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1. Introduction and background for the proposed research 

1.1. Schizophrenia 

1.1.1.  Defining and diagnosing schizophrenia 

Schizophrenia (SCZ) is a severe psychotic mental disorder characterized by changes 

in perception and thoughts (but also other mental functions like affective responses), leading 

to impaired testing of reality and reduced functioning that, regardless of different developments 

and changes of focus in psychiatry, continues to be seen by many as the one paradigmatic 

mental disorder. Even though there are arguably a number of historical accounts of cases that 

resemble our current understanding of the clinical entity we call schizophrenia, it was first 

conceptualized as a separate psychiatric disorder in the 19th century.  

Emergence of the definition of this disorder rests on the descriptive work of a number 

of authors, who, like John Haslam (describing illness in young people characterized by 

changes in the affect) and Wilhelm Griesinger (describing ‘fixed affective madness’ presenting 

among other symptoms with thought disorders and hallucinations, progressing towards 

dementia), seemed to capture an aspect of what was later to become schizophrenia (1). 

Bénédict Augustin Morel wrote about deterioration in mental functions in young people 

following an episode of what we would now most probably call psychosis, and it was Emil 

Kraepelin who used this concept, along with those of Ewald Hecker (hebephrenia) and Karl 

Ludwig Kahlbaum (catatonia), to conceptualize ‘dementia praecox’ (1, 2). Kraepelin’s dementia 

praecox was a separate disorder appearing in the young, characterized by gradual onset, 

progressive deterioration, and clinically presenting potentially with a different set of dominant 

symptoms (e.g. paranoid, catatonic). As such, it was the first comprehensive description and 

conceptualization of a diagnostic entity that we now call schizophrenia. In addition to offering 

the first comprehensive view of what is to become schizophrenia, and postulating its gradual 

onset and development, thus even setting the stage for the later research into prodromal 

phases (3), Kraepelin is to be credited with another important nosological point that steered 

the future development of psychiatry. Kraepelin introduced a clear delineation between 

dementia praecox and manic-depressive illness, an affective disorder with a course of illness 

not being characterized by progressive deterioration seen in dementia praecox (4). In the 

absence of objective tests or clear understanding of the underlying pathophysiology, 

‘Kraepelinian dichotomy’ between affective domain characterized by the manic-depressive 

illness and dementia praecox helped bring a level of nosological order to the field of mental 

disorders, and still shapes to a greater or lesser extent the accepted classifications systems. 

Ironically, the same dichotomy could today be an obstacle to disentangling the underlying 
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pathology, as it forces categories where dimensional approach might describe reality more 

accurately. 

In the early 20th century, building on Kraepelin’s work, Eugen Bleuler introduced the 

term ‘schizophrenia’ (intended to signify splitting of the mind) to describe dementia praecox in 

a presumably more etiology-oriented manner. He saw schizophrenia as a group of conditions 

characterized by the loss of coherence between mental functions, and marked the first clearer 

distinction between groups of symptoms that we would now roughly include into positive and 

negative symptom domains. Bleuler notes the existence of fundamental symptoms that include 

changes in affectivity and the way an individual interacts with the outside world (four As: 

associations, affect, autism, ambivalence), which are present throughout the course of the 

illness, separating them from accessory symptoms (hallucinations, delusions) that might be 

present only at times and, even though seemingly more disturbing, imply better prognosis (1, 

5).  

 

Symptom domains and measuring symptoms 

The two already mentioned symptom domains, positive and negative, still represent the 

basis for understanding the clinical presentation of schizophrenia, but at the same time of other 

psychotic disorders as well. Positive symptoms could additionally be divided into core positive 

symptoms (delusions and hallucinations) that imply perceptual disturbances and specific 

thought content, and formal thought disorder seen by some as a separate dimension that 

affects organization of thoughts and can be evaluated through patients’ speech, writing, and 

behavior. Formal thought disorder (FTD) includes tangentiality, echolalia, verbigeration, 

thought blocking, poverty of thought content, changes in abstract thinking, idiosyncratic 

associations, and looseness of association, derailment, and incoherence (word salad being 

the far end of the incoherence spectrum), and has even been shown to be a predictor of 

conversion from first-episode psychosis to schizophrenia (6). Negative symptoms include flat 

affect, anhedonia, amotivation, asociality, and poverty of speech (alogia), and even though 

they often present prior to hallucinations or delusions and leade to more significant functional 

impairment, to the patients’ surrounding they are usually less noticeable than the positive 

domain and result in contact with mental health care services less often (7).  

In line with the complexity and heterogeneity of the disorder, other symptom domains 

are included in attempts to outline more accurately all elements of the clinical presentation. 

Additional symptom domains can include emotions domain, excitement, disorganization 

domain (sometimes understood to include formal thought disorder), but the one most often 

mentioned is the cognitive domain. Changes in cognition are a focus of numerous studies, and 
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it has been observed that they are present even before the onset of frank psychotic symptoms, 

they persist throughout the course of the illness, and can show changes of up to two standard 

deviations from the scores seen in healthy population (8-12). Cognitive domain changes have 

been observed to affect attention/vigilance, working memory, speed of processing, visual 

learning and memory, verbal learning and memory, verbal comprehension, problem solving 

and reasoning, and social cognition (13); they affect functioning of patients with schizophrenia, 

and, due to their presence throughout the course of the disorder, are seen as candidates for a 

trait marker. Although 27% of schizophrenia patients have been found not to have 

neuropsychological impairment (14), 98.1% of them perform below expected levels based on 

specific predictors, like parental education (15). Furthermore, although both cognitive and 

negative symptom domains show significant impact on functioning and correlation in severity, 

they are still seen as orthogonal separable entities (16). A relationship between positive 

symptoms and cognitive variables or improvement in cognition has been reported (17, 18). In 

general, the relationship between different symptom domains will depend on the model we use 

to define different symptom domains, and on specific phenomena within those domains that 

might show differential correlations.  

Different computerized and paper-and-pencil tests are used in research and clinical 

practice to evaluate intelligence and the cognitive domain, like Weschler Adult Intelligence 

Scale (WAIS) (19), MATRICS Consensus Cognitive Battery (12, 13), and The Brief 

Assessment of Cognition in Schizophrenia (BACS) (20). Assessment of other symptom 

domains in schizophrenia (and other psychotic disorders) and of their severity can also be 

achieved by using a number of validated instruments like The Brief Psychiatric Rating Scale 

(BPRS) (21), Scale for the Assessment of Negative Symptoms (SANS), and Scale for the 

Assessment of Positive Symptoms (SAPS) (22, 23). One of the most detailed and most widely 

used scales for assessment of symptom severity is the Positive and Negative Symptoms Scale 

(PANSS), grouping items into three subscales (positive, negative, and general 

psychopathology) (24, 25). In an attempt to reflect more accurately the complex clinical 

presentation with different symptom clusters, data reduction methods like principal 

components analysis (PCA) have been performed on available symptom scales to produce 

multiple-factor solutions representing different symptom clusters. In line with that, in addition 

to using PANSS to generate the usual positive, negative, and general psychopathology scores, 

it is possible to apply alternative loadings of items to produce five-factor/cluster solutions 

(positive symptoms, negative symptoms, disorganization, excitement, and emotional 

distress/depressed factor) (26, 27). Other factor solutions exist, but almost all of those yielding 

four or five factors do include the affective component (28-30). It is important to point to the 

fact that the final factor solution depends on the analysis method used, but also as expected 
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on the extensiveness of the scale chosen, as more comprehensive scales like PANSS as a 

rule yield a greater number of symptom dimensions (31). Also, Tibber et al. (31) state that the 

three-factor model that includes positive symptoms, negative symptoms, and disorganization 

dimension, ends up being the most robust and useful one, even with the risk of losing fine-

grained psychopathology elements that might be of importance at different levels of analysis.   

 

Classification systems 

It is clear that diagnosing a heterogeneous disorder like schizophrenia must come with severe 

obstacles and pitfalls. One of the most important elements in developing clear criteria for 

diagnosing schizophrenia, however essentially reductionist, was the development of the 

concept of ‘first-rank’ symptoms (FRS) by Kurt Schneider. Schneider claimed that in the 

absence of an organic cause a number of specific symptoms (auditory hallucinations – running 

commentary, third person; audible thoughts, thought broadcasting, thought insertion, thought 

withdrawal, delusions of control, delusional perception) can be considered as characteristic for 

schizophrenia. Although there are clear non-FRS symptom profiles in schizophrenia, while 

FRS can be seen in other mental disorders, FRS have significantly shaped classification 

systems, including Research Diagnostic Criteria (RDC), International Statistical Classification 

of Diseases, Tenth Revision (ICD-10), as well as Diagnostic and Statistical Manual of Mental 

Disorders, Third and Fourth Edition (DSM-III, DSM-IV) (32-34). The same was corrected in 

DSM-5 (35). Following the Kraepelinian practice in defining clearly separated diagnostic 

categories and Schneider’s hierarchy of symptoms, current classification systems (ICD-10, 

DSM V) offer a checklist of category-driven operationalized criteria that lie somewhere 

between FRS-weighted and polythetic approach (with DSM-5 finally moving away from 

unbalanced focus on FRS). A person is diagnosed with schizophrenia if they meet a specific 

number of symptom-related criteria (with specific symptoms playing a more prominent role), 

as well as additional criteria regarding their duration and functional impairment. In DSM-5 (36), 

two symptoms from the list including both positive and negative symptoms (delusions, 

hallucinations, disorganized speech, disorganized or catatonic behavior, negative symptoms) 

need to be present most of the time during a one-month period. Additionally, at least one of 

those symptoms needs to be delusions, hallucinations, or disorganized speech, there must be 

a reduction in premorbid functioning (work, social, interpersonal), and signs of the disturbance 

must persist for at least six months.  General principles of diagnosing schizophrenia from DSM-

IV have been carried into DSM-5, with changes that include the above mentioned elimination 

of the focus on FRS and, the elimination of schizophrenia subtypes of questionable validity, 

but also a more precise demarcation between schizophrenia and psychotic mood disorders 

(37).  
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1.1.2. Epidemiology, burden of illness, and outcomes 

Schizophrenia has long been regarded as a low prevalence disorder with small 

variations in prevalence across different countries, or between sexes, but newer findings on 

the epidemiology of the disorder are far from consistent. For example, although 1% lifetime 

prevalence has previously been relatively consistently reported in the literature, there are now 

differing reports that question that estimate. Based on three systematic reviews, McGrath et 

al. (38) found that median SCZ incidence is 15.2/100,000 (with central 80% showing variation 

between 7.7 and 43.0), and the median lifetime morbid risk is 7.2/1,000 persons. Systematic 

review by Saha et al. (39) found median value for point prevalence at 4.6/1,000 (1.9–

10.0/1,000), period prevalence at 3.3/1,000 (1.3–8.2/1,000), and lifetime prevalence at 

4.0/1,000 (1.6–12.1/1,000). Charlson (40) found global age-standardized point prevalence to 

be 2.8/1,000 (with 95% uncertainty interval between 2.4 and 3.1). Prevalence is lower in less 

developed areas, and higher in migrants than in native-born population (38, 39). There are 

significant global variations between countries and regions (41). While some reports show no 

difference in prevalence estimates between male and female SCZ patients (39, 40), they also 

report incidence rate ratio between male and female patients to be 1.4:1, stating that for every 

three men that develop SCZ there will be two women with the same disorder (38). Peak 

incidence is found at an earlier age for males (15-25 years) when compared to females (25-35 

years) (42), but females do show a second peak in middle age (41). 

Unlike some conflicting findings on incidence, prevalence, variability and sex ratio in 

schizophrenia, there is a consensus on the burden this disorder presents. A burden of every 

single disorder depends on the age at onset, nature of impairment, and tendency to develop 

chronicity. The fact that SCZ appears in late adolescence and early adulthood, a period critical 

for social, educational and work development, affects a number of mental functions thus 

compromising functioning at almost all levels, coupled with the fact that it is a chronic disorder, 

points to the level of expected burden it carries. All-cause mortality was found to be consistently 

elevated in SCZ patients, with reported standardized mortality ratio (SMR) of 2.6 (1.2, 5.8) and 

suicide associated with the highest SMR (38). Numerous somatic comorbidities (e.g. 

cardiovascular disease, cancer, chronic obstructive pulmonary disease, etc.), in addition to 

accidental deaths and suicide, have contributed to increased mortality in SCZ patients and 

significant reduction of expected years of life (43-45). Hjorthøj et al. (46) reported the average 

of 14.5 years of potential life lost (95% CI 11·2-17·8), and, like other authors, they found no 

sign of reduction in those numbers, with all-cause SMR even increasing over time (38). Given 

the chronic nature and the impairment it causes, SCZ also produces severe disability with 
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significant consequent economic burden. The previously mentioned systematic review (40) 

showed that SCZ contributes to global burden of disease with 13.4 (95% uncertainty interval 

9.9-16.7) million years of life lived with disability (YLD). It was listed as the 11th cause of 

disability in 2013 (47), and the economic burden was estimated to reach 1.65% of gross 

domestic product with indirect costs reaching up to 85% (48).  

With a disorder as heterogeneous as SCZ that potentially carries such a significant 

burden and functional impairment, trying to elucidate predictors of different outcomes can help 

in informing the appropriate interventions for those who need it the most. It is difficult to define 

the outcomes adequately, first because of variations in definitions of remission and recovery, 

and secondly because patients diagnosed at some point with a schizophrenia-like psychotic 

episode might end up progressing to another disorder (e.g. bipolar affective disorder – BD). 

Nonetheless, a favorable outcome was reported for about 20% of individuals with some even 

achieving complete recovery (36), and there are reports that even a portion of those refusing 

antipsychotic medications can achieve remission and recovery (41% and 33%, respectively) 

(49). Using recovery criteria that are based on both clinical and social domains lasting 

improvement, roughly one in seven individuals diagnosed with SCZ meet the recovery criteria 

(50). In a study by Wunderink et al. (51), 19.2% of first-episode psychosis patients met criteria 

for both symptomatic and functional remission. As per Ciompi’s study reported by Messias et 

al. (49), around one-third of SCZ patients are expected to have the course of illness without 

full and lasting remissions, and therefore with a poor outcome, whereas most of patients seem 

to show an exchanging pattern of full or partial remissions and recurrences. Since Bleuler’s 

time, positive symptoms have been seen as predictors of better outcome, while a number of 

studies have recognized specific predictors of poorer outcome and significant reduction in 

functioning, including male gender, pre-morbid functioning, duration of untreated psychosis 

(DUP), negative symptoms, lower educational attainment, and symptoms from the cognitive 

domain (52-55). Although mood symptoms were previously considered to be an indicator of 

better prognosis, depression in SCZ has been confirmed as a risk factor for completed suicide, 

functional impairment, relapse, and therefore for poor outcome (56). Negative and cognitive 

symptoms of schizophrenia have been found to contribute the most to schizophrenia-related 

disability connected to schizophrenia (57, 58). 

Most cognitive domains tested in SCZ patients have shown a clear relationship to 

functioning at various levels (e.g. social, work), and the score on specific tests can even be 

used as a predictor of independent functioning in the community and performing daily tasks 

(59, 60). Apart from being associated with every-day community functioning and performing 

daily tasks, cognitive domain is associated with educational achievement and work functioning. 

SCZ patients who are employed full-time show better scores on vigilance, executive 
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functioning, and working memory than those patients who are unemployed (61), and Evan et 

al. (62) reported that verbal learning, verbal  memory, and cognitive disorganization symptoms 

could function as predictors of work behavior. Cognitive functioning is also predictive of 

adherence to psychopharmacological treatment (63, 64), making cognitive impairment an 

important element in relapse of psychosis. General cognitive ability as measured by 

intelligence scores, verbal memory, and executive functioning seem to be especially 

influencing social functioning (65, 66), but all those findings can depend on additional variables, 

like the stage of the disorder and other symptoms profile. It is important to note, that a number 

of mediators and moderators may influence the relationships with functional outcome. For 

example, the processes underlying motivation deficits in SCZ can impair learning during 

cognitive remediation interventions through aberrant signals for expected value (67). 

Absence of clear predictive models of the SCZ outcome or diagnostic indicators, that 

would help us relieve the burden of SCZ, is a direct consequence of, among other elements, 

nosological issues, as well as our inability to clearly define the processes underlying the 

disorder, symptom dimensions, and specific symptoms and their relationships.  

 

1.1.3. Etiology 

Complicated etiology hypotheses and pathophysiology models are to be expected in a 

disorder like schizophrenia, portrayed since the beginning as a heterogeneous disorder (or a 

group of disorders) with unclear borders with other diagnostic categories. In line with the 

current bio-psycho-social conceptualization, we can roughly divide its etiology into biological, 

psychological and social dimensions.  

One of the earliest findings was the fact of heritability of the disorder with aggregation 

of some cases of the disorder in families (4), but even those first studies showed that genetics 

of schizophrenia does not follow simple monogenic transmission, pointing in the direction of 

complex genetic underpinnings (68). Apart from being a part of attempts to clarify genetic 

background of schizophrenia, twin studies allowed us to approximate relative contribution of 

genetic factors (roughly speaking, of biological aspect) and environmental ones. A large study 

on twin pairs born in Denmark between 1951 and 2000 (69) found 33% concordance rate in 

monozygotic twins and overall estimated heritability of 79%, which was comparable to a 

previous meta-analysis of twin studies (70). Interestingly, comparable heritability was also 

found for disorders of the schizophrenia spectrum, which will be an important point for a later 

discussion. Lower concordance rate is seen for dizygotic twins reflecting an expected reduction 

in risk with reduction of the number of genes shared. Furthermore, genetic risk for an individual 

with positive heredity risk persists even after adoption into family without history of 
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schizophrenia (71-73). Presented results, therefore, at the same time reveal a significant 

genetic risk but, given the monozygotic concordance rate of 33%, also importance of other 

additional factors (e.g. epigenetic modifications, environment). Epidemiological studies have 

offered an insight into a number of environmental factors that might interact with genetic risk 

to bring about the onset of schizophrenia. As already mentioned, schizophrenia was found to 

be more prevalent in urban and more developed areas, as well as in migrant communities 

when compared to native populations (2, 38, 39). An association was also found with season 

of birth, with the perceived risk of prenatal infection (e.g. flu) for those born in the winter (74, 

75), and birth complications that include complications of pregnancy (e.g. diabetes, 

preeclampsia), complications during the delivery, and abnormal development of the fetus (76-

78). Recently, there has been a lot of focus on cannabis use as the possible ‘second hit’ 

precipitating episodes of psychosis in those with the genetic risk (79-82). Following the above 

mentioned widely accepted psycho-bio-social model, which includes psychological and social 

domains as interacting with biological factors, an association was also found between 

schizophrenia (and wider psychosis spectrum) and lifetime trauma based on the stress-

vulnerability model (83, 84). 

Chromosomal regions identified as linked with schizophrenia (but also bipolar affective 

disorder) are 1q, 6q, 13q, 18, and 22q (85-89). With regard to individual genes implicated in 

schizophrenia, a number of them have appeared often in literature, like disrupted-in-

schizophrenia 1 (DISC1), neuregulin 1 (NRG1), catechol-O-methyltransferase (COMT), 

dysbindin/dystrobrevin-binding protein 1 (DTNBP1), and gene for dopamine receptor D2 

(DRD2) (68, 85, 90-96). Genes implicated in schizophrenia code for a wide variety of proteins 

involved in neuronal development (e.g. neuronal migration and maturation), signal 

transduction, and neuronal plasticity. As presented in the paper by Rees et al. (97), we can 

divide genetic changes present in schizophrenia into rare, common, and de novo risk alleles: 

 De novo mutations 

 Rare copy number variations (CNV) 

 Rare single nucleotide variant (SNV) 

 Small insertion/deletion mutations and single nucleotide polymorphism (SNP). 

Building on previous accumulated knowledge, a significant advance in the field of 

schizophrenia genetics was introduced by genome-wide association studies (GWAS) that 

allowed for investigation of common alleles that have a small effect. A large GWAS consisting 

from combined samples (98) yielded 108 loci with 128 associations. Although a number of loci 

opened the road for postulation of new theories on etiology of schizophrenia, or strengthening 

the already existing less accepted ones like links with the immune system, this study also 

confirmed the leading neurotransmitter theories of dopamine and glutamate. 
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One of the neurotransmitter theories supported by genetic studies is the most widely 

accepted and best-known dopamine theory of schizophrenia and psychosis. Dopamine theory 

of schizophrenia rests emerged with the ‘lucky’ discovery of antipsychotics and realization that 

these drugs modify dopamine metabolism. This, along with the effectiveness of reserpine in 

treating psychosis, the realization that drugs that increase synaptic dopamine levels lead to 

psychotic experiences, and the fact the effectiveness of antipsychotic medications hinges on 

their affinity for dopamine D2 receptors, has led to postulating the importance of 

hyperdopaminergic state in schizophrenia (99, 100). Inconsistencies regarding the findings on 

the level of dopamine metabolites (reduction in dopamine metabolites levels in some patients), 

and positron emission tomography (PET) studies of D2 receptors showing conflicting results, 

along with some other findings, have brought about modifications of the initial theory with 

hyperdopaminergia seen as being located in the mesostriatal pathway and hypodopaminergic 

state existing in frontal brain regions (101). Frontal hypodopaminergia was thus simplistically 

seen as the basis for negative symptoms, while striatal hyperdopaminergic state would be 

expected cause positive symptoms. Present-day conceptualization of the role of dopamine in 

schizophrenia recognizes multiple roads (environmental, genetic, neurodevelopmental) that 

lead to the ‘final common pathway’ of the hyperdopaminergic state in the mesostriatal pathway 

(dysregulated elevation in presynaptic dopamine level that is released even in the absence of 

appropriate stimulus) that underpins positive symptoms of psychosis (102). Dopaminergic 

dysfunction is postulated to give rise to positive symptoms through misattribution of salience 

(103). 

Newer theories on the role of dopamine recognize the fact that heterogeneous clinical 

presentation of schizophrenia that is much wider than the simple positive dimension 

(delusions, hallucinations) must involve more than one neurotransmitter system and more than 

one neural pathway. That is especially the case for negative symptoms and cognitive 

dysfunction, which can, as previously mentioned precede frank psychosis for significant 

periods of time and contribute significantly to disability. In line with findings from genetic SCZ 

studies that identify genes important for glutamatergic neurotransmission, glutamate as the 

primary excitatory neurotransmitter in the brain has for years been assumed to play an 

important role in schizophrenia. Those theories are supported by the aberrant glutamate 

receptor localization in schizophrenia (104), changes in the intracellular effects of the 

glutamatergic signaling (105), and the fact that N-Methyl-D-aspartate (NMDA) receptor 

antagonists like ketamine and phencyclidine (PCP) cause schizophrenia-like states with both 

positive and negative symptoms (106, 107). Integration of dopamine and glutamate theories 

of schizophrenia has been suggested, with dopaminergic neurotransmission being affected by 

the glutamatergic projections to the midbrain dopamine neurons (108), either from prefrontal 
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cortex (PFC) or hippocampus (109). An increasing body of evidence (post mortem and 

neuroimaging) points to the possible preferential dysfunction of NMDA receptors on γ-

aminobutyric acid (GABA) interneurons regulating glutamatergic neurotransmission (110-112). 

Since fast-spiking parvalbumin (PV) GABA interneurons generate synchronous gamma 

oscillations that are vital for certain cognitive tasks like working memory and associative 

learning, it is clear that NMDA receptor dysfunction leads to disruption of synchronized activity 

and can be the basis for emergence of symptoms in schizophrenia (113, 114). Involvement of 

the widely distributed glutamatergic system in schizophrenia, together with the loss of 

excitation-inhibition balance with implications for the synchronous oscillations, fits with 

conceptualizations of schizophrenia as a ‘dysconnectivity’ syndrome, provoked possibly by the 

widespread loss of cortical synaptic connectivity (115, 116). Stephen et al. (117) state that the 

core pathology of SCZ as a dysconnectivity syndrome might rest on plasticity changes caused 

by aberrant modulation of NMDA receptors by different neurotransmitter systems (dopamine, 

serotonin, acetylcholine), leading to aberrations in self-monitoring that could underlie FRS. 

Computational models of disrupted excitation-inhibition cortical balance and its possible effect 

on behavior have been confirmed in working memory tasks in SCZ patients (118).  

