):1425–9.  

157.  Soltys AJ, Hay FC, Bond A, Axford JS, Jones MG, Randen I, et al. The binding of 

synovial tissue-derived human monoclonal immunoglobulin M rheumatoid factor to 

immunoglobulin G preparations of differing galactose content. Scand J Immunol. 1994 

Aug;40(2):135–43.  

158.  Rademacher TW, Parekh RB, Dwek RA, Isenberg D, Rook G, Axford JS, et al. The 

role of IgG glycoforms in the pathogenesis of rheumatoid arthritis. Springer Semin 

Immunopathol. 1988;10(2-3):231–49.  

159.  Rook GA, Steele J, Brealey R, Whyte A, Isenberg D, Sumar N, et al. Changes in IgG 

glycoform levels are associated with remission of arthritis during pregnancy. J 

Autoimmun. 1991 Oct;4(5):779–94.  



 

115 

  

160.  Gerçel-Taylor C, Bazzett LB, Taylor DD. Presence of aberrant tumor-reactive 

immunoglobulins in the circulation of patients with ovarian cancer. Gynecol Oncol. 2001 

Apr;81(1):71–6.  

161.  Alley WR, Vasseur JA, Goetz JA, Svoboda M, Mann BF, Matei DE, et al. N-linked 

glycan structures and their expressions change in the blood sera of ovarian cancer 

patients. J Proteome Res. 2012 Apr 6;11(4):2282–300.  

162.  Kodar K, Stadlmann J, Klaamas K, Sergeyev B, Kurtenkov O. Immunoglobulin G Fc 

N-glycan profiling in patients with gastric cancer by LC-ESI-MS: relation to tumor 

progression and survival. Glycoconj J. 2012 Jan;29(1):57–66.  

163.  Chen G, Wang Y, Qin X, Li H, Guo Y, Wang Y, et al. Change in IgG 1 Fc N -linked 

glycosylation in human lung cancer: Age- and sex-related diagnostic potential: 

Proteomics and 2DE. ELECTROPHORESIS. 2013 Aug;34(16):2407–16.  

164.  Kanoh Y, Mashiko T, Danbara M, Takayama Y, Ohtani S, Egawa S, et al. Changes in 

serum IgG oligosaccharide chains with prostate cancer progression. Anticancer Res. 2004 

Oct;24(5B):3135–9.  

165.  Ruhaak LR, Barkauskas DA, Torres J, Cooke CL, Wu LD, Stroble C, et al. The serum 

immunoglobulin G glycosylation signature of gastric cancer. EuPA Open Proteomics. 

2015 Mar;6:1–9.  

166.  Chen G, Wang Y, Qiu L, Qin X, Liu H, Wang X, et al. Human IgG Fc-glycosylation 

profiling reveals associations with age, sex, female sex hormones and thyroid cancer. J 

Proteomics. 2012 Jun 6;75(10):2824–34.  

167.  Aurer I, Lauc G, Dumić J, Rendić D, Matisić D, Milos M, et al. Aberrant 

glycosylation of Igg heavy chain in multiple myeloma. Coll Antropol. 2007 

Mar;31(1):247–51.  

168.  Kim H-J, Yu M-H, Kim H, Byun J, Lee C. Noninvasive molecular biomarkers for the 

detection of colorectal cancer. BMB Rep. 2008 Oct 31;41(10):685–92.  



 

116 

  

169.  Yabroff KR, Lund J, Kepka D, Mariotto A. Economic burden of cancer in the United 

States: estimates, projections, and future research. Cancer Epidemiol Biomark Prev Publ 

Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2011 Oct;20(10):2006–14.  

170.  Benson AB. Epidemiology, disease progression, and economic burden of colorectal 

cancer. J Manag Care Pharm JMCP. 2007 Aug;13(6 Suppl C):S5–18.  

171.  Hawk ET, Limburg PJ, Viner JL. Epidemiology and prevention of colorectal cancer. 

Surg Clin North Am. 2002 Oct;82(5):905–41.  

172.  Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, et al. Early 

detection: The case for early detection. Nat Rev Cancer. 2003 Apr;3(4):243–52.  

173.  Koessler T, Azzato EM, Perkins B, Macinnis RJ, Greenberg D, Easton DF, et al. 

Common germline variation in mismatch repair genes and survival after a diagnosis of 

colorectal cancer. Int J Cancer J Int Cancer. 2009 Apr 15;124(8):1887–91.  