Any discussion on connectivity is incomplete without referring to structural changes 

(gray and white matter changes) in schizophrenia, probably the first aspects of SCZ biology to 

be investigated. The idea of dementia praecox carried within itself the suggestion of inevitable 

deterioration, in mental functions as well as in presumably brain structure, but the first 

anatomical and neuropathological studies failed to find anything that would be usable as 

pathognomonic, with schizophrenia ending up being termed by the neurologist Plum as the 

‘graveyard of neuropathology’ (119). Early pneumoencephalographic research did however 

show enlarged ventricles in SCZ patients, which might be understood to represent 

degeneration, that only in some patients exhibited progressive course that was followed by 

changes in clinical presentation (120, 121). Research on the structure of the brain in SCZ has 

significantly improved with newer neuroimaging technologies and techniques like computed 

tomography (CT) and magnetic resonance imaging (MRI), and it showed progression of 

ventricular enlargement, overall brain volume reduction, reduction in gray matter in prefrontal 

areas, hippocampus and parahippocampal gyrus, medial temporal and superior temporal 

regions (122-126). Not all of the findings were found to be progressive in nature, meaning that 

they might represent a trait feature, and changes in other regions like the amygdala (reduction 

in volume in early schizophrenia) have also been described (127). The affected regions are 

important for language processing, emotion regulation, memory, decision making, and a 

number of other functions that could underlie SCZ symptoms. Described changes were found 

to generally better chart onto negative and cognitive symptom domains (128, 129), and are 
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like negative and cognitive symptoms present even before frank psychosis onset (appearance 

of positive symptoms) or in individuals who are at risk of developing psychosis (130-132). All 

these findings taken together seem to suggest a strong neurodevelopmental aspect of 

schizophrenia, but cannot disregard degenerative nature of some of the changes observed 

after the illness onset. Also, even though antipsychotics are found to contribute to loss of gray 

matter, they alone cannot explain the entire effect and, furthermore reduction in gyrification in 

patients has been found to predict response to antipsychotic medications (133). 

Cortical gray matter loss was found generally not to be due to loss of neurons but rather 

due to reduced size of the cell body, dendritic complexity, and spine density, leading to the 

conclusion that it is the integration and transduction of signals that is primarily affected (134-

136). One of the methods that advanced our understanding of connectivity changes is diffusion 

tensor imaging (DTI) that uses fractional anisotropy (FA) as a measure of myelin integrity. FA 

anisotropy is based on the constraints forced on the diffusion of water by axon walls (137). 

Reductions in FA, as the measure of white matter tracts integrity, were found to be present as 

early as in the first episode of psychosis (FEP) and in those who are at risk of developing 

psychosis (138-141), and the regions where changes were found include frontal cortex, 

temporal cortex, parietal cortex, hippocampus, corpus callosum, cingulate bundle, superior 

and inferior longitudinal fasciculus, and uncinate fasciculus (115, 142). Changes in these 

connections have the potential to affect cognitive functions like working memory that depend 

on integration of wide-distributed networks (143). Cognitive impairments were hypothesized to 

be the result of the disruption in cortico-cerebellar-thalamic circuits leading to ‘cognitive 

dysmetria’ (144, 145).  

Neuroanatomical changes in SCZ have even been used in pattern classification in 

attempts to discern possible valid biological predictors of transition into psychosis (146), 

providing accuracy of 86% and offering a promise of future diagnostic/prognostic tools, while 

functional connectivity neuroimaging methods, which will be mentioned later, offered new 

insights into specific changes in SCZ.  

 

1.2. Schizophrenia and psychosis spectrum concept 

1.2.1. Overlap of current diagnostic categories 

In the previous text, schizophrenia spectrum was already mentioned when discussing 

a recent twin study (69), and a few outlined elements already hinted at the problem of validity 

of schizophrenia diagnosis that has important repercussions, not only for the clinical work but 

also for the research that is supposed to yield possible biomarkers of the disorder. Kraepelinian 



12 
 

dichotomy between non-affective psychosis (dementia praecox) and affective disorders 

(manic-depressive illness) does not come with clear delineation given the absence of 

pathognomonic signs or symptoms that would not be present in other disorders (147-149), 

which resulted, as mentioned earlier, in moving away from FRS concept in the newer 

classification systems (DSM-5) because of its low diagnostic value (150). The fact that different 

disorders share the same symptoms (e.g. existence of mood symptoms in schizophrenia, and 

mood incongruent psychosis in BD) leads to lower diagnostic consistency over time, and the 

possibility of diagnostic category being changed in the course of illness (4, 151). Also, Bleuler’s 

conceptualization of schizophrenia(s) as a group of disorders has not yet resulted in valid 

subtypes of the disorder, although with as diverse outcomes as we see in schizophrenia (152) 

one would expect to be able to accurately define and differentiate the subtypes based on 

specific predictors. Actually, the already existing subtypes were removed from DSM-5 due to 

lack of their validity (37). The polythetic approach of our current classification systems 

managed to address problems of diagnostic reliability and reproducibility (153), but given its 

descriptive nature, so far it almost utterly failed with validity of psychiatric diagnostic categories, 

if we define validity as pertaining to delineation of categories based on characteristic etiological 

underpinnings (154).  

One of the possible elements that creates an obstacle in pushing forward with 

explaining the underlying deficits of schizophrenia could be the ‘inadequate’ patient samples 

we have used since the first definitions of the disorder. Since the time of Kraepelin and Bleuler 

our classifications and attempts at elucidation of etiology have depended on examination of 

individuals requiring care in asylums because of the severe impairment, with patients showing 

milder impairment not interacting with medical system or exiting care at some point. This 

concentration of severely ill patients with poor outcomes also creates the room for Berkson’s 

bias, an outcome bias based on research population selection/availability that can lead to 

spurious correlations (e.g. in co-occurrence of negative and positive symptoms) (155) and 

consequently even formation of categories based on those correlations (156, 157). In line with 

that, it was indeed seen that the outcome of schizophrenia worsened with the narrower 

definitions of the disorder (50, 158). The understanding of categories (diagnostic entities) and 

psychopathological phenomena of which it consists (syndromes, symptoms) will naturally be 

hindered by the biases informing the formation of the implicated categories and perceived 

relationships and the nature of the psychopathology.  

One of the ways to address symptom overlaps in psychiatry, other than accepting 

dimensionality of phenomena and dimensional diagnostic approach, is the use of co-morbid 

diagnoses or creation of intermediate categories. Understanding the incongruence between 

Kraepelin’s clear delineation of disorders and what was seen in the reality, Jacob Kasanin 
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described schizoaffective psychosis as a disorder sharing phenotypic expression with both 

schizophrenia and mood disorders (159). Schizoaffective disorder (SCAD) was difficult to 

separate from SCZ and BD, as it was seen to appear in both families of those diagnosed with 

schizophrenia and those diagnosed with bipolar affective disorder (160, 161), and the 

distinction between those three diagnoses suffers seriously from the lack of reliability (162, 

163). There is no clear segregation within families for these disorders (164), and a strong 

comorbidity index was found between all three disorders (165). Keshavan et al. (166) 

examined a large sample of SCZ, SCAD, and BD patients using descriptive symptom scale, 

and found that 45% of cases fell somewhere between prototypical SCZ and BD (significantly 

exceeding the number of SCAD patients alone). Furthermore, Peralta et al. (167) found no 

clear distinction point between different adjacent categories of psychotic disorders (including 

affective and non-affective disorders), and all variables (premorbid functioning, risk factors, 

clinical presentation, impairment) seemed to be continuously distributed between non-affective 

psychosis and mood disorders with symptoms of psychosis, supporting the concept of spectra 

and the continuum model. Premorbid cognition and social functioning seem to differ 

significantly between SCZ and BD, but these differences diminish after illness onset, as 

cognitive changes in BD seem to be only qualitatively milder but quantitatively similar to those 

seen in SCZ (168, 169). Psychotic BD shows, as expected, greater changes in cognition (168), 

which brings it closer to SCZ. Initially seen as the differentiating factor (with antipsychotics 

being used to treat schizophrenia and mood stabilizers reserved for BD), 

psychopharmacological treatment has also moved in the direction of blurring of demarcation 

lines (170-173), with both classes being used in the treatment of SCZ and BD. The overlap 

was also confirmed in the studies exploring biological basis of schizophrenia, some of which 

have already been mentioned.  

According to Craddock and Owen (4), the crucial genetic findings leading to the 

deconstruction of dichotomous view of the relationship between non-affective psychoses and 

the group of mood disorders include: 

 Family studies pointing to co-aggregation between SCZ, SCAD and BD; 

 Twin studies proving the existence of some susceptibility genes that defy this 

nosological dichotomy; 

 Linkage studies showing chromosomal regions implicated in both SCZ and BD, 

in line with the finding of shared susceptibility genes; and 

 Identification of genes whose variations mean existence of risk for both SCZ 

and BD. 

A study by Goes et al. (174) reported a shared linkage on chromosomes 13q21-33 and 

2p11-q14 between SCZ and BD with mood-incongruent psychotic symptoms, which confers a 
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risk for familial aggregation and a more severe form of the disorder. Genome-wide linkage 

scan also revealed linkage at 1q42 and 22q11 (with DISC1 and COMT respectively mapping 

to those two sites), and the evidence for linkage was contributed across psychosis spectrum 

by both SCZ and BD (89). The 22q11.2 deletion syndrome, a CNV carrying a high risk for 

psychosis but also other conditions like autism spectrum disorders (175), shows sensory and 

executive network disruptions (176). A large BD study found three large CNVs previously 

associated with SCZ, confirming shared CNVs but also their reduced prevalence in BD (177). 

A study on dysbindin SNPs showed its importance in a subset of BD patients with psychotic 

episodes, possibly conferring specific risk for psychotic features across current diagnostic 

categories (178), and there is plentiful evidence for convergence at the susceptibility locus at 

G72/G30 (85). Genetic evidence taken together, in line with questionable clinical delineation, 

supports shared genetic susceptibility risk across SCZ-SCAD-BD spectrum (with extensions 

into autism spectrum disorders as well). As we would expect from this genetic proof, there is 

also some evidence for comparable structural changes in SCZ and BD like dendritic spine 

pathology in pyramidal neurons in dorsolateral prefrontal cortex (DLPFC) (135), and reduction 

in white matter volume in left frontal and fronto-temporal regions (179). The same study (179), 

however, also found differing locations of gray matter loss.  

With all that was mentioned above, and the fact that almost 50% of BD patients 

experience psychotic (positive domain) symptoms during their illness (149), it was postulated 

that psychotic bipolar disorder might present a meaningful subcategory in BD but also of the 

psychosis spectrum (180). 

 

1.2.2. Conceptualizing psychosis spectrum 

Already Bleuler’s and other early works on schizophrenia hinted at possible continuum 

between schizotypy and schizophrenia (5, 181), with term schizotaxia introduced by Meehl 

(182, 183) to signify a not necessarily expressed genetic liability to schizophrenia, and 

schizotypy describing a number of psychosis-like phenomena related to schizophrenia (184). 

DSM-5 has formalized the use of schizophrenia spectrum, and recognizes schizophrenia 

spectrum and other psychotic disorders to include: schizophrenia, schizoaffective disorder, 

brief psychotic disorder, schizotypal disorder, delusional disorder, schizophreniform disorder, 

psychosis induced by medications, substance or other medical conditions, other specified or 

unspecified schizophrenia spectrum and other psychotic disorders (36). It is important to note 

that psychosis spectrum can be understood as a wider concept than schizophrenia spectrum. 

Psychosis spectrum itself, however, can be used more narrowly to denote blurry boundaries 

between psychotic disorders like schizophrenia, schizoaffective disorder, and psychotic mood 
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disorders (due to previously elaborated lack of valid points of distinctions or clear biological 

boundaries), or alternatively to portray a wider continuum including psychotic features in 

numerous other disorders and stretching all the way into psychosis-like experiences in the 

general population. Schizophrenia then becomes just the 30% of worst outcome cases of the 

wider psychosis spectrum (156).  

Allardyce et al. (157) state that psychosis continuum has been getting more traction 

due to: 

 Distribution of psychotic symptoms in the general population; 

 Shared genetic and other risk factors in patients and non-patient populations; 

and 

 The transition to clinically significant psychotic episodes over time. 

Psychotic experiences/symptoms were found to be present in the general population 

with prevalence being reported to range all the way to 17.5% (185). A study by Kendler et al. 

in the United States (186) showed that 28.4% of the general population endorsed at least one 

psychosis screening question, and Ohayon (187) reports on 38.7% of the general population 

sample endorsing hallucinatory experiences, with daytime visual (prevalence 3.2%) and 

auditory (0.6%) hallucinations carrying the highest risk for actual psychotic pathology. In a 

large group comparison study reported by Kråkvik et al. (188), 7.3% of those surveyed 

endorsed lifetime auditory verbal hallucinations, and they also had higher levels of depression 

and anxiety, as well as more severe life events, and were more likely to be single and 

unemployed. More than a two times greater prevalence of psychotic phenomena was found in 

those with depression and anxiety (189). Interestingly, subclinical phenomena from the 

negative symptoms domain are assumed to be of similar prevalence as positive symptoms, 

and their co-occurrence predicts later impairment (190). Changes in the cognitive domain are 

more common in individuals with psychotic phenomena (191, 192), but also in their relatives 

(193, 194), additionally suggesting an extended continuum. Another element supporting the 

continuum of psychotic experiences are the socio-environmental risk factors (stressful life 

events, cannabis use, urbanicity, and childhood trauma) shared across different psychotic 

disorders as well as subsyndromal psychotic phenomena in general population (195). There 

is an additive effect for all subthreshold symptom domains, with presence of combinations of 

subthreshold symptoms raising the risk for future psychopathology and its severity (156). Also, 

it has generally been accepted that psychosis arises and persists over time in an interplay of 

susceptibility factors and the environment (195). In addition to explaining the role of trauma or 

cannabis use on appearance of psychotic experiences, or co-occurrence with other symptoms 

and their severity, this model could also be used to understand the relationship between 

different symptom clusters and the environment in a transdiagnostic psychosis spectrum, in 
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which they impact each other over time and change their connectivity under the influence of 

cumulative or increasing social and environmental burden (195). 

Schizophrenia itself is assumed to represent less than a third of all psychosis spectrum 

disorders (including schizophrenia spectrum, but also psychotic depression and psychotic BD) 

whose lifetime prevalence was estimated to be above 3% (196).  It was shown that compared 

to using existing nosological categories, adding dimensional representation of patient symptom 

dimensions and symptoms also adds to our conceptualization of etiology and outcome, and 

might prove to be clinically more useful (197). ‘Salience syndrome’ was used to describe the 

syndromal nature of schizophrenia and other psychotic disorders with different symptom 

dimensions (positive symptoms, negative symptoms, disorganization, manic and depressive 

symptoms) (198), where specific combinations of dimensional psychopathology might warrant 

categorization. Taken together, these outlined findings, along with research on possible 

biomarkers (e.g. cognition, neuroimaging) to discriminate the categories failing to find clear 

boundaries (199), suggest the existence of a psychosis spectrum with largely shared etiology 

and overlapping symptom dimensions, in which differences arise from an additional genetic 

burden and the effect of disease modifiers like neurodevelopmental impairments (200). This 

conceptualization would frame SCZ and BD as being just specific phenotypic expressions on 

the same spectrum with largely common underlying pathophysiology. 

The idea of schizophrenia as a distinct category has additionally seriously been 

challenged by the Research Domain Criteria (RDoC) initiative (201), with its aim of defining 

biologically valid diagnoses that do not depend as much on phenomenology, which rests on 

work of a number of authors suggesting a wider system neuroscience approach including 

affective and cognitive dimensions in psychosis research (168, 180, 202). The idea of 

proposed framework is to act agnostically with respect to existing nosological categories, 

deconstructing them into important clinical phenomena in the hope of linking those with 

involved brain circuits and the underlying pathology (153). With the hope of defining 

endophenotypes, measurable biologic traits, instead of diagnosis, it uses domains of 

dysfunctions (e.g. negative valence system, cognitive system) further subdivided into 

underlying constructs (e.g. working memory, perception), and links them to lower units of 

analysis like neural circuits, cells, molecules, and genes (203). While the existing narrow 

categories of questionable validity (e.g. schizophrenia) might present an obstacle to elucidating 

the biology of underlying symptoms positioned on a transdiagnostic continuum, approaches 

like those of RDoC initiative could be used for the future attempts at  bottom-up reclassification 

of disorders (180). 
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1.3. Thalamus and its role in schizophrenia spectrum disorders 

1.3.1.  Anatomy of thalamus and its connections to other brain 

structures/regions  

Knowledge on the thalamus in humans rests on the rich history of autopsies, 

pathological studies, animal studies, but also on recent advances in neuroimaging techniques, 

including functional connectivity methods. Initially considered as just a simple passive relay 

station between sensory/motor areas and higher cortical regions, the thalamus has been found 

to play an active role in regulation and modulation of information transmission to the cortical 

areas, mediation and modulation of communication between different cortical areas, and even 

in the control of cortical states (204-208), which makes it relevant for understanding of higher 

cognitive functions and consciousness (209) . Based on the embryonic origin, it can be divided 

into ventral and dorsal thalamus, with dorsal thalamus representing major aggregation of nuclei 

we usually refer to when speaking about the thalamus. The ventral part mostly comprises of 

thalamic reticular nucleus.  

The thalamus, a gray-matter structure made up of nuclei with different and wide-

distributed projections, is the largest part of the diencephalon. It consists of two symmetrical 

ovoid structures (hemispheres) whose medial walls represent lateral walls of the third brain 

ventricle, connected by the intermediate thalamic mass. The anterior part of the thalamus 

forms the posterior wall of the interventricular foramen of Monro, and the posterior part 

(pulvinar) lies superior and lateral to superior colliculus. Dorsal (superior) surface of the 

thalamus is covered by stratum zonale, a thin layer of white matter found in the roof of the third 

ventricle. Superior part of the thalamus is also in relationship with caudate nucleus, with its 

head positioned anterior-superior to the thalamus. The internal capsule separates the 

thalamus from putamen and globus pallidus. The thalamus is continuous with the midbrain 

tegmentum, and its boundary with the hypothalamus is marked by the hypothalamic sulcus 

(sulcus of Monro) in the lateral wall of the third ventricle.  

Dimensions of the ovoid thalamic structure in humans are around 30 x 20 x 20 

millimeters (mm), with estimated around 10 million neurons in each hemisphere (210). Gray 

matter of the thalamus is roughly divided by Y-shaped white matter internal medullary lamina 

into anterior, medial, and lateral groups of nuclei, but based on their topographical placement 

other groups of nuclei can also be conceptualized (intralaminar, periventricular, reticular). In 

addition to division based on their ‘geographical location’, thalamic nuclei are also divided 

according to their general function into: 

 Relay thalamic nuclei; 
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 Association thalamic nuclei; and 

 Non-specific thalamic nuclei (intralaminar, periventricular, reticular). 

Relay neurons in the thalamus receive excitatory glutamatergic projections from 

sensory pathways, but also cerebellar and basal ganglia signals, and most nuclei in turn project 

to one or just few functionally distinct cortical areas (210). Association nuclei receive 

projections from cerebral cortex and in turn project to association areas of the cerebral cortex, 

where they exhibit regulatory activity. It also seems that projections from specific thalamic 

nuclei are not necessarily restricted to one cortical region only, but engage a number of cortical 

areas, while in turn those cortical areas project onto a number of different thalamic nuclei (211, 

212). As indicated by their name, non-specific thalamic nuclei project widely to a number of 

cortical regions. In addition to projecting to one or more areas of the cortex, thalamic nuclei 

send collaterals to other brain structures, like amygdala, hippocampus, and striatum (213, 

214).  

Cortical projections to the thalamus have the property of specifically inhibiting irrelevant 

information while they strengthen relevant input. Thalamic nuclei also contain a number of 

inhibitory interneurons that serve as modulators of signal in the thalamus, but the regulatory 

inhibitory signals are also provided by thalamic reticular nucleus and other neuromodulatory 

systems (e.g. serotoninergic projections) (215-218). Reticular thalamic nucleus (RTN) is a thin 

sheet of GABAergic neurons enveloping the thalamus that has a number of afferent and 

efferent projections with thalamic nuclei, cortical regions, as well as the brainstem. Along with 

other inhibitory neurons in the thalamus, it plays an important role in the regulation and 

imposing of synchronous oscillations that underlie a number of important functions like 

sleep/wake cycle but also higher cognitive functions. Inhibitory interneurons are thought for 

instance, to be vital players in modulating thalamo-cortical alpha rhythm (8-13 Hz), important 

for linking sensory input from the retina and visual perception (219). 

Since thalamic nuclei receive various afferent projections, as reported by Herrero et al. 

(210), based on the type of afferent projections received they can be divided into: 

 First-order nuclei receiving afferent fibers from ascending pathways, 

cerebellum, mammillary bodies, as well as cortical projections (from cortical 

layer 6) that also send collaterals to reticular nucleus; 

 Higher-order nuclei primarily receiving input from cortical layer 5 pyramidal 

neurons (without collaterals to reticular nucleus). 

Higher-order nuclei play the role in communication between cortical regions, and 

therefore in the higher cortical functions (210). Afferent projections to the thalamic nuclei are 

contralateral, although some of the nuclei receive both contralateral and ipsilateral projections, 
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while thalamo-cortical connections stay in the same hemisphere except in the case of RTN 

and midline nuclei (220, 221). As previously mentioned, RTN is reciprocally linked to other 

thalamic nuclei, which is not the case for other thalamic nuclei and their mutual links thus 

leaving thalamo-cortical networks mostly well separated.  

Although the thalamus represents a relatively well-defined structure, and its nuclei are 

generally well separated based on different cell size, afferent projections and communication 

with cortical areas (209), there is still variability between individuals that can be even greater 

based on age and existence of neurological and psychiatric disorders. It is reported that there 

is a change (reduction) in the volume of thalamic regions (affecting more anterior portions), as 

well as changes in the microstructure and integrity of nuclei affecting their projections (222). 

With over 60 nuclei, there is also a significant discrepancy in terminology describing nuclei and 

thalamus parcellations in classical studies, which is currently being addressed using 

neuroimaging and modern computational methods. It has also been suggested to use different 

level (area, cluster, global) concordance analyses using previously well-established 

delineations of thalamic nuclei through registration in common space (223), but a detailed 

report of those attempts would go beyond the scope of this text. The same paper (223), 

however, also outlines nuclei and regions that carry substantial topographic and functional 

importance, and that division can be used as a meaningful illustration of parcellation of the 

thalamus. We can roughly divide thalamus into (223): 

 Intralaminar formation with intralaminar nuclei 

 anterior nuclei (central medial, paracentral, central lateral, and 

the cucullar nuclei) 

 posterior nuclei (centre médian, parafascicular nuclei, and the 

subparafascicular nucleus) 

 Periventricular and midline region (midline nuclei, substantia grisea centralis 

thalamica, subependymal nuclei) 

 Anterodorsal region 

 anteroventral nucleus (AV) 

 anteromedial nucleus (AM) 

 anterodorsal nucleus (AD) 

 dorsal superficial nucleus (DSf) 

 Medial region (mediodorsal nucleus MD – medial, central, paralaminar) 

 Lateral region 

 Motor thalamus 

 ventral anterior nucleus (VA) – medial and lateral 

 ventrolateral nucleus (VL) 
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 Sensory thalamus 

 ventral posterolateral nucleus (VPL) 

 ventral posteromedial nucleus (VPM) 

 superior ventroposterior nucleus (VPS) 

 parvocellular extension of VPM (VPMpc) 

 Geniculate region (lateral and medial geniculate bodies – LGB & 

MGB) 

 Posterior region (pulvinar nuclei). 

Simplified thalamus divisions reduce the number of groups to three major regions 

(anterior, medial, and lateral), with pulvinar nuclei being lumped in the lateral region, and 

geniculate bodies are occasionally completely left out from the thalamus divisions.  