174.  Gockel I, Sgourakis G, Lyros O, Polotzek U, Schimanski CC, Lang H, et al. Risk of 

lymph node metastasis in submucosal esophageal cancer: a review of surgically resected 

patients. Expert Rev Gastroenterol Hepatol. 2011 Jun;5(3):371–84.  

175.  National Institute for Health and Clinical Excellence. Colorectal cancer. The diagnosis 

and management of colorectal cancer. NICE clinical guideline 131, 2011.  

176.  Garcea G, Sharma RA, Dennison A, Steward WP, Gescher A, Berry DP. Molecular 

biomarkers of colorectal carcinogenesis and their role in surveillance and early 

intervention. Eur J Cancer Oxf Engl 1990. 2003 May;39(8):1041–52.  

177.  Walt D, Aoki-Kinoshita KF, Bendiak B, Bertozzi CR, Boons GJ, Darvill A, et al.  

Transforming Glycoscience: A Roadmap for the Future. Washington: Nacional  

Academies Press; 2012.  

178.  Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural Innate and Adaptive 

Immunity to Cancer. Annu Rev Immunol. 2011 Apr 23;29(1):235–71.  

179.  Burnet M. Cancer; a biological approach. I. The processes of control. Br Med J. 1957 

Apr 6;1(5022):779–86.  



 

117 

  

180.  Wolfert MA, Boons G-J. Adaptive immune activation: glycosylation does matter. Nat 

Chem Biol. 2013 Nov 14;9(12):776–84.  

181.  Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer 

immunotherapy. Nat Rev Immunol. 2010 May;10(5):317–27.  

182.  Mariño K, Bones J, Kattla JJ, Rudd PM. A systematic approach to protein 

glycosylation analysis: a path through the maze. Nat Chem Biol. 2010 Oct;6(10):713–23.  

183.  Theodoratou E, Kyle J, Cetnarskyj R, Farrington SM, Tenesa A, Barnetson R, et al. 

Dietary Flavonoids and the Risk of Colorectal Cancer. Cancer Epidemiol Biomarkers 

Prev. 2007 Apr 1;16(4):684–93.  

184.  Vartiainen E, Laatikainen T, Peltonen M, Juolevi A, Mannisto S, Sundvall J, et al. 

Thirty-five-year trends in cardiovascular risk factors in Finland. Int J Epidemiol. 2010 

Apr 1;39(2):504–18.  

185.  Baković MP, Selman MHJ, Hoffmann M, Rudan I, Campbell H, Deelder AM, et al. 

High-Throughput IgG Fc N-Glycosylation Profiling by Mass Spectrometry of 

Glycopeptides. J Proteome Res. 2013 Feb;12(2):821–31.  

186.  Friedman J. Greedy function approximation: A gradient boosting machine. The 

Annals of Statistics 2001;29(5):1189-232. In.  

187.  Ridgeway G. The State of Boosting. Computing Science and Statistics 1999;31:172-

81. In.  

188.  Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and  

powerful approach to multiple testing. Journal of the Royal Statistical Society  Series B. 

1995:289-300.  

189.  Lauc G, Huffman JE, Pučić M, Zgaga L, Adamczyk B, Mužinić A, et al. Loci 

Associated with N-Glycosylation of Human Immunoglobulin G Show Pleiotropy with 

Autoimmune Diseases and Haematological Cancers. Gibson G, editor. PLoS Genet. 2013 

Jan 31;9(1):e1003225.  

190.  Campbell MP, Royle L, Radcliffe CM, Dwek RA, Rudd PM. GlycoBase and autoGU: 

tools for HPLC-based glycan analysis. Bioinformatics. 2008 May 1;24(9):1214–6.  



 

118 

  

191.  Gui J, Li H. Penalized Cox regression analysis in the high-dimensional and low-

sample size settings, with applications to microarray gene expression data. Bioinforma 

Oxf Engl. 2005 Jul 1;21(13):3001–8.  

192.  Niu N, Zhang J, Huang T, Sun Y, Chen Z, Yi W, et al. IgG Expression in Human 

Colorectal Cancer and Its Relationship to Cancer Cell Behaviors. Hold GL, editor. PLoS 

ONE. 2012 Nov 1;7(11):e47362.  