 

Anterodorsal region 

Anterior part of the thalamus is positioned between short rostral arms of the Y shaped 

internal medullary lamina, and it extends to the dorsal surface of the thalamus creating the 

anterodorsal region. The largest nucleus of the group, AV, also roughly gives shape to the 

anterior part of the thalamus, and DSf extends posteriorly all the way to the dorsal surface of 

the pulvinar. Given the difficulty in separating different nuclei in the anterior region, and the 

fact that they share most of their characteristics, conceptualizations of this region occasionally 

focus solely on AV. Also, interestingly, interneurons (local circuit neurons) present a significant 

proportion of neurons of the anterodorsal region, with Dixon and Harper (224) reporting the 

proportion of 42%. Anterior region of the thalamus is connected to subicular cortex, mammillary 

bodies (mammillothalamic tract), retrosplenial cortex, but also importantly to the anterior 

cingulate cortex (ACC), and medial orbitofrontal cortex (OFC), which positions it as a structure 

important in episodic memory, but also for executive functions and as part of Papez circuit in 

emotion regulation (225). Reduction of cell numbers in AV was found in individuals with 

impaired episodic memory due to alcoholism (226). Most projections originate from caudal 

hippocampal formation either directly by fornix, a major hippocampal output tract, or through 

mammillary bodies (227). Afferents to this region have also been shown to originate from a 

number of other neurotransmitter systems, with superior region having the highest innervation 

density of cholinergic projections to diencephalon, playing a role in the appearance and 

propagation of theta rhythms (228, 229). Lesions of the anterior region of the thalamus affect 

memory and cause anomia for proper names and aphasia (210, 230). As reported by Mai and 

Forutan (231), it is supposed that different nuclei of this region play a role in one of three major 

functions: 
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 Cognition – extensive reciprocal connections of AM with a number of rostral 

cortical areas, including anterior cingulate cortex, thought to contribute to 

cognitive flexibility and executive functions; 

 Synaptic plasticity – extensive connections of AV to retroplenial cortex and 

hippocampal formation, while playing the role of theta rhythm pacemaker with 

majority of its cells showing specific rhythmic activity; 

 Encoding head orientation and mental navigation – with almost no connections 

to frontal cortex and projections to postsubiculum and retrosplenial cortex, AD 

is thought to play a role in manipulation of visual mnemonic processes (227). 

 

Medial region 

The medial thalamic region extends from the interthalamic adhesion to the level of 

posterior commissure, and roughly covers about 2/3 of the thalamus. MD represents the 

majority of the medial region, but it is not a homogenous nucleus, and is usually divided into 

medial, central, and paralaminar parts, although other divisions based on cell size and 

cytoarchitectonic features are also used (solutions for those definitions are not unambiguously 

supported by findings in humans) (223). This region receives projections from rhinal and 

dorsolateral prefrontal cortex (DLPFC), but also from amygdala, ventral globus pallidus, and 

substantia nigra (232-234). Medial portion of this region is thought to be the part defined by 

afferent projections from the amygdala (235). It sends efferent projections to orbital, medial, 

and dorsal prefrontal cortex, and the afferents from innervated areas in turn end up in the same 

general MD area (210, 236). It is exactly this reciprocal innervation between MD and prefrontal 

cortex that was used earlier for the demarcation of prefrontal cortex. Additionally, different 

areas of MD reach different specific prefrontal subregions creating separate circuits (medial 

MD – lateral OFC, caudodorsal MD – medial frontal/cingulate cortex, lateral MD – lateral PFC) 

(237). We can also use divisions based on the cell features, magnocellular (medial third) and 

parvocellular (larger lateral portion) MD, to define connectivity, with magnocellular MD 

receiving projections from ventromedial PFC and medial temporal lobe, and sending 

projections to OFC and ventromedial PFC, and parvocellular MD reciprocally connected to 

DLPFC (220, 238, 239). When outlining importance of MD-PFC connections, it is vital to 

mention that MD nonetheless does not represent the only thalamic nucleus connecting to PFC. 

Other nuclei like AV, AL, pulvinar, RTN, and intralaminar nuclei also have connections to PFC 

(221).  

In addition to PFC, efferent projections from MD are directed towards cingulate, insular, 

premotor and parietal cortex (231). The medial region of the thalamus is an important location 

on the road of important stimuli to the amygdala, and is not expected to play just a passive role 
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in that process. As stated by Yaniv et al. (240), thalamic input entering through external and 

extreme capsule, along with the one from sensory cortex areas, allow amygdala to focus 

attention to stimuli that might present a danger to the individual (231). Activity of MD seems to 

also prime PFC and makes it more responsive to the input coming from other different brain 

regions. Communication of MD with the mentioned cortical and subcortical areas implies its 

role in the circadian cycle and some vegetative functions, integration of somatic and visceral 

activity, but importantly also in higher functions like different cognitive processes and 

functioning, as well as emotional processing and integration of other functions with emotions 

(210). As an example, role of the medial thalamic region and its connection to limbic regions 

in pain processing involves motivational and affective aspects of pain, unlike the more sensory-

centered role of the lateral region (241). Lesions of the medial and anterodorsal regions of the 

thalamus result in memory and other cognition impairments (although differential contribution 

of specific areas is difficult to discern), and bilateral infarction that affects medial regions results 

in a syndrome involving apathy and amotivation (242). Although the thalamus is usually 

mentioned in the context of most sensory inputs except for olfaction, olfactory information 

reaches MD as well indirectly through OFC or piriform cortex, while functional neuroimaging 

studies show activation of MD in olfactory task conditions, and lesions of this route seem to 

affect olfactory attention (243). 

 

Lateral region 

The lateral region is relatively a well defined region, bordered medially by internal 

medullary lamina, posteriorly by the pulvinar, and laterally by external medullary lamina, 

reticular nucleus, and internal capsule. Nuclei of the lateral region of the thalamus relay and 

process sensory and motor information, and can be divided accordingly into sensory and motor 

parts, with motor parts being positioned in front of the sensory area. Motor portion of the lateral 

thalamic region can additionally be divided into anterior region (VA) that receives projections 

from basal ganglia (substantia nigra and internal pallidum), and posterior region (VL) that 

receives projections from the cerebellum (231). VA is additionally divided into medial and 

lateral parts, with medial VA receiving additional afferents from amygdala and limbic cortex, 

and VL receiving additional connections from the vestibular system (223). Efferents from the 

motor lateral region project to premotor, motor, somatosensory, and supplementary cortex, but 

also to cingulate and prefrontal cortex linked to motor planning, while those areas then project 

to spinal cord and cerebellum influencing motor activity as well as complex behavior (221, 

223). Net activity in VA, as part of the circuit linking cortical areas, basal ganglia and the 

thalamus, can activate or inhibit internally generated motor activity patterns (244), and 

cerebellar projections to VL play the role in synergy of multiple muscles, balance, and fine 
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motor skills (231). Canavan et al. (245) reported how lesions to the region roughly 

corresponding VA and VL severely disrupt or block relearning of motor tasks. Cerebellar 

communication with the thalamus plays an important role in movement disorders (e.g. 

Parkinson’s disorder), and lesions to the region corresponding to the area of cerebellar 

afferents are associated with abnormal movements.  

Sensory thalamus is the main relay for somatosensory and viscerosensory inputs, and 

represents one of the most investigated and well known parts of the thalamus. Somatosensory 

part consists of VPL, VPM, and VPS, while VPMpc is considered to be a part of the 

viscerosensory-input sensory thalamus. VPL and VPM are the nuclei that receive mainly 

contralateral surface and deep sensory inputs, with VPM receiving trigeminal tract, and VPL 

spinal and lemniscal tracts (231). VPL and VPM project in a topical manner with segregation 

of modalities to primary somatosensory cortex, postcentral somatosensory areas (246). VPS 

receives proprioceptive information, and VPMpc receives gustatory information and visceral 

afferents (cardiovascular, gastrointestinal) and projects to lateral postcentral gyrus, insula 

(gustatory areas), amygdala, and auditory cortex (231).  

Geniculate region (MGB, LGB) is the relay area for auditory and visual information, and 

their position within the thalamus subdivision has been questioned. They are termed ‘bodies’ 

since in addition to nuclei, they contain derivatives of other parts of the thalamus (223). LGB 

has six layers and receives retinal input (layers 1, 4, and 6 from contralateral retina, and 2, 3, 

and 5 from ipsilateral retina) and projects via optical radiation to the occipital lobe’s primary 

visual cortex in a topographical manner. MGB receives tonotopically organized auditory 

information from inferior colliculus with some fibers directly from lateral lemniscus, and projects 

via auditory radiation to primary auditory cortex on the superior temporal gyrus. Lesions in 

MGB and auditory radiation can cause auditory illusions, sound agnosia, and extinction of 

contralateral ear input, while lesions in LGB cause homonymous quadrantanopia and 

homonymous hemianopia (210). 

 

Posterior region 

The posterior region of the thalamus contains pulvinar nuclei that are usually referred 

to as simply the pulvinar, given there is no clear distinction between different areas and no 

consensus on the division or nomenclature. The pulvinar represents around 25% of the total 

mass of the thalamus (247). Pulvinar nuclei show wide distributed reciprocal connections 

almost exclusively with the neocortex, but with the limbic system as well (amygdala). Medial 

and lateral regions connect with different cortical and subcortical areas (frontal, cingular, 

orbital, temporal, parietal), and inferior and lateral regions with primary visual (striate) and 
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extrastriate cortex (247). As a general rule, as outlined by Mai (231) and based on work by 

Gutierrez et al. (248), different parts of the pulvinar are reciprocally connected using separate 

pathways to specific different cortical regions linked to different modalities. LGB and the 

pulvinar are a good example of the already mentioned first-order and higher-order nuclei 

respectively, where LGB represents a relay for sensory retinal information and projects to 

primary visual cortex, while the pulvinar connects to extrastriate cortical regions and receives 

the majority of its information from the cortex (249). In addition to acting as sensory relay and 

sending efferents to specific cortical areas, first-order nuclei like LGB also receive projections 

from cortical layer 6, while higher-order nuclei receive projections from layers 5 and 6, and 

send projections back to the cortex forming cortico-thalamo-cortical loops. The pulvinar is 

assumed to play a role in visual attention filtering when exposed to distractors in the 

surrounding, and it was stated that different aspects of attentional processes depend on the 

network involving PFC, the pulvinar, and posterior cortical neurons (222). 

 

Other thalamic nuclei 

Paraventricular region nuclei are important for wakefulness, but also represent a relay 

station connecting brainstem and hypothalamus internal states information with higher limbic 

cortical regions that provide ‘emotional context’, and it was reported that the features these 

nuclei ‘ascribe’ to stimuli include aversiveness, reward, novelty, and surprise (250). Van der 

Werf et al. (251) suggest that midline and intralaminar thalamic nuclei are important for different 

aspects of awareness, and outline following groups based on topographical position and 

assumed activity: 

 ventral group – multimodal sensory processing (reuniens nucleus, rhomboid 

nucleus, and posterior part of the central medial nucleus); 

 dorsal group – viscero-limbic processing (paraventricular, parataenial and 

intermediodorsal nuclei);  

 lateral group – cognitive functions (central lateral nucleus, paracentral nuclei, 

and the anterior part of the central medial nucleus);  

 posterior group – limbic motor functions (centre médian and parafascicular 

nuclei). 

Intralaminar and midline nuclei form numerous connections with cortical regions, which 

led Saalmann (252) to state that along with MD that projects mainly to PFC, intralaminar nuclei 

connecting with fronto-parietal cortex, and midline nuclei connecting with medial temporal lobe 

and medial PFC, underlie a number of cognitive functions like attention and memory, as well 

as reward-based behavior. It was postulated that this is done through modulatory activity on 
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synchronization between different groups of cortical neurons and their oscillatory patterns 

(208, 252). Intralaminar and midline nuclei also receive inputs from reticular nucleus. Thalamic 

reticular nucleus is a non-specific nucleus consisting of GABAergic neurons forming a thin 

sheet between internal capsule and external medullary lamina of the thalamus. Most neurons 

linking the thalamus and different cortical areas in either direction send collaterals to reticular 

nucleus neurons, which then in turn send inhibitory projections to thalamic relay neurons, 

giving rise to conceptualization of reticular nucleus as involved in changes in activity during 

sleep-wake cycles, attention and information flow regulation (253). However, despite layer 

stratification and differential connections of those layers with thalamic nuclei, it was reported 

that a number of neurons in reticular nucleus receive projections from more thalamic nuclei, 

which probably enables them to integrate various subcortical and cortical inputs and provide 

differential inhibition in order to filter specific information flow through the thalamus (253, 254). 

Non-invasive neuroimaging methods confirmed the wide-spread connectivity of the 

thalamus with the cortex, and classification of gray matter based on connectivity patterns with 

cortex yielded areas corresponding to previous histological findings (255, 256). In summary, it 

is clear from the previous general overview that the thalamus can indeed be understood as a 

motor and sensory relay station, receiving glutamatergic sensory input from the periphery and 

projecting onto specific cortical areas, making it important for wakefulness-sleep cycle, 

arousal, and primary sensory processing (257). However, the same is not done passively, as 

it also serves as a sort of the ‘thalamic gate’ that with the help of local and outside GABAergic 

inhibitory inputs gates the information flow to the cortex, as well as a site for modulation of the 

transmitted information. Thalamic inputs can be divided into drivers and modulators, but the 

separation is not made on the basis of separation of glutamatergic and non-glutamatergic 

inputs because a number of glutamatergic inputs to the thalamus can also be characterized as 

modulatory. In the case of glutamatergic connections, drivers are characterized by activating 

ionotropic receptors and producing larger initial excitatory postsynaptic potential showing 

paired-pulse depression, and modulators by activating also metabotropic receptors and 

producing smaller initial excitatory postsynaptic potential with paired-pulse facilitation (257). In 

the case of first-order relay cells in the thalamus, we can conceptualize glutamatergic sensory 

driver input from the periphery and the projection being sent to the appropriate cortical area, 

predominantly to layer 4. However, reciprocal feedback cortico-thalamic communication 

originating from the cortical layer 6 will have a modulatory effect. In the case of higher-order 

thalamic nuclei like MD or the pulvinar, projections from the cortical layer 5, however, represent 

the driver input for those nuclei making them a part of the feedforward cortico-thalamo-cortical 

loop and the transthalamic route for cortical communication (258). The indirect transthalamic 

route for communication between cortical areas hints at the role in modulation and ‘enriching’ 
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of the information being transmitted between cortical areas, and therefore at the role the 

thalamus plays in more complex cognitive processes. 

Based on the expanded understanding of the role of the thalamus in integration of 

sensory and motor information with inputs from the limbic system and different cortical areas, 

as well as in indirect cortico-cortical communication, Wolff and Vann (259) offered a revised 

model of the ‘cognitive thalamus’ that plays an important part in cognitive processes like 

learning and memory, and in shaping cognitive maps/mental representations. The role of the 

thalamus in these functions seems to be a complex one, as for example MD lesions impair 

spatial memory tasks but as it seems because of compromised strategic aspects, motivation, 

reward-related functions, impulsivity, and interference sensitivity (259, 260). In communication 

with cortical areas, the thalamus contributes to maintaining, monitoring and updating mental 

representations that are crucial for the successful interaction with the surrounding (259, 261, 

262). In addition to corticothalamic and thalamo-cortical connections, links between the 

thalamus and subcortical structures and the role of integration of subcortical information have 

also been reported as important for cognitive functions. Cholinergic inputs to the anterior 

thalamic region are vital for learning and memory, as is its connectivity with hippocampal 

formation (227, 263, 264). Thalamic projections to basal ganglia (rostral intralaminar, midline 

nuclei, and centro-médian/parafascicular complex) play a role in behavioral flexibility and have 

been associated with goal-directed behavior (265-267). Motor thalamic lateral region nuclei 

are major recipients of projections from basal ganglia, and have been shown to play a role in 

performance monitoring, value updating, and adaptive behavior (268), while interaction with 

another recipient of basal ganglia inputs, MD, mediates cognitive components of outcome-

specific Pavlovian-instrumental transfer (269). Connectivity of the thalamus and basal ganglia 

plays a part in language as well, with the thalamus monitoring language-specific cortical 

activities, while supported by basal ganglia in both perceptual and productive aspects (270). 

All mentioned facets of thalamic interactions and activity have given rise to more complex 

models of interacting cortico-striato-thalamo-cortical loops that underlie the complex cognitive 

functions and behavior, with the thalamus being postulated as one of the possible key areas 

for information integration (271). 

 

1.3.2.  Previous research on the role of thalamus in schizophrenia 

If we take into account that schizophrenia and psychosis spectrum disorders are 

characterized by perceptual disturbances, affect, motivational impairment, and changes in 

cognition, and that the thalamus plays a significant role in integration of motor/sensory 

information and communication with/between cortical areas, it is easy to imagine a role for 
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thalamic changes and disturbances in thalamic connectivity in schizophrenia (272). The 

thalamus has been proposed as an important nexus in parallel cortico-thalamic-striatal-cortical 

loops (273), and, accordingly, changes in thalamo-cortical loops have been proposed as the 

basis for different symptoms in SCZ (144, 274). Our knowledge of the thalamic changes in 

schizophrenia rests today on extensive research ranging from post mortem studies to 

structural and functional neuroimaging of different modalities. Furthermore, a possible role of 

the thalamus in SCZ was also conceptualized early through examination of behavioral 

syndromes caused by lesions to different thalamic regions. Strokes affecting anterior thalamic 

region cause apathy, poverty of speech, executive dysfunction, and intrusion of unrelated 

ideas, and those affecting MD in the medial thalamic region cause behavioral disinhibition, 

distractibility, apathy, amotivation, and confusion, whereas strokes affecting the pulvinar were 

reported to less often cause behavioral syndromes that resemble mental disorders (275, 276). 

Nonetheless, vascular lesion affecting posterior thalamus has been reported to present with 

paranoid schizophrenia-like syndrome (277). Lesions involving anterior and medial thalamic 

regions, which in addition to MD and anterior nuclei usually affect also intralaminar and midline 

nuclei, cause impairment in semantic and working memory, episodic memory, attention, and 

error monitoring (221).  

Lesions of the brainstem and subcortical structures can impair subcortical inputs that 

modulate and control flow of information, leading to deficits in integration of sensory information 

and higher cognitive processes and resulting in hallucinations (peduncular hallucinosis) 

sometimes followed by other behavioral disturbances (278, 279). Analysis of five patients in a 

paper by Benke (280), as reported by Cronenwett and Csernansky (279), showed a 

combination of hallucinations and impaired reality monitoring can appear even in lesions 

affecting the thalamus only.  

 

Structural changes and changes in neurochemistry 

The thalamus of SCZ subjects compared to that of healthy controls seems to be 

smaller, with, although not consistent, volume reduction of around 10% (281). Konick and 

Friedman (282), in their meta-analysis on either imaging (magnetic resonance imaging) or 

postmortem studies found small to medium effect sizes, –0.41 for absolute volume, and -0.30 

for volume relative to the whole brain. Neuroimaging studies performed on patient population 

in vivo show bilateral volume reduction, particularly in medial region that includes MD, while 

changes in first-episode psychosis (even antipsychotic naïve), although not consistent, were 

seen in some studies to be more pronounced or showing larger effect size than in chronic SCZ 

(283, 284). Some studies that did not find thalamic volume reduction did, however, report 
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changes in the shape affecting primarily areas that outline association nuclei with connections 

to different association cortical areas and the limbic system (anterior nuclei, MD, the pulvinar), 

which was even confirmed in some structural magnetic resonance imaging (MRI) studies 

reporting specific thalamus regions volume change (279). Regional specific changes hint at 

the differential contribution of different thalamic subnuclei. Even with conflicting findings, 

evidence from voxel-based morphometry studies overall suggests reduction in thalamic gray 

matter in SCZ (221, 285), and Wagner et al. (286) reported reductions in white matter volume 

as well.  

Research into thalamic changes in FEP patients seems overall to support the idea of 

thalamic changes (reduced volume) independent of the disease stage (283, 287, 288), 

although possible progressive nature might be masked by different variables like small effect 

of the change, technical limitations, or sample size (279). Research has yielded conflicting 

results on the longitudinal thalamic changes in schizophrenia, and Csernansky et al. (289) 

found no correlation between illness duration and changes in the shape or volume. 

Furthermore, thalamic volume was found to be reduced in those at an increased risk for 

developing schizophrenia (first/second-degree relatives of SCZ patients) (290), but thalamus 

volume in that population was not found to be predictive of transfer to schizophrenia (291). 

Changes seen in SCZ patients’ family members center on areas that connect to frontotemporal 

regions (anterior and posterior regions) and, like in SCZ patients, it might explain that regional 

changes can be present even with overall volume generally the same (279). There is still no 

consensus on the relative contribution of genetic and environmental factors.  

Postmortem studies of thalamic pathology in SCZ largely found, unlike in cortical gray 

matter volume loss, reduction in the number of neurons and glia in MD, although some 

conflicting results were also reported with no changes in thalamic or MD volume or cell 

numbers (292). Pakkenberg (293) found 40% reduction in the number of MD neurons in SCZ, 

which seemed not to be related to medication status (294). A postmortem study on eight SCZ 

patients using stereologic procedure to count neurons in MD and AV/AM thalamic nuclei, found 

neuron numbers reduced by 35% and 16% respectively, with MD volume reduced by 24% 

(281). The role of changes in MD and AV/AM in SCZ patients might additionally be supported 

by changes observed in the projection areas of those nuclei (DLPFC, OFC, and insular cortex 

for MD, and cingulate cortex for AV/AM). No reduction in the number of cells was observed in 

the mentioned projection areas, but there is reduced cortical neuropil, decreased spine density 

for certain pyramidal neurons, and in cingulate cortex changes in GABA receptors in lamina II 

and II (281, 295, 296). Reduction in excitatory MD neurons that drive prefrontal cortex was 

also proposed as the main factor underlying metabolic hypofrontality observed in 

schizophrenia (281). Structural MRI analyses confirmed reduced volume in medial region that 
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includes MD but also midline nuclei, even in FEP patients not receiving antipsychotics (297-

299). MRI analyses in general revealed volume reduction findings in MD region (but also 

anterior regions and the pulvinar) consistent with postmortem research (300), with meta-

analysis of voxel-based morphometry showing reduced gray matter estimates for the MD 

region (301). Neuroimaging research on anterior region nuclei is less consistent and, as stated 

by Pregola et al. (221), implies more morphometric changes than volumetric anomalies.  

The pulvinar, another higher-order association nuclei group that connects with a 

significant number of different cortical association areas and the limbic system (PFC, 

multimodal sensory association areas in parietal and temporal lobes, visual cortical areas, 

insula, cingulate, amygdala) has mostly consistently shown to have reduced volume and cell 

numbers in SCZ (279, 302). Previous studies have found a 19-22% volume reduction of the 

pulvinar in SCZ subjects (303). Neuroimaging morphometric studies showed changes in the 

posterior medial thalamus in SCZ, and smaller volume or density of gray matter was shown in 

both FEP and SCZ patients (221, 299, 304). As reported by Dorph-Petersen & Lewis (303), 

postmortem studies on the role of the thalamus in SCZ are generally consistent on structural 

changes in the pulvinar (reduced number of cells and volume), while other changes, including 

those in MD and findings on lower number of neurons, seem to be less consistent. However, 

in vivo brain mapping study by Cobia et al. (305) reported changes in SCZ group including MD 

and anterior nuclei, as well as longitudinal changes for MD and the pulvinar. The same study 

found cortical correlations for the pulvinar in frontal, temporal and parietal areas, and for MD 

in frontal areas (305). Changes in regions other than MD, anterior, and pulvinar were reported, 

although significantly less consistently. Byne et al. (302) showed changes in intralaminar nuclei 

in their postmortem study. The role of thalamic reticular nucleus was also postulated based on 

changes in sleep spindles seen in SCZ and the importance of inhibitory/modulatory function of 

reticular nucleus in the circuit including MD and PFC (306). Several proton magnetic resonance 

spectroscopy (MRS) studies reported reduced thalamic levels of N-acetyl aspartate (NAA), a 

putative marker of neuronal viability, and function (307). This finding converges on postmortem 

and neuroimaging studies of neuronal loss and possible dysfunction in the thalamus in SCZ. 

Changes in glutamatergic neurotransmission in the thalamus have been postulated due 

to glutamate’s proposed place in SCZ etiology and the role glutamatergic projections play in 

communication between the thalamus and other areas. NMDA receptor antagonists are used 

to approximate the underlying impairments and behavioral changes in schizophrenia, and 

ketamine model has been arguably the most used pharmacological model of SCZ (308). The 

role of the thalamus in mediation of glutamatergic cortical effects was shown by Sharp et al. 

(309) through injection of non-competitive NMDA receptor antagonist (MK801) directly into the 

anterior thalamus. This procedure caused the same cortical changes as systemic injection of 
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the antagonist, hinting at the possible thalamic role in the glutamatergic changes underlying 

psychosis. Review of the literature suggests that glutamate receptor abnormalities and 

changes in other molecules involved in glutamatergic neurotransmission are present in the 

thalamus of SCZ patients (310). Pratt et al. (311) suggested that thalamo-cortical loops 

dependent on glutamatergic neurotransmission, and playing an important role in creating 

synchronous oscillations vital for cognitive functions, might present a window into the origins 

of SCZ. In addition to glutamate system changes, elevated dopamine was found in MD and 

the anterior region of the thalamus, a finding that seems to be independent of the medications, 

although these findings have been questioned (307). Yasuno et al. (312) used PET to define 

MD and the pulvinar as regions with low D2 binding, and theorized about the role of 

dopaminergic changes in these thalamic regions for positive symptoms of schizophrenia. 