193.  Coussens LM, Zitvogel L, Palucka AK. Neutralizing Tumor-Promoting Chronic 

Inflammation: A Magic Bullet? Science. 2013 Jan 18;339(6117):286–91.  

194.  Qian Y, Wang Y, Zhang X, Zhou L, Zhang Z, Xu J, et al. Quantitative Analysis of 

Serum IgG Galactosylation Assists Differential Diagnosis of Ovarian Cancer. J Proteome 

Res. 2013 Sep 6;12(9):4046–55.  

195.  Saldova R, Royle L, Radcliffe CM, Abd Hamid UM, Evans R, Arnold JN, et al. 

Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins 

and IgG. Glycobiology. 2007 Dec;17(12):1344–56.  

196.  Trbojević Akmačić I, Ventham NT, Theodoratou E, Vučković F, Kennedy NA, Krištić 

J, et al. Inflammatory Bowel Disease Associates with Proinflammatory Potential of the 

Immunoglobulin G Glycome: Inflamm Bowel Dis. 2015 Apr;1.  

197.  Rombouts Y, Ewing E, van de Stadt LA, Selman MHJ, Trouw LA, Deelder AM, et al. 

Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation 

phenotype prior to the onset of rheumatoid arthritis. Ann Rheum Dis. 2015 Jan 

1;74(1):234–41.  

198.  Vučković F, Krištić J, Gudelj I, Teruel M, Keser T, Pezer M, et al. Association of 

Systemic Lupus Erythematosus With Decreased Immunosuppressive Potential of the IgG 

Glycome: ASSOCIATION OF SLE WITH ALTERED IgG GLYCOSYLATION. 

Arthritis Rheumatol. 2015 Nov;67(11):2978–89.  

199.  Wang J, Balog CIA, Stavenhagen K, Koeleman CAM, Scherer HU, Selman MHJ, et 

al. Fc-Glycosylation of IgG1 is Modulated by B-cell Stimuli. Mol Cell Proteomics. 2011 

May 1;10(5):M110.004655–M110.004655.  



 

119 

  

200.  Axford JS, Sumar N, Alavi A, Isenberg DA, Young A, Bodman KB, et al. Changes in 

normal glycosylation mechanisms in autoimmune rheumatic disease. J Clin Invest. 1992 

Mar;89(3):1021–31.  

201.  Omtvedt LA, Royle L, Husby G, Sletten K, Radcliffe CM, Harvey DJ, et al. Glycan 

analysis of monoclonal antibodies secreted in deposition disorders indicates that subsets 

of plasma cells differentially process IgG glycans. Arthritis Rheum. 2006 

Nov;54(11):3433–40.  

202.  Axford JS. Decreased B-cell galactosyltransferase activity in rheumatoid arthritis. Br J 

Rheumatol. 1988;27 Suppl 2:170.  

203.  Alavi A, Axford JS, Pool AJ. Serum galactosyltransferase isoform changes in 

rheumatoid arthritis. J Rheumatol. 2004 Aug;31(8):1513–20.  

204.  Croce A, Firuzi O, Altieri F, Eufemi M, Agostino R, Priori R, et al. Effect of 

infliximab on the glycosylation of IgG of patients with rheumatoid arthritis. J Clin Lab 

Anal. 2007;21(5):303–14.  

205.  Pasek M, Duk M, Podbielska M, Sokolik R, Szechiński J, Lisowska E, et al. 

Galactosylation of IgG from rheumatoid arthritis (RA) patients--changes during therapy. 

Glycoconj J. 2006 Nov;23(7-8):463–71.  

206.  Bertazza L, Mocellin S. The dual role of tumor necrosis factor (TNF) in cancer 

biology. Curr Med Chem. 2010;17(29):3337–52.  

207.  Grimm M, Lazariotou M, Kircher S, Höfelmayr A, Germer CT, von Rahden BHA, et 

al. Tumor necrosis factor-α is associated with positive lymph node status in patients with 

recurrence of colorectal cancer—indications for anti-TNF-α agents in cancer treatment. 

Cell Oncol. 2011 Aug;34(4):315–26.  

208.  Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor 

Rev. 2002 Apr;13(2):135–41.  

209.  Nasirikenari M, Chandrasekaran EV, Matta KL, Segal BH, Bogner PN, Lugade AA, et 

al. Altered eosinophil profile in mice with ST6Gal-1 deficiency: an additional role for 



 

120 

  

ST6Gal-1 generated by the P1 promoter in regulating allergic inflammation. J Leukoc 

Biol. 2010 Mar 1;87(3):457–66.  