Dandash et al. (313) postulated the role of dopamine system dysfunctions in the fronto-striato-

thalamic network in psychosis. 

 

Thalamic connectivity changes in SCZ 

Connectivity can be divided into structural and functional connectivity, assessed by 

different methods. As thalamic functional connectivity (primarily in the context of fMRI) will be 

discussed later on, this brief overview will focus just on the changes in structural connectivity 

between the thalamus and other brain regions. Thalamic dysconnectivity is postulated as a 

theoretical model explaining SCZ symptoms and, as expected, its structural changes aspect 

is supported by experimental findings. Morphometric correlational studies using cortical 

thickness, showing patterns similar to DTI data, were used to assess disruption of thalamo-

cortical connections, and found reduced connectivity in bilateral inferior frontal gyrus, left 

superior temporal gyrus, and right parieto-occipital region in SCZ patients (314). Volumetric 

white matter studies found reduced volume of the anterior limb of the internal capsule, a 

structure that connects the thalamus with DLPFC and anterior cingulate cortex (315).  

DTI, a MRI modality used to determine FA of water diffusion approximating white matter 

tracts continuity, is most commonly used to investigate structural connectivity. Wagner et al. 

(316) detected lower FA in the right anterior limb of the internal capsule, right thalamus, and 

the right corpus callosum of SCZ patients. Meta-analysis by Bora et al. (301), looking at 

volumetric and diffusion-weighted images, found decreased FA in anterior thalamic radiations 

(but also other white matter tracts like fornix and cingulum) in SCZ. In line with changes seen 

in anterior thalamic radiation, which connects the thalamus to frontal cortical areas, Clark et al. 

(317) showed increased mean diffusivity in anterior thalamic radiation of SCZ patients.  DTI 

and probabilistic tractography study by Marenco et al. (318) showed reduced connectivity with 
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lateral PFC, and Kubota et al. (319) reported lower FA in the right thalamo-orbitofrontal 

pathway in SCZ patients. Dysconnection with OFC, as evidenced by reduced FA in right 

thalamo-OFC, correlated with thickness of the right frontal polar and lateral orbitofrontal 

cortices (319). A multimodal study by Wagner et al. (320) showed disrupted white matter 

connectivity in MD and fronto-cingulo-thalamic network, indicating that this might present the 

underlying cause of the fronto-cingulo-thalamic dysconnecitivty. These findings are in line with 

the previous works that have identified thalamic connectivity changes primarily in networks 

with frontal regions (221, 321). With regard to connectivity of specific thalamic regions, 

Mitelman et al. (322) reported that correlation between right putamen volume and OFC and 

occipital cortex, as well as centromedian nucleus and DLPFC, differed between SCZ patients 

and healthy controls.  

Even brain region that were not in focus, like cerebellum, have been recently more 

widely investigated, with thalamic-cerebellar connectivity changes in schizophrenia being 

confirmed across different modalities (323). Since communication between cerebellum and 

cortex takes place through thalamus, and having in mind the existence of important non-motor 

cerebellar functions, those changes are to be expected, and play an important part in 

developing models of the disruption in widely distributed networks underlying schizophrenia 

pathology. 

In line with cognitive and other changes found in first-degree relatives and those at risk 

for psychosis, assumptions have been made about the existence of the same thalamic 

connectivity change patterns in those populations. MRI showed reduced volume of the anterior 

limb of the internal capsule in the population at increased risk for developing schizophrenia 

(324). Probabilistic tractography study by Cho et al. (325) revealed reduced thalamo-OFC 

connectivity in FEP patients, while individuals at risk showed the same but attenuated pattern, 

identifying connectivity changes as possible biomarker candidates.  

 

Thalamic pathology and symptoms 

There are no consistent findings regarding the relationship between clinical correlates 

and thalamic pathology, which is to be expected given the reported inconsistencies in the 

pathology itself stemming from numerous methodological limitations and the heterogeneity of 

the disorder being investigated. Reduced thalamic volume has been associated with reduced 

cognitive performance, thought disorder, bizarre behavior, impaired integration of sensory 

information, and hallucinations (279). Bilateral thalamic volume reduction showed significant 

correlation with the total scores of the Positive and Negative Syndrome Scale in FEP, and it 

was suggested that decreased thalamic volumes might serve as a biomarker in discriminating 
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FEP patients with and without auditory verbal hallucinations (326). The already mentioned 

probabilistic tractography study (325) found that the strength of the thalamo-OFC connectivity 

correlated with the Global Assessment of Functioning (GAF) score in those at risk for 

developing schizophrenia, while FA in the anterior limb of the internal capsule correlated with 

cognitive performance of the patients (316). In another already mentioned DTI study of SCZ 

patient population (318), thalamo-cortical connectivity with lateral PFC predicted performance 

on a working memory task.  

Lower relative glucose metabolism in the pulvinar was correlated with positive 

symptoms and hallucinations, and lower relative glucose metabolism in MD showed 

association with negative symptoms, and the relationship was globally also found with total 

symptom severity as measured by Brief Psychiatric Rating Scale (327). On the other hand, 

volumetric FEP study by Coscia et al. (328) found no correlation between volume reduction in 

the pulvinar and positive or negative symptoms, but the association was found with impairment 

in language and executive functioning.  

 

1.4. Functional magnetic resonance imaging (fMRI) in Schizophr Res 

1.4.1.  Basic principles of MRI and functional magnetic resonance imaging 

In attempts to identify possible underlying biological changes in psychiatric disorders, 

and potentially move away from dependence on solely a descriptive diagnostic approach, 

different neuroimaging methods have been developed and utilized in psychiatry. Neuroimaging 

has become common in the diagnostic process in clinical psychiatry, allowing us to identify 

neurological/medical conditions that can present with different psychiatric syndromes (e.g. 

frontal and temporal lobe tumors, developmental and traumatic lesions), but has also found its 

place in identifying treatment targets and drug discovery (329). As outlined by Phillips (330), 

development of neuroimaging modalities and their application in psychiatry has the potential: 

1. To provide a tool in differential diagnosis process; 

2. To provide information on risk of developing mental disorder in at-risk 

population; and 

3. To help identify those most likely to respond to a specific treatment modality. 

Neuroimaging has also been combined with genetics in order to elucidate 

genetic/molecular underpinnings of observed structural and functional neural changes in 

psychiatric disorders (329). Neuroimaging modalities can be divided into structural and 

functional neuroimaging techniques. Most commonly used structural techniques are CT and 

MRI, whereas most commonly used functional techniques include PET, single photon emission 
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computed tomography (SPECT), and functional magnetic resonance imaging (fMRI). 

Neuroimaging modalities using radioligands (PET, SPECT) are still widely used to determine 

receptor density and distribution, release of specific neurotransmitters, neurotransmitter 

receptor binding and changes with regards to changed conditions, but also changes in the 

local metabolism and blood flow (330). Those techniques, however, are tied to the requirement 

of specific facilities and services, which led to fMRI taking front place among functional 

neuroimaging modalities in psychiatry but also for imaging of normal brain activity (331).  

MRI signal formation is based on the specific magnetic properties of certain nuclei in 

the human body. Atomic nuclei with magnetic moment and angular momentum (spins) placed 

in the strong magnetic field show precession axis that is mainly parallel (longitudinal 

magnetizations) to the magnetic field (labeled as low-energy state) but with some remaining 

perpendicular (transversal magnetization) to the magnetic field (high-energy state). Those 

nuclei can be excited through application of resonant frequency energy causing some of them 

to change to the high-energy state. Returning to low-energy longitudinal magnetization state 

following removal of the energy source results in energy being emitted, which can be measured 

in the receiver coil and represents the MRI signal to be used in imaging (332). Decay of 

transverse net magnetization takes place due to loss of coherence of the spins, owing to 

interaction of proximate spins with different precession frequencies, but also to additional effect 

of inhomogeneity of the magnetic field that causes different spin precessions. Changes in net 

magnetization over time are known as relaxation, and can be conceptualized as: 

 Loss of transverse net magnetization coherence after removal of the energy 

source – transverse relaxation 

 Return to the longitudinal net magnetization – longitudinal recovery. 

Those changes, based on the previous conceptualization of relaxation and recovery, 

and causes for the transverse decay, can be characterized by three time constants: 

 T1 – recovery of longitudinal magnetization over time; 

 T2 – decay of transverse magnetization due to interactions of spins with differing 

precession frequencies; 

 T2* - decay of transverse magnetization due to both spin precession frequency 

differences and inhomogeneity of local magnetic field (333). 

By using different sequences that differentially affect one of these aspects of 

decay/recovery, it is also possible to target tissue with specific properties.  

Selection of the area to be imaged is done through a specific match between static 

magnetic field gradient and the excitation pulse, enabling specific excitation of spins in the 

desired region and, in order to achieve spatial encoding, additional two gradient fields along 
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orthogonal axes are applied. In fMRI, those two gradients (phase and frequency encoding) are 

both applied during data acquisition, alternating rapidly. Spatial resolution is defined by the 

size of voxels (three-dimensional element of the volume being imaged), and depends on slice 

thickness (selected by specific frequency of excitation pulse), field-of-view (FOV), and the 

matrix defined by phase and frequency encoding steps. Most clinical MRI scanners use 

magnets able to create 1.5 Tesla (T) magnetic fields, and 3T scanners although also used in 

clinical practice, are widely used in research (7T and >7T ultra-high field systems are also used 

in research). With 3T systems, resolution for structural MRI imaging is at about 1 mm isotropic, 

and resolution is lower for functional imaging. Higher strength of the magnetic field improves 

the strength of the signal relative to other sources of variability (signal-to-noise ratio SNR), 

spatial and temporal resolution, but also leads to higher magnetic field instabilities, artifacts, 

and more significant magnetic susceptibility (which, however, can be used in functional 

imaging) (332, 334). 

MRI allows for different types of intrinsic contrasts to be used in image generation, 

which can yield significantly differing images. Two elements of image formation that influence 

utilizing different intrinsic contrast are specific timings of the image collection: 

 Repetition time (TR) – time between repeated excitation impulses; 

 Echo time (TE) – time between excitation and the signal sampling. 

Static contrasts (related to spin numbers and types, as well as relaxation specificity) 

are important in imaging tissues with different characteristics, and protocols taking advantage 

of those contrasts (e.g. proton density contrast based on number of protons in a voxel) can 

yield, among others, proton-density-weighted images, as well as most commonly used T1-

weighted (based on the T1 value of the tissue being imaged) and T2-weighted images (333). 

T2* contrast represents the basis for the fMRI because of the sensitivity to the levels of 

deoxygenated hemoglobin in a specific area, and intermediate TE is used in order to make the 

image sensitive not just to the number of protons but also to field inhomogeneity caused by 

deoxygenated hemoglobin (333). Another factor influencing the signal is the local chemical 

environment. Difference in resonance frequency of specific molecules, some of which are 

important for brain functions, gives rise to phenomenon called chemical shift, and that can be 

used in magnetic resonance spectroscopy (MRS) for creating spatial maps of resonance peaks 

that reflect concentrations of the investigated molecules (332). Some of the most important 

peaks in MRS spectrum reflect concentrations of N-acetyl aspartate (NAA), a putative marker 

for neuronal loss and dysfunction, as well as choline (Cho), creatine (Cr), and the combined 

peak for glutamate and glutamine (Glx) (332). 
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BOLD fMRI 

Functional MRI uses principles of MRI with subjects being placed in scanners able to 

create strong magnetic fields and radiofrequency pulses, and conceptually rests on the fact 

that oxygenated and deoxygenated hemoglobin possess different magnetic properties, with 

deoxygenated hemoglobin showing significant magnetic moment, which can be used in T2*-

weighted images to measure changes in blood oxygenation. Ogawa et al. (335) showed the 

specific effect of deoxygenated blood in MRI, and hypothesized that this blood-oxygenation-

level dependent (BOLD) contrast could help in identifying areas of increased activity through 

coupling of neural activity and hypothesized changes in blood flow that follow it (336). As there 

is an increased neural activity in a specific brain area (e.g. caused by specific cognitive task), 

there is also an increased flow of the oxygenated blood that reaches the same area displacing 

deoxygenated hemoglobin that was previously suppressing the signal that is received in the 

MRI (337, 338). Neurovascular coupling that represents the basis for the fMRI depends on a 

number of factors (e.g. factors influencing blood flow) and is described by hemodynamic 

response function (HRF), the change in the BOLD signal following beginning of the neuronal 

activity and reduction of the amount of deoxygenated hemoglobin present in the specific 

region. It was postulated that assumed HRF can be used to determine predicted fMRI signal 

following neural activity, and Poisson and gamma functions were used to describe it (339). 

BOLD can be generally conceptualized in a series of phases including: 

1. Initial dip lasting for 1-2 seconds – initial low-intensity reduction in signal present 

only in certain voxels, especially seen in higher-strength magnetic fields, that 

could be explained through increased initial oxygen extractions (337, 340); 

2. Peak reached usually 3-5 seconds after the onset of neural activity 

initiation/stimulus presentation. If there is a prolonged neural activity the peak 

extends into a plateau (337, 341, 342); 

3. BOLD signal decrease with undershoot (fall below baseline) 6-10 seconds after 

the end of neural activity/stimulus, due to slower return to baseline of the 

increased blood volume but also due to changes in oxygen metabolism (337, 

343). 

As already mentioned, the initial dip is not present universally, and even the canonical 

HRF consisting of the peak and post-stimulus undershoot, because of the complex underlying 

physiology, shows significant variability related to a number of factors including age, brain 

region, neural activity difference, vasculature differences, baseline blood flow, specifics of 

image acquisition, magnetic susceptibility, differences in respiration and heart-rate, but also 

ingestion of caffeine and alcohol (339, 344, 345). Lindquist et al. (346) summarized issues 
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complicating conceptualization of the coupling between neural activity and the BOLD 

response: 

 Complexity of the neural activity (that includes glial activity as well) following a 

specific stimulus, due to its dependence on the stimulus type itself and change 

over time; 

 Significant lag of the hemodynamic response (peak reached at approximately 5 

seconds after the stimulus) with consequent integration of different neural/glial 

activity over time; 

 Nature of BOLD response as a non-linear integrator. 

Nonetheless, Logothetis et al. (347) did report a simultaneous recording of cortical 

neural activity and fMRI, clearly linking BOLD and neural activity, and Ogawa et al. (348) 

reported that repeated neuronal activation can produce changes in fMRI signal amplitude on 

a time scale of 100 milliseconds. Simultaneous recording of fMRI (TR = 100 ms) and 

magnetoencephalography (MEG) during a visuomotor reaction-time task showed the same 

sequence of activations across five regions (349). Richter et al. (350) demonstrated that with 

regard to time course, duration of hemodynamic response can be used as an estimate of the 

duration of a neural activity. Furthermore, it is also hypothesized that BOLD with its closer 

connection to local filed potentials more closely reflects information input and intracortical 

processing than neural output characterized by spiking activity (347).  

 

Imaging sequences, spatial, and temporal resolution 

Because of the need for fast imaging that could capture functional changes, fast pulse 

sequences sensitive to T2* contrast have been developed in order to capture a large number 

of images in a short time period. Images are usually collected rapidly using one of the following 

approaches (351): 

 Echo-planar imaging (EPI); 

 Spiral imaging. 

The two approaches differ in the way gradients change and consequently in the way 

they fill k-space. K-space differs from the normal image space, as it is a Fourier transform of 

the MRI signal, and all points of that space contain information from all locations of the actual 

image (352). We can envision it as a raw data matrix that is filled during the image acquisition, 

and after the entire k-space is filled, inverse Fourier transform can be used to reconstruct the 

actual image from those data. Previously mentioned additional gradients (perpendicular phase 

and frequency encoding gradients) are applied to specifically alter spins of different voxels, 
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and information can therefore be coded in a matrix using those axes (i.e. kx, ky, and kz). In EPI, 

there is a rapid strong gradients switching (alternating directions of the sequential lines being 

scanned) used to fill the k-space after a single excitation with 90° and 180° RF pulses (352). 

Spiral imaging, on the other hand, uses sinusoidal gradient changes to fill the k-space starting 

at its center, improving the acquisition rate but requiring another analytical step before using 

Fourier transform to reconstruct images (353). 

Spatial resolution of BOLD fMRI depends on a number of factors, such as slice 

thickness, FOV, and matrix size but, generally, reducing the size of voxels in BOLD fMRI is 

limited by the fact that smaller voxel size means reduction in SNR and simultaneously increase 

in time of the image acquisition (337). Lower SNR presents a problem in situations where we 

do not have a significant neural response, and prolonging image acquisition time leads to 

significant T2* decay and therefore blurring of the image. Spatial resolution of BOLD fMRI at 

usually 3-4 mm is significantly better than that of PET and SPECT, but research on ocular 

dominance columns in primary visual cortex has also managed to produce resolution of under 

1 mm (354, 355). Larger voxels carry with them the issue of inclusion of different tissues and 

loss of spatial specificity in the vascular system (contribution to the signal from larger vessels), 

which is, however, minimized in spin-echo sequences that use second 180o pulse to generate 

signal changes and can eliminate BOLD signal from extravascular components of larger blood 

vessels (337). Ultra-fast imaging was made possible by advances in gradients technology, 

allowing for complete image data acquisition in under 1 s (50-100 ms), but results in significant 

loss of resolution (356). Ultra-fast imaging, however, would allow for better sampling of the 

different hemodynamic responses, even repeated ones. As seen from previous points, in trying 

to visualize neural activity that often lasts for less than 1 s, with fMRI we measure the signal 

linked to the hemodynamic response that lasts for over 10 s. With regard to temporal 

resolution, BOLD fMRI could be said to have intermediate temporal resolution given that it can 

discriminate well events that are a few seconds apart, and the estimate of the highest temporal 

resolution in fMRI lies at a few hundred milliseconds (337). Temporal resolution is determined 

by TR and vascular system limitations, opening the path for TR manipulation during the BOLD 

fMRI, but very short TRs can require smaller flip angles and consequently reduction in the 

signal received (337). Flip angle reflects the change towards transverse plane following 

excitation, and with longer TRs a 90o flip angle can provide for maximum signal.  

Another factor limiting our ability in predicting hemodynamic response is the deviation 

from the expected linearity of the BOLD response. While we might expect scaling and 

superposition of individual events to be present, as supported by experimental evidence, there 

is also deviation from the linearity at shorter intervals (< 6 s) due to reduced response to a 

quick subsequent stimulus (337, 343). Dependency on refractory effect and consequently 
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deviation from linearity can also vary in different brain regions as evidenced by differences 

between primary brain motor regions and higher motor regions reported by Birn et al. (357). 

With advances in event-related trial design, such as the use of selective trial averaging, it is 

possible to measure even activations closer apart in time (358).  

 

Data preprocessing in fMRI 

Signal changes in the cortex during common stimulation tasks are usually only under 

3%, and visually resulting images would seem virtually identical, which makes it clear that any 

additional factors introducing variability can significantly affect the results (359). It is because 

of that, and because of a significant number of factors affecting BOLD fMRI signal, that 

computational preprocessing steps of fMRI data are done prior to initiating statistical analyses. 

We define functional SNR as quantitative relation between intensity of the signal linked to 

neural activity and the variability introduced by all sources of the noise (360). Even the strength 

of the magnetic field can present an issue. Although higher field strength intuitively means a 

higher functional SNR, the relationship is not linear, and there is also an increase in the number 

of voxels being activated, as well as decrease in T2*, which means the signal must be acquired 

more quickly. Peters et al. (361) showed an approximately linear increase in relaxation rate 

T2* (shorter T2* value) with increasing field strength. In addition, there is a significant loss of 

signal with higher field strengths in brain areas where air and tissue border each other (e.g. 

ventral frontal regions), which is termed susceptibility artifact.  

Main causes of noise in fMRI are (360): 

 Intrinsic thermal noise (increasing linearly with the field strength); 

 System noise linked to scanner functioning; 

 Head motion artifacts;  

 Physiological noise (e.g. heart rate, breathing, fluctuations in blood flow, oxygen 

metabolism);  

 Variability introduced by neural activity not related to the task; 

 Variability introduced by specific cognitive and behavioral patterns of task 

performance.  

As mentioned previously, increase in field strength is not followed by linear increase in 

SNR, and one of the reasons for that is the fact that physiological noise increases significantly 

at higher field strengths, becoming the dominant noise and influencing SNR (362). Although 

there are different approaches and protocols of preprocessing BOLD fMRI data prior to 

statistical analyses, we can generally include the following steps in fMRI data preprocessing 

(360): 
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 Quality assurance identifying common artifacts; 

 Correction of slice acquisition time for interleaved acquisition (odd-even 

acquisition where adjacent slices are not collected at adjacent time points) 

through methods such as temporal interpolation; 

 Head motion correction through coregistration (spatial alignment) to a reference 

volume by methods like rigid-body transformation (using three translations 

along x, y, and z axes, and three rotations through all planes). Filtering methods 

can also be used to remove motion related artefacts; 

 Distortion correction by using magnetic field mapping, or in case field maps are 

not available, by bias field estimation; 

 Functional-structural images coregistration; 

 Spatial normalization (compensating for shape differences) into a common 

space enabling inter-subject comparisons; 

 Temporal filtering used to remove specific frequency components (e.g. low-

pass filter removing physiological oscillations, or prewhitening procedure for 

removing autocorrelations in a data time series); 

 Spatial filtering used to smooth fMRI data across adjacent voxels and increase 

functional SNR as well as to improve the validity of statistical tests used. 

The use of different preprocessing steps is also related to a number of methodological 

issues. For example, in case of spatial filtering, filter’s width might not match activation extent 

adequately (e.g. too wide filter) leading to attenuation of meaningful activations below the 

selected threshold (360). Spatial smoothing, temporal filtering, and motion correction have 

been shown to have significant impacts on fMRI results, and it was additionally demonstrated 

that those effects might be subject-dependent, leading to suggestions of creating individually-

optimized preprocessing pipelines (363). 

 

FMRI study designs and analyses 

There are two main task-based experimental paradigms used in fMRI research, 

blocked design and event-related studies. Blocked design studies include presentation of 

stimuli or experimental conditions in alternating blocks, allowing for good detection of 

significant signal provided the blocks are not too short and there is sufficient difference in BOLD 

signal between the blocks (364). Event-related design, on the other hand, can present stimuli 

(events) one at a time and in a random order. Averaging responses from several epochs (time 

segments linked to the stimuli) can identify stimuli-induced signal changes (hemodynamic 

response). Although blocked design is better at detecting activations, event-related design will 
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show advantages in estimating shape and the timing of hemodynamic responses (364). Mixed 

designs combine the characteristics of the two described designs, using discrete blocks but 

with multiple types of stimuli presented within each block, theoretically allowing us to 

distinguish between different activations caused by different designs. As reported by Casey et 

al. (354), design and interpretation of results depend on duration of the event/stimulus, rate of 

presentation, its intensity, but also on the type of stimulus, and the affected brain region.  

In addition to studies aiming at localization of function to a specific brain region, most 

often achieved through tasks specifically targeting certain function, in fMRI research there is 

also an approach focusing on functional connectivity between different brain regions. One of 

the designs commonly used in functional connectivity studies is the resting-state connectivity 

that requires administration of no tasks or experimental paradigms but aims at identifying 

intrinsic task-independent neural activity. Low-frequency synchronous BOLD oscillations 

(signal changes) are detected while subjects lie awake in the scanner with no administered 

task, and are used to infer functional connectivity of the brain areas. Biswal et al. (365) reported 

that low frequency (< 0.1 Hz) fluctuations in resting state showed significant temporal 

correlation within sensorimotor cortex as well as with time courses in other regions associated 

with motor function. Using that approach, Raichle et al. (366) described the so-called default 

network that showed significant baseline activity at rest (without performing a task) that 

decreased during activation due to the variety of tasks. Although initially dismissed by some 

as artifacts, synchronized oscillations in BOLD fMRI were robustly confirmed by later studies 

and the fact that they followed structural connectivity pathways and were dependent on their 

integrity (367, 368). Physiological oscillations (respiration and heart activity) have a different 

frequency pattern compared to the low frequencies of interest in in resting-state fMRI (0.01–

0.1 Hz) (369). As mentioned previously, data preprocessing steps allow us to regress out 

physiological noise, or aliasing of high frequencies into the lower resting-state frequencies can 

be prevented by using high-sampling rate (369-371). In recognition of the importance of the 

fact that synchronized BOLD fluctuations reflect the underlying functional connectivity of the 

brain regions, resting-state fMRI was finally also identified as one of the core techniques used 

in the Human Connectome Project (371-373). 

A number of different methods for interpreting resting-state fMRI data and elucidating 

functional connectivity between different regions have been proposed, but they can roughly be 

divided into: 

 Model-dependent approaches; 

 Model-free approaches. 
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Model-dependent methods are also called region-of-interest (ROI)-based connectivity 

analyses, as they are based on a priori selection of ROI. ROI can be selected based on the 

well defined anatomical boundaries or taken from traditional task-based fMRI analysis. 

Correlation of time series of the selected seed region with time series of voxels in other brain 

regions can be done through different methods such as partial correlations, multiple 

regressions, and cross-correlation coefficient in order to create the functional connectivity map. 

Even though seed-based analyses are simple in terms of the computations, there is inherent 

bias in the seed selection (374). 

Model-free methods were developed to avoid a priori assumptions or definitions of 

specific regions to focus on, and to allow for data-driven identification of whole-brain 

connectivity patterns. These methods look for patterns of connectivity across different brain 

regions, and some of the methods used include independent component analysis (ICA), 

principal component analysis (PCA), and clustering methods (371). In ICA, multivariate 

decomposition is used to separate BOLD signal into spatial maps of independent functional 

networks, populated by z scores resulting from the correlation between the time series of each 

voxel and that network’s mean time series (374). Clustering methods aim at grouping data 

points into non-overlapping subclusters of high-level and low-level similarity. Regardless of 

points of distinction and specificity, seed-based methods, ICA, and clustering-based methods 

all show a significant overlap supporting the existence of functionally connected networks in 

the human brain at rest (371). Graph theory and graph analytical methods have recently been 

used to gain additional insights into the organization of local and global brain functional 

networks.  Computing functional connectivity between node pairs and identifying significant 

functional connectivity (by using predefined threshold or weighting), yields a graph 

representation of functional networks and forms the basis for subsequent analyses of its 

organization by using graph theory (371). As an example of the previously stated, identifying 

the nodes with a higher degree (total number of connections) points to locations vital for 

information flow within a specific investigated network (375).  

An important statistical approach in analyzing BOLD fMRI data from different 

experiment types and research models is the general linear model (GLM) used in multiple 

regression analysis. GLM has the potential of incorporating other tests like t-test and 

correlation analyses, allowing for significant flexibility in answering research questions (376). 

GLM is based on a set of matrices including non-spatial data matrix representing fMRI data, 

and design matrix specifying linear model to be evaluated. In addition to regressor of interest 

that predicts hemodynamic changes in the brain, GLM design matrix can include various 

nuisance regressors assigning additional variance to those specific regressors and leading to 

an increase in significance of results. Creation of different contrast weights in the matrix allows 



42 
 

for testing of predictions with regard to different regressors in the matrix and the research 

hypothesis, and different contrasts can additionally all be entered together into an F-test. 

Another important element pertaining to fMRI data analysis is the multiple comparisons issue 

giving rise to Type I errors (false positive results increasing with the number of statistical tests). 

The most common way of dealing with this issue are methods such as the Bonferroni correction 

and false discovery rate (376). 

BOLD fMRI offers numerous additional opportunities of combining that research 

modality with others that might complement it at different levels (e.g. DTI, 

electroencephalogram - EEG), or of using it with therapeutic interventions such as transcranial 

magnetic stimulation of the brain. In addition, it has recently been often combined with machine 

learning techniques through pattern classification algorithms. Multi-voxel pattern analysis 

(MVPA) identifies various patterns of voxel activations to predict certain categories through a 

number of steps including the use of pattern classification algorithms, and has already been 

utilized in research of different nosological categories as well as phenomena like moral 

intentions and consciousness (377-379). In line with the growing interest and attempts of using 

fMRI data and machine learning for identification of different psychiatric traits, Madsen et al. 

(380) supported the use of that approach in classification of schizotypy.  

 

1.4.2. Previous fMRI research in schizophrenia, and on thalamic connectivity 

changes in schizophrenia 

Schizophrenia has extensively been researched using BOLD fMRI given the 

technique’s non-invasive nature, temporal resolution, and computational possibilities. That line 

of research confirmed the previous structural findings and other functional neuroimaging 

research (e.g. PET), but additionally significantly facilitated research into SCZ biology and our 

understanding of it, opening new avenues of research. Initial fMRI findings provided mixed 

results. While previous research found no pathognomonic findings, several regions were 

consistently identified as involved in schizophrenia and even linked to certain symptom 

domains, like DLPFC (linked to negative symptoms), ACC, thalamus, and hippocampus (129, 

381-384). Functional MRI SCZ research produced some conflicting results (e.g. on similar 

working memory tasks different laboratories reported both increased and decreased frontal 

blood flow), possibly at least partly due to better spatial resolution of this technique (194). 

Tamminga & Medoff (194) reported changes in ACC/medial frontal cortex in SCZ subjects 

during auditory recognition task in a practiced condition, postulating a ‘circuit failure’ in limbic 

cortex and areas of prefrontal cortex influenced by ACC. On the same task, the same authors 

(194) reported that the hippocampus of SCZ patients has greater blood flow across different 
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task conditions, and that administration of ketamine reduces that flow in SCZ patients but not 

in healthy volunteers, in line with possible effects of postmortem findings of  reduced NMDA 

receptor NR1 subunits in schizophrenia. As reported by Anticevic et al. (385), PFC 

hyperconnectivity seen in early-course SCZ patients is predictive of symptoms, and also 

showed longitudinal changes that predicted symptom improvement.  

SCZ research has benefited significantly from research in cognitive neuroscience, 

applying previously developed paradigms. Research has shown changes compared to healthy 

population in motor tasks, working memory, attention, word fluency, emotion processing, and 

decision-making (386). The most pronounced impairment was found in functions related to 

frontotemporal systems, memory, learning, and executive functions (386-388). Although 

certain studies found no deviations in activations following stimuli such as a flashing 

checkerboard with a simple motor response, changes in activation were found in more complex 

stimuli requiring information integration (387). Interestingly, changes were shown in FEP 

patients, as well as in at-risk population. Recent-onset SCZ patients showed DLPFC activation 

changes during a number of cognitive tasks including working memory (389), and FEP 

antipsychotic-naïve patients being presented with simultaneous auditory and visual stimuli 

showed reduction in activation in parietal lobes bilaterally, right thalamus, and right PFC (390). 

Population at an increased genetic risk shows activation changes generally similar to those 

seen in SCZ across different tasks (391). Differences in activations associated with emotion 

processing were reported in both patients and their relatives (392). Generally, as reported by 

Ruiz et al. (393), SCZ was found to be associated with wide-spread changes in connectivity 

that affected, in addition to frontotemporal connections, also the connectivity between DLPFC 

and the temporal lobe, hippocampal formation, parietal lobe, thalamus and cerebellum, 

cingulate cortex, and limbic regions.  

Along with changes seen in different task-induced brain activity, as measured by BOLD 

fMRI, changes were also seen in SCZ patients with regard to default mode network (DMN) that 

is active during resting-state and includes posterior cingulate, ventromedial PFC, and angular 

gyrus and inferior parietal lobe (366). It is hypothesized that executive control disruption can 

affect DMN activity and cause disturbances of thought (394). Since suppression of DMN is 

necessary for successful task performance, as expected, SCZ patients and first-degree 

relatives showed reduced suppression during working memory tasks, and DMN connectivity 

correlated with psychopathology (395). 

BOLD fMRI is also used in combination with pharmacological interventions and 

computer modeling to elucidate the underlying SCZ pathology even further and bridge the 

cellular, system and clinical changes as reported by our group (396). Anticevic et al. (397) 

reported changes in healthy volunteers administered ketamine (PFC hyperconnectivity) that 
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reflect more closely early-course SCZ, allowing us to postulate the specific role of glutamate 

system dysfunction in early-course and FEP patients. Functional MRI has also become an 

integral part of imaging genetics studies that investigate the way genetic variation affects the 

brain function, activations and connectivity. As stated by Birnbaum and Weinberger (398), 

initial expectation that SCZ susceptibility genes would be more penetrant at the level of 

neuroimaging intermediate phenotypes than at the level of psychopathology proved true, and 

maps of genetic vulnerability showing those intermediate phenotypes have become more 

common. Almost all major susceptibility genes for SCZ found their place in imaging genetics. 

Schleifer et al. (176) reported dissociable disruptions in thalamic and hippocampal resting-

state functional connectivity in patients with 22q11.2 deletion syndrome, with thalamo-cortical 

connectivity increased in somatomotor areas and reduced with associative networks. The 

22q11.2 deletion syndrome represents a translational models for psychotic disorders and as 

such serves as a good example of the role of fMRI in detecting large-scale connectivity 

changes linked to specific underlying causes.  

 

Thalamic functional connectivity changes in SCZ 

A number of studies using BOLD fMRI have investigated the changes in thalamic 

connectivity and yielded relatively consistent region-specific findings (399). Welsh et al. (400) 

utilized BOLD fMRI resting-state paradigm in a study of 11 SCZ patients and 12 healthy 

controls, and the seed-based analysis demonstrated existence of thalamo-cortical MD nucleus 

functional connectivity as well as reduction of that connectivity in the patient population. A 

larger study by Woodward et al. (401), comparing 62 SCZ patients and 77 healthy control 

subjects, divided the thalamus functionally based on its connections to selected cortical areas 

of interest (PFC, somatosensory cortex, motor cortex/supplementary motor area, temporal 

lobe, posterior parietal cortex, and occipital lobe), and found that the selected areas correlated 

with mostly non-overlapping thalamic regions. Also, the same study showed a reduced 

connectivity between the thalamus and prefrontal areas, and at the same time an increased 

connectivity between the thalamus and sensorimotor regions (401). Wang et al. (402) also 

reported a pattern of over- and under-connectivity in a resting-state fMRI study of 72 SCZ 

patients and 73 healthy controls, with over-connectivity found with bilateral precentral gyrus, 

dorsal medial frontal gyrus, middle occipital gyrus, and lingual gyrus, and under-connectivity 

with bilateral superior frontal gyrus, anterior cingulate cortex, inferior parietal lobe, and 

cerebellum. 

Resting-state study on thalamo-cortical disturbances in SCZ and BD by our research 

group, as reported by Anticevic et al. (403), compared 90 SCZ patients with the same number 
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of matched controls, and converged on the similar findings of bilateral increased connectivity 

between the thalamus and sensorimotor cortex, as well as reduced connectivity with prefrontal, 

striatal, and cerebellar regions. The findings of over- and under-connectivity were not 

independent but strongly negatively correlated, suggesting a common underlying mechanism, 

and additionally, significant positive correlation was found between over-connectivity with 

sensory cortex and psychopathology as measured by PANSS total score. Data-driven 

clustering of thalamus signal performed in the same study (including both between-groups 

difference clustering and voxel-wise approach using dissimilarity index) showed the 

dysconnectivity focused on the thalamic area nuclei with significant projections with PFC. 

Additionally, in the same study (403), the finding was replicated on an independent 23-patient 

sample to demonstrate its robustness, and similar findings were then confirmed in remitted BD 

patients. Finally, in order to investigate this finding’s utility as a biomarker, MVPA was 

performed. SCZ patients were classified correctly using thalamo-cortical dysconnectivity 

patterns with 73.9% accuracy, and the same was seen for BD patients, but with lower accuracy 

(61.7%).  

As indicated by above chance classification of both SCZ and BD using thalamo-cortical 

connectivity changes, the presence of those changes across different disorders was postulated 

and indeed proven in other studies. Skåtun et al. (404) examined resting-state fMRI data from 

96 SCZ and 57 BD patients compared to 280 healthy control subjects, and reported thalamic 

connectivity changes in both groups postulating the role of thalamic connectivity across 

psychosis spectrum. Results of that study showed reduction in within-thalamus connectivity 

(especially in regions projecting to frontal areas) and in connectivity between the thalamus and 

left frontoparietal area in SCZ, with increased thalamic connectivity with somatomotor regions 

in BD patients (404). Furthermore, the same study found that one thalamic sub-region had 

over-connectivity with sensory areas, while eight other exhibited under-connectivity with frontal 

and posterior areas in SCZ, and reduced connectivity was negatively correlated with the 

symptoms. Another study comparing different diagnostic categories compared resting-state 

data for 50 FEP patients, 50 patients with major depressive disorder, 50 posttraumatic stress 

disorder patients (all patients medication-naïve), and 122 healthy subjects, and reported that 

connectivity changes between MD nucleus and prefrontal and parietal regions were 

transdiagnostic (405). The only finding specific to SCZ in that study was over-connectivity 

between right MD and right pallidum. Another study by our group, using resting-state data to 

compare thalamic connectivity patterns of 90 SCZ patients with 73 remitted BD patients, of 

which 33 had history of psychosis, suggested that BD subjects with psychosis history show 

thalamic connectivity effects more consistent with SCZ, which points to the possibility of 

importance of thalamic connectivity patterns in psychosis spectrum (406). 
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In addition to showing transdiagnostic nature of thalamic disturbances, a study by Gong 

et al. (405) pointed also to the presence of thalamic connectivity changes early in the course 

of schizophrenia, which was confirmed in other studies. Woodward and Heckers (407) 

performed a study on 148 subjects with psychosis, of which 53 in the early-stage psychosis, 

and 105 healthy control subjects, demonstrating inversely correlated thalamic under-

connectivity with DLPFC, medial PFC, and cerebellar areas, and over-connectivity with motor 

cortex for all psychosis subjects regardless of the stage. The same study also reported that 

connectivity changes with fronto-parietal network correlated with cognitive functioning (407). A 

multi-center 2-year follow-up study by Anticevic et al. (408) was performed on 243 subjects 

identified as at a high clinical risk of psychosis, and found significantly correlated patterns of 

thalamic over-connectivity with sensorimotor areas and under-connectivity with prefrontal and 

cerebellar areas that were more pronounced in those who converted to psychosis. The same 

study also showed correlation between dysconnectivity and the Scale of Prodromal Symptoms 

score. In line with the suggestion that thalamic connectivity patterns can be used as predictors 

of psychosis conversion, Cao et al. (409) reported that in the prodromal population the pattern 

of over-connectivity in  cerebello–thalamo–cortical circuitry is more pronounced in those who 

convert to psychosis, and correlates with disorganization symptoms and time to conversion. 

Buchy et al. (410) found a correlation between attenuated connectivity between the thalamus 

and left sensorimotor cortex and younger age at onset of cannabis use in a population at high 

clinical risk for psychosis.  

A recent study by Ferri et al. (411), using resting-state multi-site data from 183 SCZ 

patients and 178 matched healthy controls, reported thalamic under-connectivity with 

cerebellum and ACC bilaterally, and over-connectivity with sensorimotor regions (bilateral 

precentral and postcentral gyrus, middle/inferior occipital gyrus, and middle/superior temporal 

gyrus). Even more importantly, in the same study positive correlation was found between 

thalamic-middle temporal gyrus connectivity and delusions and hallucinations, and negative 

correlation between thalamo-cerebellar connectivity and delusions and bizarre behavior (411). 

Task-based fMRI studies, especially targeting cognitive functioning, also reveal clear 

changes in thalamic activation and connectivity (412). A significant difference was observed 

between SCZ patients and healthy subjects in activation of the thalamus during procedural 

learning (413), and some studies have also shown reduced activation of the thalamus in tasks 

examining working memory (414). Ragland et al. (415) reported increased activation of the 

thalamus with worse performance on episodic memory encoding phase. Reduced activation 

of the thalamus in attentional tasks was reported, except in the case of auditory sensory gating 

tasks, confirming contradictory patterns of over- or under-activation on different cognitive tasks 

(412). Huang et al. (416) additionally demonstrated, using Dual task condition, that SCZ 
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patients showed less modulation in MD activation and connectivity with PFC with higher 

cognitive demand.   
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2. Hypothesis 

 

Patients with schizophrenia will, using resting-state functional magnetic resonance 

imaging, show stable and specific patterns of thalamic functional connectivity changes that will 

correlate differently with specific symptoms of the disorder. 
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3. Aims of the research 

 

 

General aim:  

To characterize changes in thalamo-cortical connectivity and their relationship with 

symptom clusters and specific symptoms in patients with schizophrenia. 

 

Specific aims: 

1. Using resting-state functional magnetic resonance imaging, to identify in more 

details the changed patterns of thalamo-cortical connectivity (over- /under-

connectivity) in schizophrenia; 

2. To determine the relationship of identified changes in thalamo-cortical 

connectivity with specific positive and negative symptoms of schizophrenia;  

3. To determine and quantify the differences in within-thalamus activity and 

compare results with previous anatomically defined thalamus nuclei 

subdivision. 
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4. Subjects and methods 

Examination of relationship between changes in thalamic functional connectivity in 

psychosis spectrum population, measured by BOLD fMRI, was done in a cross-sectional 

manner across multiple sites, under the combined protocol. Study subjects data pooling and 

subsequent analyses were performed under the project Examining Cognition, Emotion, and 

Individual Differences in Schizophrenia, extended under name Characterizing Clinical and 

Pharmacological Neuroimaging Biomarkers (Principal Investigator Alan Anticevic, approved 

by Yale University’s Institutional Review Board, Human Investigation Committee number 

1111009332). Subject recruitment and the related procedures, as well as assessments, were 

done as part of the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) 

consortium initiative, which was created in an attempt to investigate intermediate phenotypes 

across psychotic disorders (199). Details on recruitment, neuroimaging protocols, and non-

imaging data gathered and used for the present analysis are presented separately below.  

 

4.1. Subjects recruitment procedures 

Subjects were recruited and assessed under B-SNIP consortium protocols, with subject 

recruitment starting in 2008, and the procedures were done across five sites (199, 417): 

 Hartford – Yale University/Institute of Living; 

 Boston and Detroit – Harvard University/Wayne State University; 

 Chicago – University of Chicago/University of Illinois at Chicago; 

 Dallas – University of Texas–Southwestern; 

 Baltimore – Maryland Psychiatric Research Center. 

As per B-SNIP consortium’s framework, recruitment focused on probands with SCZ 

and spectrum disorders (SCAD and BD with psychosis history), their first-degree relatives and 

healthy controls (199). Probands, non-acute and mostly medicated patients, were recruited 

through clinical or community referrals, as well as through advertising, whereas healthy 

controls were recruited through advertising and research registries. Recruitment and 

consenting procedures were approved by the Institutional Review Boards, and written informed 

consent was obtained from all participants after explanation of study details. Diagnosis was 

confirmed through collection of medical and psychiatric histories, and finally using Structured 

Clinical Interview for DSM-IV Axis I Disorders, Patient Edition (SCID) (418). As already 

described by Tamminga et al. (199), the collected information went through a review process 

with at least two experienced clinicians, and cross-site diagnostic conferences were held on a 
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monthly basis. Additional demographics data was gathered (age, sex, race, level of parental 

education), and for patients data on duration of illness was gathered as well.   

For current analyses, study population was pooled from the B-SNIP study population 

based on specific criteria and divided into two groups: 

 Psychosis probands (diagnosed according to DSM-IV criteria with SCZ and 

spectrum disorders including SCAD and psychotic BD – BDp); 

 Healthy controls with no history of any psychotic (including BD) or depressive 

disorder (as determined by SCID), and no family history of those disorders. 

In order to account for drop out due to fMRI quality issues and matching of two research 

populations, initial more stringent criteria regarding age and handedness were relaxed and the 

original B-SNIP criteria were used regarding those two variables, which resulted in the 

following inclusion criteria for both groups: 

 Age 15 – 65; 

 Age-corrected Wide-Range Achievement Test (WRAT) reading test score > 

65; 

 Negative urine drug screening for common illicit psychoactive substances prior 

to testing; 

 Sufficient knowledge of English to participate in testing procedures. 

Exclusion criteria shared for both groups, based on B-SNIP exclusion criteria and 

specific criteria linked to current analyses, were: 

 History of significant medical or neurological condition that could affect 

symptom presentation or cognitive abilities; 

 History of seizures or loss of consciousness lasting longer than 10 minutes; 

 Any history indicating learning disability, mental retardation, or attention deficit 

disorder; 

 Diagnosis of substance abuse in the past 30 days or substance dependence 

in the past 6 months; 

 Any condition precluding participation in MRI scanning arm (e.g. metallic 

foreign objects in the body, such as aneurysm clips or pacemakers) and 

subsequently non-participation in MRI scanning procedures. 

As reported by Tamminga et al. (199, 419), B-SNIP at the time of initial reports recruited 

933 probands (397 SCZ, 224 SCAD, and 312 BDp) and 459 healthy controls. However, the 

final study population for presented analyses was selected based on the availability of 

neuroimaging data, and those data passing quality assessment, as well as group matching of 
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probands and healthy control groups based on age, sex, handedness, SNR, and information 

on parental education (comparison of matched populations is reported in more details in the 

Results section). Study population identified to have neuroimaging data that passed stringent 

quality control, and to satisfy other inclusion criteria, finally included 655 subjects divided into 

two groups: 

 Probands (N = 436); 

 Healthy controls (N = 219). 

Five healthy control subjects satisfied the outlined criteria, and passed the 

neuroimaging data quality control, but were removed during the matching with proband 

population. Probands included psychosis spectrum patients diagnosed with SCZ (N = 167), 

SCAD (N = 119), and BDp (N = 150).  

Additionally, the population of patients diagnosed with SCZ according to DSM-IV 

criteria (N = 167) was looked at separately from the entire proband population, and a subgroup 

of demographically matched healthy control subjects was formed (N = 153) for SCZ-specific 

follow-up analyses.  

Table 1 shows the number of variables that were used for demographics matching and 

group comparison and that had missing data, as well as the number of subjects with missing 

data.  

Table 1 | Missing values 

Variable  
  

N of subjects missing data 

Father's years of 
education 

  75 

Mother's years of 
education   

33 

Duration of illness   19 

WRAT score   
6 

 

There was no discernable pattern to the missing data. Missing data were imputed using 

IBM SPSS 20.0’s fully conditional specification, iterative Markov chain Monte Carlo (MCMC) 

method with 10 iterations and 5 imputations. As part of the MCMC method, linear regression 

was used.  

For all patients, dosage of administered antipsychotics was converted into 

chlorpromazine (CPZ) equivalents in order to be used as covariate in statistical analyses (420). 
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4.2. Symptom assessments 

Clinical assessment training for raters was done prior to the initiation of the study, with 

required reliability set at > 0.85, and rater re-training was done yearly to ensure stabile reliability 

(199).  

Subjects were evaluated after having consented and the testing was done in a cross 

sectional manner, at one time point, with no follow-up longitudinal clinical data points. 

Psychosis symptoms were evaluated using the Positive and Negative Syndrome Scale 

(PANSS) that consists of 30 items rated on a 1-7 scale (24, 25). Numerical scale used to rate 

individual PANSS items reflects an increasing level of psychopathology from 1 – absent to 7 – 

extreme, with clear rating procedures and anchor points used to ensure inter-rater reliability, 

and data collected through observation during the interview and from reports. Given the 

number of items and the lowest possible score for each item, the lowest possible total PANSS 

score is 30, but can be higher even for healthy population since the rating of 2 on any item 

designates minimal or questionable pathology that, if present, might mean upper levels of the 

normal range.  PANSS items are divided into three domains, positive, negative, and general 

psychopathology. 

Positive: 

 P1 – Delusions 

 P2 – Conceptual disorganization; 

 P3 – Hallucinatory behavior; 

 P4 – Excitement; 

 P5 – Grandiosity; 

 P6 – Suspiciousness/persecutory ideations; 

 P7 – Hostility. 

Negative: 

 N1 – Blunted affect; 

 N2 – Emotional withdrawal; 

 N3 – Poor rapport; 

 N4 – Passive/apathetic social withdrawal; 

 N5 – Difficulty in abstract thinking; 

 N6 – Lack of spontaneity and flow of conversation; 

 N7 – Stereotyped thinking. 

General:  
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 G1 – Somatic concerns; 

 G2 – Anxiety; 

 G3 – Guilt feelings; 

 G4 – Tension; 

 G5 – Mannerism and posturing; 

 G6 – Depression; 

 G7 – Motor retardation; 

 G8 – Uncooperativeness; 

 G9 – Unusual thought content; 

 G10 – Disorientation; 

 G11 – Poor attention; 

 G12 – Lack of judgement and insight; 

 G13 – Disturbance of volition; 

 G14 – Poor impulse control; 

 G15 – Preoccupation; 

 G16 – Active social avoidance. 

In addition to calculating scores of each of the three subscales, and in line with 

alternative 5-dimension symptom conceptualization and recognition of complex nature of some 

of the items, alternative loading of PANSS items was done according to Van Der Gaag et al. 

(26), yielding 5 symptom clusters: positive symptoms, negative symptoms, disorganization, 

excitement, and emotional distress.  