210.  Menni C, Keser T, Mangino M, Bell JT, Erte I, Akmačić I, et al. Glycosylation of 

Immunoglobulin G: Role of Genetic and Epigenetic Influences. Kaufmann GF, editor. 

PLoS ONE. 2013 Dec 6;8(12):e82558.  

211.  Espy C, Morelle W, Kavian N, Grange P, Goulvestre C, Viallon V, et al. Sialylation 

levels of anti-proteinase 3 antibodies are associated with the activity of granulomatosis 

with polyangiitis (Wegener’s). Arthritis Rheum. 2011 Jul;63(7):2105–15.  

212.  Scherer HU, van der Woude D, Ioan-Facsinay A, el Bannoudi H, Trouw LA, Wang J, 

et al. Glycan profiling of anti-citrullinated protein antibodies isolated from human serum 

and synovial fluid. Arthritis Rheum. 2010 Feb 22;62(6):1620–9.  

213.  Fleming SC, Smith S, Knowles D, Skillen A, Self CH. Increased sialylation of 

oligosaccharides on IgG paraproteins--a potential new tumour marker in multiple 

myeloma. J Clin Pathol. 1998 Nov;51(11):825–30.  

214.  KrištićJ, Zoldoš V, Lauc G. Complex Genetics of Protein N-Glycosylation. In: Endo  

T, Seeberger PH, Hart GW, Wong C-H, Taniguchi N, editors. Glycoscience:  Biology and 

Medicine: Springer Japan; 2014. p. 1-7.  

215.  Novokmet M, Lukić E, Vučković F, –Durić Ž, Keser T, Rajšl K, et al. Changes in IgG 

and total plasma protein glycomes in acute systemic inflammation. Sci Rep [Internet]. 

2014 Mar 11 [cited 2016 Jan 27];4. Available from: 

http://www.nature.com/articles/srep04347 

216.  Barb AW, Prestegard JH. NMR analysis demonstrates immunoglobulin G N-glycans 

are accessible and dynamic. Nat Chem Biol. 2011 Mar;7(3):147–53.  

217.  Zhang W, Gordon M, Schultheis AM, Yang DY, Nagashima F, Azuma M, et al. 

FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal 

growth factor receptor expressing metastatic colorectal cancer patients treated with single-

agent cetuximab. J Clin Oncol Off J Am Soc Clin Oncol. 2007 Aug 20;25(24):3712–8.  



 

121 

  

218.  Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. 

Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in 

IgG Fc receptor FcgammaRIIIa gene. Blood. 2002 Feb 1;99(3):754–8.  

219.  Chen C-Y, Jan Y-H, Juan Y-H, Yang C-J, Huang M-S, Yu C-J, et al. 

Fucosyltransferase 8 as a functional regulator of nonsmall cell lung cancer. Proc Natl 

Acad Sci. 2013 Jan 8;110(2):630–5.  

220.  Wang X, Chen J, Li QK, Peskoe SB, Zhang B, Choi C, et al. Overexpression of (1,6) 

fucosyltransferase associated with aggressive prostate cancer. Glycobiology. 2014 Oct 

1;24(10):935–44.  

221.  Gerdes CA, Nicolini VG, Herter S, van Puijenbroek E, Lang S, Roemmele M, et al. 

GA201 (RG7160): A Novel, Humanized, Glycoengineered Anti-EGFR Antibody with 

Enhanced ADCC and Superior In Vivo Efficacy Compared with Cetuximab. Clin Cancer 

Res. 2013 Mar 1;19(5):1126–38.  

222.  Gasdaska JR, Sherwood S, Regan JT, Dickey LF. An afucosylated anti-CD20 

monoclonal antibody with greater antibody-dependent cellular cytotoxicity and B-cell 

depletion and lower complement-dependent cytotoxicity than rituximab. Mol Immunol. 

2012 Mar;50(3):134–41.  

223.  Oppenheim DE, Spreafico R, Etuk A, Malone D, Amofah E, Peña-Murillo C, et al. 

Glyco-engineered anti-EGFR mAb elicits ADCC by NK cells from colorectal cancer 

patients irrespective of chemotherapy. Br J Cancer. 2014 Mar 4;110(5):1221–7.  

224.  Kapur R, Kustiawan I, Vestrheim A, Koeleman CAM, Visser R, Einarsdottir HK, et 

al. A prominent lack of IgG1-Fc fucosylation of platelet alloantibodies in pregnancy. 

Blood. 2014 Jan 23;123(4):471–80.  

225.  Biburger M, Lux A, Nimmerjahn F. How Immunoglobulin G Antibodies Kill Target 

Cells. In: Advances in Immunology [Internet]. Elsevier; 2014 [cited 2016 Jan 28]. p. 67–

94. Available from: http://linkinghub.elsevier.com/retrieve/pii/B9780128001479000030 

226.  Vuckovic F, Theodoratou E, Thaci K, Timofeeva M, Vojta A, tambuk J, et al. IgG 

glycome in colorectal cancer. Clin Cancer Res [Internet]. 2016 Feb 1 [cited 2016 Feb 4]; 



 

122 

  

Available from: http://clincancerres.aacrjournals.org/cgi/doi/10.1158/1078-0432.CCR-15-

1867 

227.  Wang M, Wang J, Kong X, Chen H, Wang Y, Qin M, et al. MiR-198 represses tumor 

growth and metastasis in colorectal cancer by targeting fucosyl transferase 8. Sci Rep. 

2014 Sep 1;4:6145.  

228.  Yang L, Luo Y, Wei J. Integrative genomic analyses on Ikaros and its expression 

related to solid cancer prognosis. Oncol Rep. 2010 Aug;24(2):571–7.  

229.  Van Cutsem E, Nordlinger B, Cervantes A, ESMO Guidelines Working Group. 

Advanced colorectal cancer: ESMO Clinical Practice Guidelines for treatment. Ann 

Oncol Off J Eur Soc Med Oncol ESMO. 2010 May;21 Suppl 5:v93–7.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

123 

  

11. LIST OF FIGURES AND TABLES 

Figures 

 

Figure 1. The structure of an IgG1 molecule. (A) Fab and Fc portion (B).Complex 

biantennary glycan structure attached to Asn 297 in Fc portion of IgG 

molecule. Structural schemes are given in terms of blue square (N-

acetylglucosamine), red triangle (fucose), green circle (mannose), yellow 

circle (galactose), and purple diamond ( N-acetylneuraminic acid) 

Figure 2. Structural variations in IgG glycans. Initial GlcNAc2Man3GlcNAc2 

structure (red square) can be modified by the addition of bisecting GlcNAc 

(GnTIII), fucose (FUT8) or galactose (GalT). These resulting structures 

can further be modified by the activity of the same enzymes or by the 

addition of the sialic acid (SiaT) 

 

Figure 3. Modulation of IgG function by alternative glycosylation.Structure of the 

glycan on IgG Fc part can significantly affect effector function of IgG 

 

Figure 4. The scematic representation of the human IgG structure and functional 

implication of alternative glycosylation 

 

Figure 5. UPLC analysis of immunoglobulin G (IgG) glycosylation. Each IgG 

contains one conserved N-glycosylation site on Asn197 of its heavy chain. 

Different glycans can be attached to this site and the process seems to be 

highly regulated. UPLC analysis can reveal composition of the glycome 

attached to a population of IgG molecules by separating total IgG N-

glycome into 24 chromatographic glycan peaks (GP1–GP24), mostly 

corresponding to individual glycan structures 

 

Figure 6. Minus logarithm of the FDR corrected p-values (q values) of all 39 glycan 

variables for all causes and CRC-specific mortality (Model III). Q- value 

threshold of significance <0.05 
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Figure 7. IgG glycome composition in CRC patients and matching controls 

 

Figure 8. ROC curve illustrating the performance of regularized logistic regression 

model in predicting disease status for CRC patients and healthy controls. 

While models based only on age and gender did not show predictive power 

(red line), addition of glycan traits increased predictive power of model 

(black line). 
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adjusted p-values using the false discovery rate method (Benjamini– 
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folds. 

 

Table 16. Predictions of rapid progressors in stage 2 for models with extending set of 

clinical factors with and without glycan using k-nearest neighbours, 

LASSO, PAM, Support Vector Machines, Decision Trees, and Boosted 

Stump classifiers. The results are summarized over 10 cross-validation 

folds. 
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Table 17. Predictions of rapid progressors in stage 3 for models with the extended set 
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