Loading of PANSS items algorithm according to Van Der Gaag (26): 

 Positive symptoms: P1 + P3 + G9 + P6 + P5 + G1 + G12 + G16 − N5; 

 Negative symptoms: N6 + N1 + N2 + N4 + G7 + N3 + G16 + G8 + G13 − P2; 

 Disorganization: N7 + G11 + G10 + P2 + N5 + G5 + G12 + G13 + G15 + G9; 

 Excitement: G14 + P4 + P7 + G8 + P5 + N3 + G4 + G16; 

 Emotional distress: G2 + G6 + G3 + G4 + P6 + G1 + G15 + G16. 

Cognitive functioning was evaluated using the Brief Assessment of Cognition in 

Schizophrenia (BACS), developed for clinical trials to test for major areas of cognitive 

functioning, all of which have been found to be impaired in schizophrenia: working memory, 

verbal memory, motor speed, attention, executive functions, and verbal fluency (20). Tests 

were scored by two independent evaluators, and some tests were randomly selected for 

scoring accuracy review at NeuroCog Trials (417). 
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BACS Tests (421): 

 List learning (verbal memory) 

 Digit sequencing task (working memory) 

 Token motor task (motor speed) 

 Verbal fluency (processing speed) 

 Tower test (executive functions, reasoning, and problem solving) 

 Symbol coding (attention and processing speed). 

Normative data stratified on age and sex as reported by Keefe et al. (421) are used to 

calculate total BACS score and score for every individual subtest. Standardized scores (z-

scores) are calculated for each measure and for the composite score. As reported by Hill et al. 

(417), total scores anchored to B-SNIP controls and those anchored to Keefe normative data 

are highly correlated with r values >0.98.  

 

4.3. fMRI acquisition protocols 

MRI scanning procedure was performed at a single time point, with no follow-up 

neuroimaging scans. Both structural and functional images were collected during one imaging 

session using 3T scanners at all sites. As already described by Wang et al. (422), foam pads 

were used to minimize head motions, and ear plugs to reduce scanner noise. There was no 

task-based paradigm implemented, so subjects were instructed to keep as calm as possible 

during the scanning procedures, not to think about anything in particular, and to keep their 

eyes fixated on a crosshair projected onto the scanner screen. Table 2 and Table 3 list details 

of structural and functional imaging parameters respectively across sites, as already published 

in Wang et al (422). 

 

Table 2 | Structural MRI Parameters         

Site 

  

Scanner Model 
TR 

(ms) 
TE 

(ms) 
Flip Angle 
(degrees) 

Slices Matrix 
Voxel 
Size 

Hartford   Siemens Allegra 2300 2.91 9 160 256x240 1x1x1.2 

Boston   GE Signa HDX 6.98 2.84 8 166 256x256 1x1x1.2 

Detroit   Siemens TrioTim 2300 2.94 9 160 256x240 1x1x1.2 

Chicago   GE Signa HDX 6.98 2.84 8 166 256x256 1x1x1.2 

Dallas   Philips 6.6 2.8 8 170 256x256 1x1x1.2 

Baltimore   Siemens TrioTim 2300 2.91 9 160 256x240 1x1x1.2 
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Table 3 | Functional MRI Parameters         

Site 
  

Scanner Model 
TR 

(ms) 
TE 

(ms) 

Flip 
Angle 

(degrees) 
Slices Matrix 

Voxel 
Size 

Hartford   Siemens Allegra 1500 27 70 29 64x64 3.4x3.4x5 

Boston   GE Signa HDX 3000 27 60 30 64x64 3.4x3.4x5 

Detroit   Siemens TrioTim 1570 22 60 29 64x64 3.4x3.4x4 

Chicago   GE Signa HDX 1775 27 60 29 64x64 3.4x3.4x4 

Dallas   Philips 1500 27 60 29 64x64 3.4x3.4x4 

Baltimore   Siemens TrioTim 2210 30 70 36 64x64 3.4x3.4x3 

 

 

4.4. Preprocessing neuroimaging data 

Neuroimaging data preprocessing was done according to established protocols, but 

with specific in-house modifications of the process described previously (176). Following open-

source Human Connectome Project (HCP) algorithms, final standard space utilizes the 

Connectivity Informatics Technology Initiative (CIFTI) file format, allowing for combined cortical 

surface and subcortical volume analyses yielding high-resolution data (both spatial and 

temporal) such as in Dense Connectome while minimizing processing requirements (423). 

CIFTI format supports gray matter modelling both on cortical surface and as subcortical voxels, 

and spatial dimensions in combined coordinate system are designated as ‘grayordinates’ 

(423). HCP-optimized surface and volume visualization platform Connectome Workbench was 

used for current analyses (424). As in Glasser et al. (423), processing steps followed minimal 

preprocessing pipeline for both structural and functional data in order to achieve correction of 

spatial artifacts, cross-modal registration, creation of surface, and alignment to standard 

space.  

Steps followed during data preprocessing, with specific minimal optimizations applied, 

were already described in detail by Schleifer et al. (176), and included: 

1. Correction for bias-field distortions was performed, and FMRIB (Functional 

Magnetic Resonance Imaging of the Brain) Software Library’s (FSL) linear image 

registration tool (FLIRT) and FSL nonlinear registration tool (FNIRT) were used to 

register T1-weighted images to standard Montreal Neurological Institute (MNI) 152 

coordinate system (425); 
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2. Segmentation of whole-brain gray and white matter was done to produce individual 

cortical and subcortical segmentation using FreeSurfer (open source software used 

to process and analyze brain MRI images) pipeline (426, 427); 

3. Cortical ribbon was created using pial and white-matter boundaries, yielding cortical 

surface, and masks for subcortical gray matter were generated, and both were 

combined to form CIFTI individual grayordinates matrix (including both surface and 

volume) (423); 

4. Cortical surfaces and subcortical volumes were registered, with surfaces being 

registered to the HCP atlas group average using surface-based registration (linked 

to cortical landmark features), and nonlinear registration used for subcortical 

volumes (423); 

5. BOLD data preprocessing included, after being motion corrected,  alignment to 

middle frames of each run using FLIRT, and brain mask was applied to exclude 

non-brain signals; 

6. Conversion of BOLD data to CIFTI format (initial processing for BOLD data done in 

Neuroimaging Informatics Technology Initiative – NIFTI format) and inclusion into 

CIFTI gray matter surface/volume matrix, sampling from cortical ribbon, and for 

subcortical voxels using FreeSurfer segmentation; 

7. BOLD data cortical surface was registered to HCP atlas using nonlinear warping 

based on features of sulci, and subcortical volumes were registered during NIFTI 

processing in a single step integrating transform matrices for all previous 

preprocessing steps. 

In addition to this minimal preprocessing pipeline, subsequent preprocessing ‘de-

noising’ steps were undertaken, also previously reported by Schleifer et al. (176): 

 MATLAB tools (in-house developed) were used for computing signals from the 

ventricles, white matter, as well as from across gray matter voxels as 

approximation of global signal regression (GSR) to deal with spatially widely 

distributed artifacts (428); 

 High-pass filter (> 0.008 Hz) was applied to BOLD time series to remove low-

frequency noise and possible scanner drift. 

Both previous elements were modelled as nuisance variables and regressed out, with 

all following analyses using BOLD time series that survived these two de-noising steps (176). 

BOLD SNR was calculated individually using signal’s mean and standard deviation (SD) for 

any slice across the BOLD run, excluding non-brain voxels.  
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One further step was applied aimed at reducing the effect of movement artifact, 

following recommendations from Power et al. (429). This ‘movement scrubbing’ included 

removing frames that were flagged based on one of the two criteria (176):  

 Total displacement across all 6 rigid-body parameters exceeding 0.5 mm 

(assuming 50 mm cortical sphere radius); 

 Root mean square of difference in intensity between current and preceding 

frame divided by mean intensity and normalized to time series median 

exceeding a value of 3. 

Flagged frame as well as a preceding frame and two subsequent frames were flagged 

for exclusion, and subjects with more than 50% flagged frames were excluded from analyses 

(176). Percentage of removed frames was introduced into statistical models as a covariate and 

was found not to affect the results.  

 

4.5. Data and statistical analyses 

Comparison of demographics variables for the two groups of study population 

(probands and healthy controls) during matching on age, sex, handedness, parental education, 

SNR, and WRAT, was done using independent samples t-test, and chi-squared test. Statistical 

significnce was set at p < 0.05. Testing of demographics data was performed using statistical 

program IBM SPSS Statistics 20.0. 

As previously mentioned, GLM is the most common approach in analyzing fMRI data, 

and as such was used as the basis for our thalamic connectivity analyses. GLM, as multivariate 

regression model, is based on multiple regression with its assumption that the value of 

observed data (y) could be attributed to linear combination of several regressors (x) and 

parameter weight linked to a specific regressor (β), and to uncorrelated noise (ε) (376). 

Expressing that in an equation, linear regression could be conceptualized as: 

y = β0 + β1x1 + β2x2 +…+ βpxp + ε 



59 
 

Parameter weight (β) represents how much a specific factor contributes to the observed 

data, and β0 reflects contribution of factors that are held constant (376). However, taking into 

account complexity of fMRI data, when explaining GLM we need to use a set of matrices as 

described in Figure 1. The model looks for the values in parameter matrix for a specific design 

matrix that best describe fMRI data with smallest values in the error matrix. 

Figure 1. The basic principle of GLM in fMRI data analysis as described in Huettel et al. (376).  

 

   Analyses were performed using FSL’s Permutation Analysis of Linear Models (PALM) 

and numerical computing platform MATLAB (matrix laboratory) (430). PALM allows for a range 

of regression and permutation strategies, while at the same time being robust to 

heteroscedasticity (differing distributions of noise) and able to work with non-imaging data and 

both surface-based and volume-based neuroimaging data. PALM also utilizes robust 

permutation methods to assess classical multivariate statistics and allows the control of family-

wise error rate.  

 

 

Seed-based connectivity analyses 

Our group, utilizing FreeSurfer to achieve individual anatomical segmentation of high-

resolution structural images, and the whole-brain seed-based approach, already examined and 

reported thalamus whole-brain connectivity changes in clinical populations (176, 403). This 

seed-based approach, looking at the whole thalamus as a single seed, was replicated in the 

present analyses in order to confirm the previous findings. Thalamus connectivity map was 

calculated using bilateral thalamus voxels BOLD time series that were averaged to yield single 

thalamus value. This mean thalamic time series was then correlated with every other cortical 

or subcortical value in the CIFTI grayordinates space, yielding Pearson’s coefficient value. 

Finally, using Fisher r-to-Z transform, correlation values were transformed into Fisher-Z-values 
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(Fz) for each voxel, and included into a map in which every voxel value in fact represents its 

connectivity to the seed region (whole thalamus).  

Testing of the main Group effect (probands vs. controls) was done using FSL’s 

Permutation Analysis of Linear Models (PALM) with one-way analysis of variance (ANOVA) 

where BOLD resting-state connectivity data were the dependent measure. Significance was 

set at p < 0.05. Type I error protection was done utilizing nonparametric permutation testing 

with PALM algorithm with 1000 permutations (430), and the whole-brain correction was done 

using family-wise error rate by Threshold-Free Cluster Enhancement method to create 

spatially contiguous voxels clusters that are above given statistical criterion (431). 

In addition, as per specific aim of a more detailed thalamus parcellation, thalamus 

subdivision was achieved using a recent work from our group by Ji et al. (432) on functional 

connectivity networks. Identified thalamic subdivision was then used in subsequent seed-

based analyses, but this time with results of thalamic parcellation as separate seeds (nine 

seeds). Ji et al. (432) used previously developed cortical parcellation containing 180 

symmetrical cortical parcels per hemisphere (433), extracted average BOLD time series from 

all 360 parcels, and created functional connectivity matrix that was used to identify linked 

networks by Louvain clustering algorithm. Using Pearson correlation, voxels were assigned to 

the network with which they shared the highest mean connectivity, resulting in nine thalamic 

sub-regions (seeds) as shown in Figure 2. Visualization was done using Connectome 

Workbench platform. 

 

 



61 
 

Figure 2. Functional networks parcellation based on Ji et al. (432). a) Cortical networks used to assign 
subcortical voxels, shown on the rendered image of the left hemisphere (lateral and medial surfaces); 
b) Thalamic functional subdivision based on voxel assignment to cortical parcels in coronal, sagittal, and 
axial planes respectively. 
VIS1 primary visual, VIS2 secondary visual, SOM somatomotor, DAN dorsal attention, FPN 
frontoparietal cognitive control, DMN default-mode, VMM ventral multimodal, CON cingulo-opercular, 
LAN language, AUD auditory, PMM posterior multimodal, and ORA orbito-affective network.  

 

Seed-based analyses were repeated with nine separate thalamic seeds. Time frames 

from each of those nine seeds were separately averaged across all voxels in a priori defined 

seeds to yield nine seed-specific average values that were then correlated to every other 

cortical and subcortical value in CIFTI grayordinates space, giving us Pearson’s coefficient 

value. Following Fisher’s r-to-Z transform, Fz maps reflected connectivity of every other cortical 

and subcortical voxel with specific thalamic sub-region. PALM was used again, now with nine 

seeds to test group-by-seed interaction effect. Seed-based BOLD resting state fMRI data were 

analyzed  with factors of group (probands and controls) and seeds (nine thalamic subdivisions 

as separate seeds). As stated for the whole-thalamus analysis, Type I error protection was 

done through multiple permutations (1000) in nonparametric permutation testing in PALM, and 

family-wise Type I error correction was additionally applied through Threshold-Free Cluster 

Enhancement method.  

Both whole-thalamus (one seed) and nine-seed analyses were repeated using only a 

subset of patients (SCZ)  and matched healthy controls to examine the possible differences 

between SCZ effects and effects of the wider spectrum (probands group including SCZ, SCAD, 

and BDp).  
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Additional PALM GLMs were computed, to account for possible confounders. GLMs 

were modeled to include separately age, sex, CPZ equivalents, and duration of illness as 

predictors to evaluate their effects.  

To test the hypothesis that detailed subdivision of the thalamus into nine functionally 

defined seeds would actually yield little additional information, nine thalamic seeds were finally 

lumped into two thalamic seeds: 

 Sensorimotor – VIS1, VIS2, SOM, AUD; 

 Associative – CON, DAN, FPN, DMN, PMM. 

All of the previously reported PALM analyses were then performed with this reduced 

number of seeds (two) with the aim of testing 2x2 group-by-seed interaction, using resting-

state fMRI as dependent measure, both with the entire psychosis proband group and the SCZ 

group separately, with appropriate matched healthy controls. 

 

Clustering 

In order to look at thalamic connectivity changes without depending on a priori defined 

subregions, data driven clustering analysis was performed agnostic to prior anatomical or 

functional parcellations of the thalamus. Between-group resting state fMRI difference in 

connectivity for all thalamic voxels was used to group those voxels. The method of k-means 

clustering was performed using correlation distance matrix of group-difference resting-state 

fMRI (176). Given the previous a priori 9-seed solution, which was based on previous functional 

parcellation of the thalamus, data driven clustering was done for k = 1 through k = 9. Clustering 

steps followed the protocol already published by our group (403): 

1. Individual identification of all thalamic voxels using FreeSurfer; 

2. Registration using FNIRT (434), after identification of the subject with 

segmentation that was most similar to the entire group and using that 

segmentation for non-linear registration of all thalamic voxels across all 

subjects; 

3. Application of non-linear transformation matrix to BOLD voxels that 

corresponded to individually segmented thalamus volumes; 

4. Creation of seed-based connectivity fMRI for each thalamic voxel with all other 

gray matter voxels yielding connectivity map for each thalamic voxel in each 

subject; 

5. Application of Fisher r-to-Z transform and calculation of group averaged value 

for each group; 
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6. Calculation of group difference map, and dysconnectivity maps for each voxel, 

to be used as input value for k-means clustering; 

7. Whole-brain voxel dysconnectivity maps were converted into one-dimensional 

vectors and used to compute correlation between each pair of thalamic voxels 

(reflecting similarity in dysconnectivity between those two voxels); 

8. Applying k-means clustering algorithm that found k clusters by grouping voxels 

with most similar whole-brain dysconnectivity patterns between two groups (1-r 

was used as the dissimilarity measure).  

As already reported by Anticevic et al. (403), in order to avoid the algorithm being 

caught in local minima, clustering was repeated 10 times for each k, but with different random 

starting point. Solution that yielded smallest distances within a cluster was finally accepted.  

In addition to k-means clustering, thalamic connectivity was examined to determine 

which voxels would show the greatest connectivity pattern differences between the two groups. 

To do so, we used eta2 index that quantifies similarity between fMRI connectivity maps (ranging 

from 0 to 1) (435). Similar to steps preceding k-means clustering, dysconnectivity maps were 

converted into one-dimensional vectors, and 1-eta2 (measure of dissimilarity between two 

groups’ averaged seed functional connectivity maps) was calculated. Creation of ‘dissimilarity 

map’ with 1-eta2 value calculated for each thalamic voxel helped in identifying voxels/areas 

that drive the between-group difference in thalamic connectivity. Voxels with higher 1-eta2 were 

defined as those with the greatest difference in thalamo-cortical connectivity between 

probands and healthy controls.  

 

Symptoms and functional connectivity patterns 

In order to evaluate a possible link between connectivity changes patterns (both over- 

and under-connectivity) and symptoms, composite scores for PANSS were separately entered 

in GLM and analyzed using linear regression. Mean Fz was calculated for over-connectivity 

and under-connectivity effects separately and entered into the model. 

Following our previous finding of correlation between thalamic dysconnectivity and total 

PANSS score, as well as General Psychopathology subscale (403), in addition to total score, 

General Psychopathology PANSS subscale score was evaluated in a similar linear model. 

With the aim of a finer parsing of the psychopathology, five symptom dimensions resulting from 

the alternative Van Der Gaag loading of PANSS items (Positive, Negative, Disorganization, 

Emotional Distress, and Excitation) were also entered separately in GLM. Furthermore, based 

on the assumption that biological mechanisms underlying specific PANSS items might differ, 

linear models for thalamic subnucleus proved to show most specific/prominent changes were 
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also populated with five specifically chosen items from PANSS scale – delusions (P1), 

conceptual disorganization (P2), hallucinations (P3), blunted affect (N1), difficulty in abstract 

thinking (N5), depression (G6), and disorientation (G10). Wider item-based analysis was 

avoided since, even with applied safeguards, the number of PANSS items would make it 

difficult to completely control for the Type I error. Five items were chosen to cover different 

psychopathology aspects, and additionally based on expected reduced rater variability in rating 

of those items. 

 

Visualization of connectivity data analyses 

Statistical results from each voxel in the brain combined formed a statistical map of 

connectivity changes. Maps that were created are therefore not a direct representation of the 

brain activity, but a statistical map color-coded according to alpha probability value for voxels 

(376). Maps were provided with color bars that link specific color palette and values of the 

statistical test used in the analysis.  

Statistical maps were overlaid for visualization purposes on the image representing 

brain anatomy, either using a two-dimensional structural image of higher resolution (i.e. T1 

image), or three-dimensional rendered images with smooth and high-resolution images formed 

on the basis of structural images. Depending on the location of the finding that reached 

statistical significance, underlying structural image can be from either of the three planes (axial, 

coronal, and sagittal).  

For current analyses Connectome Workbench protocols were used. Connectome 

Workbench is an open source resource written in C++ used for visualization of surface- and 

volume-based neuroimaging data, especially data that is in line with HCP imaging protocols 

(424). In addition to visualization platform, Connectome Workbench offers also wb_command 

for performing a variety of algorithmic tasks on both surface and volume, as well as on 

grayordinate space data.  

Linear regression results were visualized using R, a free software platform for data 

analysis and visualization. 
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5. Results 

5.1. Study population and demographics 

As previously stated, B-SNIP study population initially reported by Tamminga et al. 

(199, 419) included 933 probands (397 SCZ, 224 SCAD, and 312 BDp) and 459 healthy 

controls. Following already described pooling of subjects with neuroimaging data that passed 

quality control and matching of groups, our final study population included 655 subjects divided 

into two groups (436 probands and 219 healthy controls).  

Details of the final study population and matching according to age, handedness, sex, 

race, parental education, and SNR are reported in Table 4. Table 4 compares proband and 

matched healthy controls, with reported means and standard deviations or percentage 

(depending on the variable). Depending on the type of variable, groups were compared using 

independent samples t-test or chi-square test. 

Since follow-up analyses were performed using only SCZ subpopulation and a matched 

subset of healthy controls, clinical and demographic details of those two matched populations 

are presented in Table 5. Table 5 compares SCZ and matched healthy controls, with reported 

means and standard deviations or percentage (depending on the variable). Depending on the 

type of variable, groups were compared using independent samples t-test or chi-square test. 

Group of probands consisted of psychosis spectrum patients diagnosed according to 

DSM-IV criteria: 

 SCZ (N = 167);  

 SCAD (N = 119); 

 BDp (N = 150). 

Table 6 reports differences in clinical variables between these three groups that make 

up proband population. One-way ANOVA was used for comparison of three proband 

subgroups, with statistical significance set at the level of p < 0.05.  
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Table 4 | Clinical and Demographic Characteristics - Whole sample     

Characteristic 

  
Controls 
(N=219) 

Probands 
(N=436) 

Significance  

  M / % S.D. M / % S.D. 

T 
Value / 

Chi-
Square 

P 
Value 
(two-
tailed) 

Age (in years)   37.22 12.18 35.33 12.31 1.87 .062 

Gender (% male)   41.55 - 48.62 - 2.93 .087 

Father's Education (in years) 13.50 3.57 13.74 3.81 0.75 .454 

Mother's Education (in years) 13.16 3.22 13.59 3.05 1.58 .114 

Handedness (% right) 84.93 - 85.78 - 1.08 .783 

Race (%)   - - - - 8.88 .261 

  African American 29.68 - 33.49 - - - 

  Native American 0.46 - 0.00 - - - 

  Asian 4.57 - 2.06 - - - 

  Caucasian 61.19 - 59.86 - - - 

  Native Hawaiian 0.46 - 0.00 - - - 

  Mixed Race 1.83 - 2.75 - - - 

Signal-to-noise   231.40 83.04 218.36 93.45 1.71 .087 

Antipsychotic (% yes) 0.00 - 84.17 - - - 

AP 1st Gen (% yes) 0.00 - 9.17 - - - 

AP 2nd Gen (% yes) 0.00 - 74.77 - - - 

Antipsychotic Medication (CPZ equiv.) - - 443.19 402.91 - - 

Antidepressant (% yes) 1.83 - 44.27 - 127.51 <.001* 

Mood Stabilizer (% yes) 0.00 - 46.33 - - - 

Anxiolytic/Hypnotic (%yes) 2.74 - 27.29 - - <.001* 

Anticholinergic (% yes) 0.00 - 12.84 - - - 

Duration of illness (in years) - - 15.24 11.89 - - 

Participant's BACS Z score 0.02 1.15 -1.38 1.35 -13.41 <.001* 

Participant's WRAT score 102.28 13.64 98.78 15.00 -2.88 .004* 

PANSS Positive Symptoms - - 15.67 5.35 - - 

PANSS Negative Symptoms - - 14.60 5.11 - - 

PANSS General Psychopathology - - 31.46 8.68 - - 

PANSS Total Psychopathology - - 61.67 16.34 - - 

PANSS 5-factor Positive Domain - - 16.29 6.19 - - 

PANSS 5-factor Negative Domain - - 15.23 6.03 - - 

PANSS 5-factor Emotional Distress - - 18.58 5.98 - - 

PANSS 5-factor Disorganization - - 18.80 5.94 - - 

PANSS 5-factor Excitation  - - 14.52 4.58 - - 

M - Mean, S.D. - Standard deviation, * - statistically significant difference at the level of p < 0.05 
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Table 5 | Clinical and Demographic Characteristics - SCZ vs Controls     

Characteristic 

  
Controls 
(N=153) 

SCZ (N=167) Significance  

  M / %  S.D. M / % S.D. 

T 
Value / 

Chi-
Square 

P 
Value 
(two-
tailed) 

Age (in years)   34.01 11.18 34.09 11.99 0.64 .949 

Gender (% male)   59 - 67 - 2.33 .127 

Father's Education (in years) 13.78 3.53 13.71 3.05 0.17 .865 

Mother's Education (in years) 13.45 3.22 13.53 2.81 0.24 .809 

Handedness (% right) 82.35   86.23   1.17 .761 

Race (%)   - - - - 16.02 .025* 

  African American 27.45 - 43.71 - - - 

  Native American 0.65 - 0.00 - - - 

  Asian 5.23 - 1.20 - - - 

  Caucasian 62.74 - 49.70 - - - 

  Native Hawaiian 0.65 - 0.00 - - - 

  Mixed Race 1.96 - 2.99 - - - 

Signal-to-noise   210.73 70.96 198.10 83.09 1.42 .157 

Antipsychotic (% yes) 0 - 90.42 - - - 

AP 1st Gen (% yes) 0 - 10.78 - - - 

AP 2nd Gen (% yes) 0 - 79.64 - - - 

Antipsychotic Medication (CPZ equiv.) - - 490.64 395.79 - - 

Antidepressant (% yes) 0.65 - 37.13 - 69.87 <.001* 

Mood Stabilizer (% yes) 0 - 20.96 - - - 

Anxiolytic/Hypnotic (%yes) 1.96 - 22.16 - 31.57 <.001* 

Anticholinergic (% yes) 0 - 15.57 - - - 

Duration of illness (in years) - - 12.93 11.14 - - 

Participant's BACS Z score 0.14 1.10 -1.64 1.39 -12.77 <.001* 

Participant's WRAT score 103.43 14.14 95.85 15.67 -4.50 <.001* 

PANSS Positive Symptoms - - 16.38 5.15 - - 

PANSS Negative Symptoms - - 16.25 5.67 - - 

PANSS General Psychopathology - - 31.68 8.30 - - 

PANSS Total Psychopathology - - 64.26 16.04 - - 

PANSS 5-factor Positive Domain - - 17.47 5.98 - - 

PANSS 5-factor Negative Domain - - 16.31 6.43 - - 

PANSS 5-factor Emotional Distress - - 18.10 5.44 - - 

PANSS 5-factor Disorganization - - 20.58 6.33 - - 

PANSS 5-factor Excitation  - - 14.05 4.24 - - 

M - Mean, S.D. - Standard deviation, * - statistically significant difference at the level of p < 0.05 



68 
 

 

M - Mean, S.D. - Standard deviation; * - Statistically significant at the level of p < 0.05; a – Welch’s 
Statistics, after violation of Levene’s test for homogeneity of variances. 
 

Using Levene’s test it was shown that the assumption of homogeneity of variances did 

not hold for the PANSS Negative Subscale, F(2,432)=9.54, p<0.001; Van Der Gaag loading 

for the Positive Subscale, F(2, 432)=5.12, p=0.006; the Negative Subscale, F(2, 432)=3.97, 

p=0.02; and the Disorganization Subscale, F( 2, 432)=6.98, p=0.001. Due to the violation of 

assumption of homogeneity of variances, Welch’s test was used for those items.  

Post hoc multiple comparison using Turkey’s HSD (honestly significant difference) tests 

showed that the BDp population’s mean for BACS composite score was significantly different 

from the scores of SCZ and SCAD populations, but that the SCZ and SCAD means did not 

differ significantly. The same pattern was also seen for the PANSS Negative Subscale, the 

PANSS total score, Van Der Gaag’s Negative Symptoms Subscale and Disorganization 

Subscale, and CPZ equivalent doses of antipsychotics.  

Means for the duration of illness differed significantly between the SCZ and BDp group, 

whereas the mean duration of illness of the SCAD group was between those two values, just 

reaching the level of significance (p = 0.05) when compared to SCZ, but not significantly 

different from BDp.  

All three groups differed significantly on the PANSS Positive Subscale, PANSS General 

Psychopathology Subscale, and Van Der Gaag’s loading for Positive Subscale. 

Van Der Gaag’s loading for Emotional Distress Subscale showed significant difference 

in means for SCZ and SCAD, and SCAD and BDp population. There was no significant 

difference between SCZ and BDp populations. The same pattern was seen in  Van Der Gaag’s 

loading for Excitation.  

Table 6 | Clinical characteristics of proband subgroups

Characteristic SCZ (N=153) SCAD (N=119) BDp (N=150) Significance 

M S.D. M S.D. M S.D. F Value / (df) P Value 

Age (in years) 34,09 11,99 36,00 11,90 36,12 12,41 1.42 (2, 433) 0,24

Antipsychotics (CPZ eq) 490,64 395,79 509,21 466,44 323,13 327,39 6.47 (2, 276) 0.002*

Duration of illness (yrs) 12,93 11,14 16,58 12,44 16,17 12,10 5.04 (2, 414) 0.007*

BACS Z score -1,64 1,39 -1,53 1,28 -0,94 1,31 15.51 (2, 433) <.001*

WRAT score 95,85 15,67 97,15 14,08 102,42 13,10 0.35 (2, 433) 0,70

PANSS Positive 16,38 5,15 18,27 4,75 12,82 4,08 42.04 (2, 433) <.001*

PANSS Negative 16,25 5,67 16,15 4,52 12,02 3,87 42.18
a
 (2, 433)  <.001*

PANSS General 31,68 8,30 35,03 8,41 28,33 7,66 16.33 (2, 433) <.001*

PANSS Total 64,26 16,04 69,31 14,96 53,17 12,84 34.83 (2, 433) <.001*

PANSS 5-factor Pos. 17,47 5,98 19,26 5,34 12,68 4,28 58.77
a
 (2, 433) <.001*

PANSS 5-factor Neg. 16,31 6,43 17,27 6,26 13,32 5,15 15.90
a
 (2, 433) <.001*

PANSS 5-factor Emo. 18,10 5,44 21,31 6,34 17,10 5,87 8.752 (2, 433) <.001*

PANSS 5-factor Disorg. 20,58 6,33 19,94 5,56 15,54 4,13 36.96
a
 (2, 433) <.001*

PANSS 5-factor Exc. 14,05 4,24 16,21 4,83 13,74 4,33 14.97 (2, 433) <.001*
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5.2. Whole-thalamus seed-based connectivity analysis 

Figure 3 and Figure 4 show unthresholded main effect of participant groups (probands 

with psychosis and healthy controls) for the whole thalamus used as the single seed in 

functional connectivity analysis. Results of thresholding at p < 0.05 are shown in Figure 5 and 

Figure 6. Visualization was done using Connectome Workbench platform. Figure 7 reports 

mean over- and under-connectivity (Fz) between thalamic voxels and the rest of the brain for 

healthy control sample and probands (psychosis spectrum disorders). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Unthresholded whole thalamus seed-based functional connectivity analysis for probands vs. 
hcs – cortical surface view; hcs – healthy control subjects, psd – psychosis spectrum disorders. 
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Figure 4. Unthresholded whole thalamus seed-based functional connectivity analysis for probands vs. 
hcs – volume-based subcortical view (axial plane); A – Anterior, P – Posterior; L – Left; R – Right. 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Thresholded whole thalamus seed-based functional connectivity analysis for probands vs. hcs 
– cortical surface view; hcs – healthy control subjects, psd – psychosis spectrum disorders. 
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Figure 6. Thresholded whole thalamus seed-based functional connectivity analysis for probands vs. hcs 
– volume-based subcortical view (axial plane); A – Anterior, P – Posterior; L – Left; R – Right. 
 

 

 

 

 

 

 

 

 

 

 

Figure 7. Mean connectivity averaged across all thalamic voxels in over- (a) and under-connected (b) 
areas (psychosis probands vs. healthy controls), with 95% confidence interval; 
hcs – healthy control subjects, psd – psychosis spectrum disorders. 
 

 

Wide swathes of primary and secondary sensory and motor cortex survived the 

thresholding and were shown to have increased connectivity with the thalamus, as well as 

primary and secondary visual cortex, primary gustatory cortex, auditory cortex, Supplementary 

motor area, insular cortex, posterior cingulate cortex, fusiform gyrus, supramarginal gyrus. 
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Table 7 lists all regions showing statistically significant connectivity differences (over-

connectivity) with whole thalamus between probands and healthy controls. List of regions with 

significant thalamic under-connectivity for probands compared to healthy controls is reported 

in Table 8. The nearest anatomical landmark, the number of voxels, and Brodmann area (if 

available) are reported as well. Regions with over 100 voxels are reported.  
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Table 7 | Regions showing thalamic over-connectivity for probands vs. hcs

X Y Z
Number of 

voxels
Hemisphere Anatomical landmark

Brodmann 

area

53 -23 39 461 Right Postcentral gyrus BA 3

-50 -25 50 452 Left Postcentral gyrus BA 2

32 -38 52 443 Right Postcentral gyrus BA 3

37 -31 19 355 Right Insula BA 13

-30 -42 56 350 Left Inferior parietal lobule BA 40

-62 -15 24 346 Left Postcentral gyrus BA 3

-44 -14 31 335 Left Precentral gyrus BA 6

40 -23 48 335 Right Postcentral gyrus BA 3

-50 -49 14 325 Left Superior temporal g. BA 13

20 -88 24 310 Right Cuneus BA 18

-45 -79 6 301 Left Middle occipital g. BA 19

-37 -14 14 274 Left Insula BA 13

18 -59 -6 273 Right Lingual gyrus BA 19

45 -18 51 257 Right Precentral gyrus BA 4

5 -24 68 256 Right Medial frontal g. BA 6

-21 -85 25 249 Left Cuneus BA 18

-37 -23 45 246 Left Postcentral gyrus BA 3

48 -46 17 234 Right Superior temporal g. BA 13

45 -64 6 230 Right Middle temporal g. BA 37

52 -10 32 226 Right Precentral gyrus BA 6

58 -14 32 214 Right Precentral gyrus BA 4

-38 -37 15 205 Left Superior temporal g. BA 41

61 -6 22 202 Right Precentral gyrus BA 4

-6 -25 74 178 Left Medial frontal g. BA 6

-5 -85 24 174 Left Cuneus BA 18

37 -7 10 173 Right Claustrum -

-21 -70 7 170 Left Cuneus BA 17

35 -34 64 168 Right Postcentral gyrus BA 3

-15 -66 -5 167 Left Lingual gyrus BA 18

5 -9 53 166 Right Medial frontal g. BA 6

13 -73 26 164 Right Precuneus BA 31

-26 -19 71 160 Left Precentral gyrus BA 6

29 -23 64 159 Right Precentral gyrus BA 6

10 -34 67 155 Right Paracental lobule BA 6

25 -64 -6 155 Right Lingual gyrus BA 19

-55 -9 21 152 Left Postcentral gyrus BA 43

17 -89 26 151 Right Cuneus BA 18

20 -53 0 148 Right Parahippocampal g. BA 30

-21 -74 -7 138 Left Lingual gyrus BA 18

-5 -25 54 135 Left Medial frontal g. BA 6

-28 -27 52 133 Left Precentral gyrus BA 4

-15 -61 -4 132 Left Lingual gyrus BA 19

-37 -8 9 121 Left Claustrum -

-58 -8 26 117 Left Precentral gyrus BA 4

-42 -11 56 113 Left Precentral gyrus BA 6
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Table 8 | Regions showing thalamic under-connectivity for probands vs. hcs

X Y Z
Number of 

voxels
Hemisphere Anatomical landmark

Brodmann 

area

40 -64 -52 250 Right Superior parietal lobule BA 7

36 -52 -32 250 Right Cerebellum, culmen -

22 -68 -28 250 Right Cerebellum, declive -

-26 -62 -60 250 Left Cerebellum, inf. semi-lunar -

-30 -74 -30 250 Left Cerebeelum, declive -

-32 -76 -40 250 Left Cerebellum, tuber -

-34 -50 -32 250 Left Cerebellum, culmen -

-44 -64 -44 244 Left Cerebellum, pyramis -

-38 -54 -58 237 Left Cerebellum, tonsil -

18 -62 -60 232 Right Cerebellum, inf. semi-lunar -

-48 -56 -34 227 Left Cerebellum, tuber -

-26 -64 -32 214 Left Cerebellum, uvula -

-8 -60 -46 208 Left Cerebellum, inf. semi-lunar -

10 -82 -28 199 Right Cerebellum, declive -

10 -8 4 175 Right Thalamus, ventral lat. n. -

-8 -16 10 175 Left Thalamus, medial dors. n. -

-2 -70 -38 172 Left Cerebellum, pyramis -

30 -70 -30 166 Right Cerebellum, declive -

-8 -76 -30 163 Left Cerebellum, declive -

-14 -88 -38 156 Left Cerebellum, tuber -

-22 -98 -8 155 Left Lingual gyrus BA 18

38 -58 -44 153 Right Cerebellum, tonsil -

-10 -6 10 153 Left Thalamus, anterior n. -

32 -62 -32 152 Right Cerebellum, uvula -

6 -16 10 138 Right Thalamus, medial dors. n. -

-14 -80 -28 138 Left Cerebellum, declive -

48 -62 -34 131 Right Cerebellum, tuber -

19 -98 -8 131 Right Lingual gyrus BA 17

-16 -72 -30 123 Left Cerebellum, declive -

10 -78 -50 118 Right Cerebellum, inf. semi-lunar -

42 -74 -44 113 Right Cerebellum, pyramis -

-36 -56 -34 112 Left Cerebellum, culmen -

-6 -62 -26 109 Left Cerebellum, declive -

8 -68 -34 102 Right Cerebellum, pyramis -
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Schizophrenia sample 

Results for the whole thalamus seed-based analyses are reported in Figure 8 and 

Figure 9 (unthresholded results), and Figure 10 and Figure 11 (thresholding at p < 0.05).  

 

 

 

 

 

 

 

 

 

 

Figure 8. Unthresholded whole thalamus seed-based functional connectivity analysis for scz vs. hcs – 
cortical surface view; hcs – healthy control subjects, scz – schizophrenia subjects. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Unthresholded whole thalamus seed-based functional connectivity analysis for scz vs. hcs – 
volume-based subcortical view (axial plane); A – Anterior, P – Posterior; L – Left; R – Right. 
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Figure 10. Thresholded whole thalamus seed-based functional connectivity analysis for scz vs. hcs – 
cortical surface view; hcs – healthy control subjects, scz – schizophrenia subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Thresholded whole thalamus seed-based functional connectivity analysis for scz vs. hcs – 
volume-based subcortical view (axial plane); A – Anterior, P – Posterior; L – Left; R – Right. 
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Pattern similar to the one seen for the psychosis spectrum emerged, although with 

somewhat spatially restricted results. Missing from SCZ over-connectivity findings (when 

compared to wider psychosis spectrum) were gustatory cortex, primary visual cortex, posterior 

cingulate and fusiform gyrus. Cortical and subcortical regions showing statistically significant 

difference in thalamic connectivity (over-connectivity) between schizophrenia sample and 

healthy controls are reported in Table 9. In Table 10, regions of significant reduction in thalamic 

connectivity in SCZ patients are reported. As in previous tables reporting regions with 

increase/reduction in connectivity, the nearest anatomical landmark, the number of voxels, and 

Brodmann area (if available) are reported as well. Regions with over 100 voxels are reported.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 | Regions showing thalamic over-connectivity for scz patients vs. hcs

X Y Z
Number of 

voxels
Hemisphere

Anatomical 

landmark

Brodmann 

area

53 -23 39 501 Right Postcentral gyrus BA 3

48 -43 16 400 Right Superior temporal g. BA 13

37 -31 18 258 Right Insula BA 13

40 -21 46 245 Right Precentral gyrus BA 4

16 -53 -7 243 Right Lingual gyrus BA 19

-35 -19 39 239 Left Precentral gyrus BA 4

32 -37 52 236 Right Postcentral gyrus BA 3

-37 -8 8 229 Left Claustrum -

-60 -7 26 229 Left Precentral gyrus BA 4

-45 -14 31 218 Left Precentral gyrus BA 6

37 -22 58 207 Right Precentral gyrus BA 4

32 -70 25 179 Right Middle temporal g. BA 39

-36 -32 14 168 Left Superior temporal g. BA 41

45 -17 50 161 Right Precentral gyrus BA 4

52 -10 32 149 Right Precentral gyrus BA 6

40 0 7 143 Right Insula BA 13

57 -3 20 139 Right Precentral gyrus BA 6

-18 -86 24 119 Left Cuneus BA 18
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Table 10 | Regions showing thalamic under-connectivity for scz patients vs. hcs

X Y Z
Number of 

voxels
Hemisphere Anatomical landmark

Brodmann 

area

50 -58 -50 250 Right Cerebellum, tonsil -

12 -12 4 250 Right Thalamus, ventral lat. n. -

-8 -16 8 250 Left Thalamus, medial dors. n. -

-26 -82 -30 250 Left Cerebellum, declive -

-42 -62 -44 250 Left Cerebellum, pyramis -

-34 -76 -38 238 Left Cerebellum, tuber -

30 -82 -38 232 Right Cerebellum, tuber -

36 -50 -36 231 Right Cerebellum, anterior lobe -

30 -70 -30 214 Right Cerebellum, declive -

-2 -72 -40 208 Left Cerebellum, pyramis/vermis -

-34 -56 -52 202 Left Cerebellum, tonsil -

10 -42 -28 197 Right Cerebellum, culmen -

-2 -44 -16 192 Left Cerebellar lingual -

-48 -56 -32 192 Left Cerebellum, tuber -

-2 -56 -36 185 Left Cerebellum, nodule -

-30 -62 -32 171 Left Cerebellum, uvula -

-22 -98 -7 170 Left Lingual gyrus BA 18

24 -66 -28 147 Right Cerebellum, declive -

40 -76 -42 142 Right Cerebellum, pyramis -

-4 -62 -26 139 Left Cerebellum, declive -

10 -82 -28 138 Right Cerebellum, declive -

-30 -74 -30 126 Left Cerebellum, declive -

44 -64 -32 121 Right Cerebellum, tuber -

-16 -80 -24 116 Left Cerebellum, declive -

6 -68 -34 115 Right Cerebellum, pyramis -

24 -97 -9 111 Right Lingual gyrus BA 18

22 -74 -28 110 Right Cerebellum, declive -

34 -46 -38 105 Right Cerebellum, anterior lobe -

-16 -72 -30 100 Left Cerebellum, pyramis -
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Figure 12 reports mean over- and under-connectivity (Fz) between averaged thalamic 

voxels values and the rest of the brain for schizophrenia patients and matched healthy 

control sample. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Mean connectivity averaged across all thalamic voxels in over- (a) and under-connected (b) 
areas (schizophrenia vs. healthy controls), with 95% confidence interval; 
hcs – healthy control subjects, scz – schizophrenia patients. 

 

In order to assess whether age, sex, duration of illness, or antipsychotic medication 

(CPZ equivalents) alter the permuted analyses, all were included formally as a covariate in the 

PALM whole-brain GLM. Inclusion of these covariates did not change the general pattern of 

thalamic connectivity changes. 

 

 

5.3. Nine-seed group-by-seed interaction 

Seed-based analyses were repeated using nine thalamic functional seeds identified by 

our group and previously reported by Ji et al. (432). Cortical functional networks, as well as 

associated thalamic functional subdivision, are shown in Figure 2 in Subjects and methods 

section. As seen from Figure 2, there was no significant correlation of thalamic voxels with 

ventral multimodal, language, and orbito-affective networks, while other nine networks charted 

onto the thalamus.  

Figure 13 and Figure 14 show group-by-seed interaction for two groups (probands and 

healthy controls) and nine thalamic seeds using Connectome Workbench platform.  
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Figure 13. Interaction effect, showing the 2x9 interaction between two groups (psychosis spectrum and 
healthy control subjects) and the nine thalamic seeds on cortical surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Interaction effect, showing the 2x9 interaction between two groups (psychosis spectrum and 
healthy control subjects) and the nine thalamic seeds using volume-based view (axial plane); 
A – Anterior, P – Posterior; L – Left; R – Right. 
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For all nine thalamic seeds identified according to functional connectivity with cortical 

networks, individual seed-based whole-brain connectivity analyses were conducted in order to 

specifically investigate which of those seeds drove the effect. For three of the seeds/functional 

networks, no effects survived thresholding and stringent type I error protection/correction 

(frontoparietal cognitive control, cingulo-opercular, and posterior multimodal). Surface-based 

maps of connectivity differences between psychosis probands and matched healthy controls 

for the remaining six seeds are shown in Figure 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 15. Thresholded surface seed-based analyses results for six thalamic seeds that survived p < 
0.05 thresholding. Visualization follows previously used convention with left and right lateral cortical 
surfaces in the first row, and left and right medial cortical surfaces in the second row for each of the 
seeds.  
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Although a similar pattern of over-connectivity with sensory and motor regions emerged across 

seeds, with significant differences in the extent, dorsal attention seed showed most noticeable 

results, with the greatest number of regions surviving thresholding. In addition to dorsal 

attention seed’s between-group connectivity differences being spatially most extensive, it was 

also the only seed for which prefrontal under-connectivity effects survived permutation 

analyses. 

Table 11 and Table 12 report cortical and subcortical regions that show statistically significant 

difference in connectivity (over- and under-connectivity respectively) between thalamic dorsal 

attention seed and the rest of brain voxels for psychosis probands vs. matched healthy 

controls. Only regions with over 100 voxels are reported in tables, which means that some of 

the effects seen on Figure 15 (e.g. under-connectivity for orbitofrontal cortex and dorsolateral 

prefrontal regions) are not explicitly listed.  
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 Table 11 | Regions showing over-connectivity for probands vs. hcs (dorsal attent. seed)

X Y Z
Number 

of voxels
Hemisphere Anatomical landmark

Brodmann 

area

-55 -9 23 652 Left Postcentral gyrus BA 43

39 -24 48 626 Right Postcentral gyrus BA 3

22 -87 23 532 Right Cuneus BA 18

53 -47 13 520 Right Superior temporal g. BA 22

-49 -49 13 472 Left Superior temporal g. BA 13

32 -38 52 461 Right Postcentral gyrus BA 3

50 -25 40 427 Right Postcentral gyrus BA 3

-37 -21 43 372 Left Precentral gyrus BA 4

58 -6 21 366 Right Precentral gyrus BA 4

45 -64 6 348 Right Middle temporal g. BA 37

-45 -72 14 332 Left Middle temporal g. BA 39

21 -54 1 309 Right Lingual gyrus BA 18

-12 -72 19 291 Left Cuneus BA 18

-28 -42 56 290 Left Inferior parietal lobule BA 40

-49 -13 30 283 Left Precentral gyrus BA 6

-45 -33 40 280 Left Inferior parietal lobule BA 40

-45 -28 62 258 Left Postcentral gyrus BA 3

-5 -26 56 219 Left Medial frontal gyrus BA 6

-48 -40 21 214 Left Insula BA 13

6 -27 57 211 Right Medial frontal gyrus BA 6

39 -31 15 205 Right Superior temporal g. BA 41

-9 -37 76 200 Left Postcentral gyrus BA 3

38 -16 13 200 Right Insula BA 13

-23 -88 19 191 Left Cuneus BA 18

-33 -26 9 190 Left Insula BA 13

55 -13 50 189 Right Postcentral gyrus BA 3

-15 -66 -5 187 Left Lingual gyrus BA 18

-38 -9 7 186 Left Claustrum -

-19 -75 -8 183 Left Lingual gyrus BA 18

17 -74 25 179 Right Precuneus BA 31

-14 -88 27 162 Left Cuneus BA 18

19 -64 15 161 Right Posterior cingulate BA 31

46 -18 55 159 Right Precentral gyrus BA 4

-23 -67 7 155 Left Posterior cingulate BA 30

58 9 24 142 Right Inferior frontal gyrus BA 9

9 -70 1 140 Right Lingual gyrus BA 18

54 -9 4 135 Right Superior temporal g. BA 22

6 -23 62 134 Right Medial frontal gyrus BA 6

41 -3 3 125 Right Claustrum -

-8 -92 15 123 Left Cuneus BA 18

26 -28 53 119 Right Precentral gyrus BA 4

-55 -34 13 118 Left Superior temporal g. BA 42

26 -66 -5 118 Right Lingual gyrus BA 19

-57 -11 4 108 Left Superior temporal g. BA 22
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Table 12 | Regions showing under-connectivity for probands vs. hcs (dorsal attent. seed)

X Y Z
Number 

of voxels
Hemisphere Anatomical landmark

Brodmann 

area

40 -58 -30 500 Right Cerebellum, declive -

-10 -78 -30 432 Left Cerebellum, declive -

-36 -78 -42 429 Left Cerebellum, pyramis -

-28 -74 -28 390 Left Cerebellum, declive -

0 -72 -42 360 Left Cerebellum, uvula of vermis -

40 -66 -54 342 Right Cerebellum, inf. semi-lunar -

-26 -66 -30 330 Left Cerebellum, declive -

51 -53 45 330 Right Inferior parietal lobule BA 40

32 -70 -30 313 Right Cerebellum, declive -

6 -16 10 304 Right Thalamus, medial dors. n. -

-46 -64 -46 304 Left Cerebellum, inf. semi-lunar -

-42 -72 -42 282 Left Cerebellum, pyramis -

42 -74 -42 274 Right Cerebellum, pyramis -

20 -72 -28 260 Right Cerebellum, declive -

-10 -54 -60 243 Left Cerebellum, tonsil -

-32 -68 -58 239 Left Cerebellum, inf. semi-lunar -

2 -76 -34 200 Right Cerebellum, tuber of vermis -

14 -50 -60 191 Right Cerebellum, tonsil -

28 -84 -38 190 Right Cerebellum, tuber -

22 -66 -60 185 Right Cerebellum, declive -

52 -60 -42 183 Right Cerebellum, pyramis -

18 -84 -24 183 Right Cerebellum, declive -

12 -80 -28 181 Right Cerebellum, declive -

-44 -64 -30 181 Left Cerebellum, declive -

-10 -16 10 177 Left Thalamus, medial dors. n. -

14 -90 -38 173 Right Cerebellum, tuber -

-34 -50 -32 166 Left Cerebellum, culmen -

-22 -66 -60 157 Left Cerebellum, inf. semi-lunar -

59 -26 -23 138 Right Inferior temporal gyrus BA 20

-14 -82 -26 132 Left Cerebellum, declive -

-30 -86 -36 125 Left Cerebellum, uvula -

-18 -72 -30 123 Left Cerebellum, declive -

34 -76 -26 121 Right Cerebellum, declive -

-54 -18 -33 121 Left Fusiform gyrus BA 20

4 -76 -16 120 Right Cerebellum, declive -

9 34 30 120 Right Cingulate gyrus BA 32

40 -58 -44 115 Right Cerebellum, tonsil -

38 -68 -44 113 Right Cerebellum, pyramis -

18 -98 -1 111 Right Cuneus BA 17

18 -14 12 109 Right Thalamus, ventral lat. n. -

40 -52 -50 105 Right Cerebellum, tonsil -

-8 -52 -44 105 Left Cerebellum, tonsil -
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5.4. Two-seed group-by-seed interaction 

In order to simplify the analyses, and assuming that effects would converge across 

associative and sensorimotor seeds, nine thalamic regions that were identified based on 

functional thalamic connectivity with specific cortical regions (seen in Figure 2) were finally 

lumped into two groups: associative and sensorimotor. Results of 2x2 group-by-seed 

interaction analysis that survive thresholding at p < 0.05 are reported in Table 13. We report 

regions with over 100 voxels. The effect of interaction for both associative and sensorimotor 

thalamic areas is reported in Figure 16. 

 

Table 13 | Regions identified in 2x2 group-by-seed interaction   

X Y Z 
Number of 

voxels 
Hemisphere Anatomical landmark 

Brodmann 
area 

Over-connectivity 
regions 

        

-46 -19 43 135 Left Precentral gyrus BA 4 

              
Under-connectivity 

regions 
  

      

-6 -86 -30 108 Left Cerebellum, declive - 

-30 -70 -22 139 Left Cerebellum, declive - 

-38 -72 -44 101 Left Cerebellum, pyramis - 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. The effect of interaction (psychosis probands vs. healthy controls) for both sensorimotor and 
associative seeds, with 95% confidence interval; red – controls, grey – psychosis probands. 
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Group differences (psychosis spectrum probands vs. healthy controls) for associative 

seed are reported in Figure 17 and Figure 18, and for sensorimotor seed in Figure 19 and 

Figure 20. Thresholding was done at p < 0.05. 

 

 

 

 

 

 

 

 

 

 

Figure 17. Thresholded group difference (psychosis probands vs. healthy controls) for associative seed 
– cortical surface.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Thresholded group difference (psychosis probands vs. healthy controls) for associative seed 
– subcortical volume.  
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Figure 19. Thresholded group difference (psychosis probands vs. healthy controls) for sensorimotor 
seed – cortical surface.  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 20. Thresholded group difference (psychosis probands vs. healthy controls) for sensorimotor 
seed – subcortical volume.  
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Schizophrenia sample 

Group-by-seed 2x2 interaction was repeated for schizophrenia subsample (N = 167) 

and matched healthy controls (N = 153). No cortical regions or over-connectivity effects 

survived thresholding in the 2x2 interaction. Table 14 reports under-connected regions with 

over 100 voxels.  

 

Table 14 | Regions identified in 2x2 group-by-seed interaction (scz vs. controls) 

X Y Z 
Number 
of voxels 

Hemisphere Anatomical landmark 
Brodmann 

area 

Under-connectivity 
regions 

  
      

24 -68 -22 148 Right Cerebellum, declive - 

-30 -72 -20 106 Left Cerebellum, declive - 

 

 

Group differences for schizophrenia patients vs. matched healthy controls for 

associative thalamic seed are reported in Figure 21 and Figure 22, and for sensorimotor 

thalamic seed in Figure 23 and Figure 24. Thresholding was set at p < 0.05. 

Table 15 and Table 16 report brain regions showing over- and under-connectivity 

(respectively) group differences (schizophrenia patients vs. healthy control subjects) for 

associative thalamic seed.  
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Figure 21. Thresholded group difference (schizophrenia vs. healthy controls) for associative seed – 
cortical surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Thresholded group difference (schizophrenia vs. healthy controls) for associative seed – 
subcortical volume.  
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Figure 23. Thresholded group difference (schizophrenia vs. healthy controls) for sensorimotor seed – 
cortical surface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Thresholded group difference (schizophrenia vs. healthy controls) for sensorimotor seed – 
subcortical volume.  
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Table 15 | Regions showing over-connectivity for scz vs. hcs (associative seed)

X Y Z
Number 

of voxels
Hemisphere Anatomical landmark

Brodmann 

area

54 -23 39 536 Right Postcentral gyrus BA 3

39 -22 46 303 Right Postcentral gyrus BA 3

57 -5 20 289 Right Precentral gyrus BA 6

-60 -7 26 250 Left Precentral gyrus BA 4

48 -44 16 242 Right Superior temporal gyrus BA 13

-33 -30 16 194 Left Insula BA 13

44 -17 48 194 Right Precentral gyrus BA 4

59 -35 8 193 Right Superior temporal gyrus BA 22

-48 -18 43 191 Left Precentral gyrus BA 4

-37 -21 41 184 Left Precentral gyrus BA 4

-41 -36 59 177 Left Postcentral gyrus BA 40

6 -23 62 168 Right Medial frontal gyrus BA 6

42 -25 61 164 Right Postcentral gyrus BA 3

-36 -18 15 159 Left Insula BA 13

22 -86 24 135 Right Cuneus BA 18

-20 -85 22 129 Left Cuneus BA 18

38 -12 14 117 Right Insula BA 13

19 -64 15 106 Right Posterior cingulate BA 31
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Table 16 | Regions showing under-connectivity for scz vs. hcs (associative seed)

X Y Z
Number 

of voxels
Hemisphere Anatomical landmark

Brodmann 

area

38 -64 -52 250 Right Cerebellum, inf. semi-lunar -

38 -60 -32 250 Right Cerebellum, tuber -

24 -66 -28 250 Right Cerebellum, declive -

14 -14 10 250 Right Thalamus, ventral lat. n. -

-10 -16 8 250 Left Thalamus, medial dors. n. -

-40 -74 -44 250 Left Cerebellum, pyramis -

-48 -56 -34 242 Left Cerebellum, tuber -

-30 -64 -34 223 Left Cerebellum, uvula -

28 -82 -36 221 Right Cerebellum, uvula -

-28 -74 -30 221 Left Cerebellum, declive -

-6 -78 -30 219 Left Cerebellum, declive -

-18 -64 -48 207 Left Cerebellum, inf. semi-lunar -

10 -80 -28 203 Right Cerebellum, declive -

-28 -82 -30 193 Left Cerebellum, declive -

-2 -60 -36 168 Left Cerebellum, uvula -

-20 -99 -8 168 Left Lingual gyrus BA 18

-34 -76 -36 165 Left Cerebellum, tuber -

-20 -80 -34 158 Left Cerebellum, uvula -

-4 -50 -20 151 Left Cerebellum, culmen -

6 -68 -34 148 Right Cerebellum, pyramis -

36 -44 -40 133 Right Cerebellum, culmen -

42 -66 -32 127 Right Cerebellum, tuber -

-14 -78 -22 126 Left Cerebellum, declive -

22 -74 -26 113 Right Cerebellum, declive -

0 -62 -26 107 Right Cerebellum, declive -

-2 -72 -42 107 Left Cerebellum, uvula of vermis -
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5.5. Clustering 

Figure 25 shows the nine-cluster solution of the data-driven clustering of thalamic voxel 

connectivity. The k=9 clustering solution reflects configuration of thalamic connectivity 

differences between patients with psychosis and healthy controls. The nine clusters were 

grouped together based on similarities in pattern of group difference. For purpose of visual 

comparison, functional subdivision of the thalamus yielding nine areas, as reported by Ji et al. 

(432), was added to Figure 25. The results of the voxel-level between-group connectivity 

differences are reported in Figure 26.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. Data driven thalamic clustering compared to a priori functional subdivision. a) k=9 data-
driven cluster solution based on subject groups difference patterns; (b) Functional connectivity thalamic 
subdivision according to Ji et al. (432); * - color-coding labels refer specifically to panel b. 
VIS1 primary visual, VIS2 secondary visual, SOM somatomotor, DAN dorsal attention, FPN 
frontoparietal cognitive control, DMN default-mode, VMM ventral multimodal, CON cingulo-opercular, 
LAN language, AUD auditory, PMM posterior multimodal, and ORA orbito-affective network.  
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Figure 26. 1-eta2 dysconnectivity map, demonstrating the areas of the thalamus driving the between 
group effects. Brightest voxels identify the highest between-group differences. 

 

 

Figure 27 reports the two-cluster k-means clustering solution for the connectivity 

differences between psychosis spectrum probands and healthy control subjects. 

 

 

 

 

 

 

 

Figure 27. Two-cluster solution of between-group (psychosis probands vs. healthy controls) connectivity 
differences (k-means clustering). 

 

 

Schizophrenia sample clustering 

Clustering procedures were repeated for the schizophrenia sample and compared to 

the matched healthy controls population. Figure 28 shows the nine-cluster solution for group 

differences of connectivity between SCZ patients and matched healthy controls. Figure 29 

shows voxel-level differences in connectivity between SCZ sample and healthy controls.  
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Figure 28. Data driven thalamic clustering of group connectivity differences between SCZ and healthy 
control participants groups, 9-cluster solution (for comparison see Figure 25 panel a; similar colors do 
not designate specific comparable networks).  

 

 

 

 

 

 

 

 

 

 

 

Figure 29. 1-eta2 dysconnectivity map for SCZ vs. matched healthy controls group, demonstrating the 
areas of the thalamus driving the between group effects. Brightest voxels identify the highest between-
group differences (for comparison see Figure 26). 
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For SCZ sample, two-cluster solution resulting from k-means clustering is shown in 

Figure 30.  

 

 

 

 

 

 

 

Figure 30. Two-cluster solution (k-means clustering) of between-group (SCZ vs. healthy controls) 
connectivity differences (for comparison see Figure 27). 
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5.6. Relationship with symptoms 

Averaged thalamic connectivity across all voxels was used as the independent 

measure while different psychopathology scores were entered separately into GLM as 

dependent measures for regression analyses. Table 17 reports results for psychosis probands 

group using whole-thalamus seed-based analysis for both over-connectivity and under-

connectivity in relationship with total PANSS score, General Psychopathology score, and 

scores of Van der Gaag symptom cluster loadings (Positive, Negative, Disorganization, 

Emotional distress, Excitation). 

 
 
 
 
 
 
 
 
 
 
 
 
 
    * - statistically significant difference at the level of p < 0.05 with adjusted R-squared = 0.00886. 
 

Table 18 reports relationship between symptom clusters and averaged thalamic 

connectivity (over- and under-connectivity) for schizophrenia sample only (N = 167).  

 

 

 

 

 

 

 

 

 

 

 

        * - statistically significant difference at the level of p < 0.05;  
       ** - statistically significant difference at the level of p < 0.01 

 

 

Table 17 | Relationship with symptoms / whole-thalamus connectivity

Symptom clusters

PANSS Total 0.67 (1, 434) 0.413 2.5 (1, 434) 0.115

PANSS General 0.63 (1, 434) 0.428 5.12 (1, 434) 0.024*

vd Gaag Positive 0.70 (1, 434) 0.404 0.16 (1, 434) 0.686

vd Gaag Negative 1.77 (1, 434) 0.184 1.83 (1, 434) 0.177

vd Gaag Disorganization 0.14 (1, 434) 0.711 0.92 (1, 434) 0.338

vd Gaag Emotional Distress1.07 (1, 434) 0.301 3.13 (1, 434) 0.078

vd Gaag Excitation 0.27 (1, 434) 0.599 3.61 (1, 434) 0.058

Over-connectivity (Fz)

F statistic (dF) / p

Under-connectivity (Fz) 

F statistic (dF) / p

Table 18 | Relationship with symptoms / whole-thalamus connectivity (SCZ)

Symptom clusters

PANSS Total 10.63 (1, 165) 0.001** 4.16 (1, 165) 0.043*

PANSS General 8.88 (1, 165) 0.003** 5.64 (1, 165) 0.019*

vd Gaag Positive 1.36 (1, 165) 0.245 0.02 (1, 165) 0.884

vd Gaag Negative 11.85 (1, 165) <.001** 5.33 (1, 165) 0.022*

vd Gaag Disorganization 9.34 (1, 165) 0.002** 3.54 (1, 165) 0.062

vd Gaag Emotional Distress1.52 (1, 165) 0.219 1.58 (1, 165) 0.210

vd Gaag Excitation 10.55 (1, 165) 0.001** 7.21 (1, 165) 0.008**

Over-connectivity (Fz)

F statistic (dF) / p

Under-connectivity (Fz) 

F statistic (dF) / p
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Figures 31-35 show statistically significant relationship between specific 

psychopathology score (total score and subscales) and mean thalamic over- and under-

connectivity Fz for SCZ patients. Figures include 95% confidence interval and report adjusted 

R-squared, in addition to information provided in Table 17.  

 

Figure 31. Linear regression with PANSS Total score and mean thalamic Fz for SCZ patients, including 
95% confidence interval; a) thalamic over-connectivity effect with adjusted R-squared = 0.02718, and 
b) under-connectivity effect with adjusted R-squared = 0.01866. 
 

 
 

 

Figure 32. Linear regression with PANSS General Psychopathology score and mean thalamic Fz for 
SCZ patients, including 95% confidence interval; a) thalamic over-connectivity effect with adjusted R-
squared = 0.04532, and b) under-connectivity effect with adjusted R-squared = 0.02718. 
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Figure 33. Linear regression with PANSS Negative Psychopathology (Van der Gaag loading) score and 
mean thalamic Fz for SCZ patients, including 95% confidence interval; a) thalamic over-connectivity 
effect with adjusted R-squared = 0.06137, and b) under-connectivity effect with adjusted R-squared = 
0.02543. 

 

 

 

Figure 34. Linear regression with PANSS Excitation (Van der Gaag loading) score and mean thalamic 
Fz for SCZ patients, including 95% confidence interval; a) thalamic over-connectivity effect with adjusted 
R-squared = 0.05442, and b) under-connectivity effect with adjusted R-squared = 0.03607. 
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Figure 35. Linear regression with PANSS Disorganization (Van der Gaag loading) score and mean 

thalamic Fz for SCZ patients, including 95% confidence interval; Thalamic over-connectivity effect with 

adjusted R-squared = 0.04785. 

 

In an attempt to take a closer look at possible links between specific, more finely 

grained, connectivity, and PANSS item-level psychopathology in psychosis, connectivity 

patterns of the dorsal attention network were correlated with delusions (P1), conceptual 

disorganization (P2), hallucinations (P3), blunted affect (N1), difficulty in abstract thinking (N5), 

depression (G6), and disorientation (G10). The only significant link with one of the major 

symptom clusters was found between dorsal attention network’s over-connectivity effect and 

Van der Gaag’s loading for negative symptom cluster (F(1, 434) = 4.89, p = 0.027, R-squared 

= 0.00886). Table 19 reports details for each of the specific PANSS items. 

 

 

 

 

 

 

 

 

    * - statistically significant difference at the level of p < 0.05 with adjusted R-squared = 0.00881  

Table 19 | Relationship with specific symptoms (dorsal attent. network seed)

Symptom clusters

P1 Delusions 0.15 (1, 434) 0.695 0.06 (1, 434) 0.806

P2 Conceptual Disorg. 0.53 (1, 434) 0.466 0.005 (1, 434) 0.941

P3 Hallucinations 0.29 (1, 434) 0.593 1.85 (1,434) 0.174

N1 Blunted Affect 1.32 (1, 434) 0.250 0.23 (1, 434) 0.629

N5 Abstract Thinking 0.74 (1, 434) 0.387 0.09 (1, 434) 0.760

G6 Depression 2.22 (1, 434) 0.137 0.174 (1, 434) 0.676

G10 Disorientation 1.11 (1, 434) 0.293 4.87 (1, 434) 0.028*

Over-connectivity (Fz)

F statistic (dF) / p

Under-connectivity (Fz) 

F statistic (dF) / p
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6. Discussion 

6.1. The sample  

Thalamic connectivity pattern changes have previously already been identified in 

schizophrenia (273, 401, 403, 407), but also across psychosis spectrum (403), as well as 

across different stages of the illness (408). We published findings on thalamo-cortical 

connectivity changes in schizophrenia and bipolar disorder, measured by resting-state fMRI, 

which confirmed over-connectivity with large bilateral sensorimotor cortical regions, and under-

connectivity with prefrontal, striatal, and cerebellar regions (403). Over- and under-connectivity 

effects were found to be correlated, suggesting a related system-wide disturbance, and a 

similar pattern of connectivity changes was found in bipolar patients population, enabling the 

use of those specific thalamo-cortical disturbances in diagnostic classification using MVPA for 

both SCZ and BD (although with difference in accuracy) (403). Also, we published fMRI 

findings suggesting that MD and LGB dysconnectivity patterns in SCZ show similarities, 

regardless of their different cortical and subcortical projections, but also that BD patients with 

history of psychosis showed thalamic dysconnectivity patterns similar to those seen in SCZ 

patients (406). 

In the current analysis, by examining one of the largest clinical samples so far (436 

psychosis spectrum subjects and 219 healthy controls) and the resting-state fMRI paradigm, 

we have confirmed the existence of thalamic over- and under-connectivity across a number of 

cortical and subcortical brain regions. The final clinical sample, reduced due to stringent fMRI 

quality-check requirements and the need for careful matching of clinical and healthy control 

samples, finally included 167 patients diagnosed with schizophrenia, 119 patients diagnosed 

with schizoaffective disorder, and 150 patients diagnosed with bipolar disorder with a history 

of psychosis. Psychosis sample was matched with 219 healthy control individuals, based on 

age, sex, handedness, parental education, and race, as reported in Table 4. The matching 

was, however, not attempted for WRAT scores, as lower achievement is expected for 

schizophrenia population (especially with longer illness duration), and WRAT scores were 

found to correlate with cognitive functions that might be specific for clinical populations and 

show association with specific symptoms (436). Furthermore, reading deficits correlate with 

both visual and auditory sensory measures in schizophrenia (437), and, given the expected 

connectivity changes between the thalamus and sensory areas in schizophrenia, forcing the 

matching on WRAT scores might end up removing the crucial effects when comparing 

probands and the healthy population. The use of psychosis spectrum in defining clinical 

population for this study reflected the current attempts at ‘deconstructing’ schizophrenia and 

conceptualizing it as only the far end of the wider psychosis spectrum with poorer outcome 
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(156, 195, 197). The existence of the psychosis spectrum and the overlap between disorders 

(e.g. SCZ, SCAD, and BD) has been repeatedly confirmed by family aggregation, overlapping 

clinical phenomena and presentations, as well as shared genetic susceptibility of those 

disorders (88, 180, 191, 200). Research in schizophrenia that fails to acknowledge that fact is 

also at a danger of falling victim to Berkson’s bias, resulting from the focus on the worst-

outcome population, and resulting in misleading correlations (156). If we accept the existence 

of a wider psychosis spectrum, research into biological underpinnings of clinical phenomena 

that are shared transdiagnostically cannot be undertaken adequately by focusing on just one 

of the diagnostic entities. Clinical phenomena/symptoms shared between disorders would then 

be expected to either follow the same ‘biological pathways’, or to at least show similar patterns 

possibly modified by additional condition-specific factors. Either way, elucidating the exact 

biological nature of clinical phenomena/symptoms and all of the factors influencing them would 

consequently require a look into wider transdiagnostic spectra that exhibit those symptoms.  

Psychosis spectrum-focused approach notwithstanding, all of the fMRI connectivity 

analyses that were undertaken for the psychosis sample were also repeated specifically for 

SCZ patient group (N = 167) and matched healthy controls (N = 153), in order to compare 

connectivity effects seen when treating SCZ as part of the psychosis spectrum, and when 

analyzing it separately. Given that a comparison of thalamic connectivity differences among 

three different psychotic disorders was not a goal of the current analyses, no formal 

comparison among them was undertaken. Such comparison remains, however, an important 

goal for follow-up analyses.  

As seen from Table 6, SCZ, BDp, and SCAD populations were similar with regard to 

age, but differed among each other on most clinical variables. As expected, BDp sample 

showed better cognitive functioning (as measured by BACS score), whereas SCZ and SCAD 

patients had comparable cognitive changes. BDp sample was also overall less symptomatic 

(as measured by total PANSS score), had less   negative symptoms, and scored lower on 

Disorganization PANSS Van der Gaag subscale loading. SCZ and SCAD were not significantly 

different on any of those variables. Interestingly, SCAD differed from the two other clinical 

subgroups on Emotional Distress and Excitation Van der Gaag PANSS loading (higher 

scores), whereas BDp and SCZ patients had similar scores on those scales. The fact that 

comparable results were found on Emotional Distress and Excitation for both SCZ and BDp 

groups lets us tentatively question the dichotomy between those two disorders based solely 

on affectivity, although we must keep in mind the limitations of approximation of those two 

symptom clusters using alternative PANSS items loadings we utilized. All three groups differed 

significantly on positive symptoms scales, with SCAD population having most positive 

symptoms, followed by SCZ and then BDp patients. Graded sloping (up- or downward) effect, 
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which we might expect to find when looking at ‘extended schizophrenia’ spectrum that extends 

into bipolar disorder with a history of psychosis (SCZ – SCAD – BDp), was actually present 

only for cognitive functioning, negative, and disorganization scores (with SCZ showing worst 

results, BDp group performing better, and SCAD lying somewhere between those two groups).  

 

6.2. fMRI as a tool in psychiatric research 

Magnetic resonance imaging, with its various modalities, offers numerous opportunities 

for elucidating structural, functional, and neurochemical underpinnings of different mental 

disorders. As we have previously reported (438), MRS offers a promising non-invasive tool for 

development of possible predictors of illness course and relapse in mental disorders. Although 

using fMRI offers numerous advantages in psychiatric research, like its non-invasive nature, 

good temporal and improving spatial resolution, flexibility of research paradigms (task-based 

or task-independent), and the ability to combine it with other techniques, due to complexity of 

the data structure and the size of information gathered analyzing fMRI data is still linked to a 

number of methodological issues. Even using a no-task paradigm (resting-state), in which 

subjects are expected to lie still during the scanning procedures and not to engage in any 

specific mental activity, which ultimately avoids the burden of modelling based on task structure 

and assumed neural responses, carries with it a number of significant methodological issues.  

The current analyses were based on the state-of-the-art HCP preprocessing pipeline 

that deals with image registration, distortion correction, and achieving higher SNR, with minor 

in-house modifications. The discussions are, however, still ongoing with regard to GSR step 

of the preprocessing pipelines. Global signal regression is a very efficient step in removal of 

common and problematic respiration, cardiac, and motion artifacts, increasing the variance 

explained by other factors, but it also removes any globally distributed neurological component, 

and is said to potentially introduce negative correlations between brain regions. In a recent 

paper, Li et al. (439) reported that the explained behavioral variance increased by an average 

of 40% across multiple behavioral measures for resting-state functional connectivity analyses, 

although benefitting more task-based performance than self-reported measures. Our 

previously published analyses of thalamo-cortical disturbances in schizophrenia showed that 

the discovered connectivity patterns did not change when omitting GSR step during 

preprocessing (403), which has been confirmed also by a more recent work from the same 

group investigating thalamic connectivity (176). In line with these facts and a relative 

consensus on GSR allowing better delineation of subcortical nuclei, showing closer link to the 

DTI-defined anatomy, and improving specificity of positive correlations (440), we opted for 

inclusion of the GSR step. All negative correlations resulting from the present analyses were 
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reported, and did not deviate from previously discovered and reported anti-correlations, 

additionally suggesting appropriateness of using the GSR preprocessing step. 

The general linear model, used for fMRI data analyses, is a flexible model that can 

incorporate a number of different statistical models such as ordinary linear regression, t-test, 

F-test, analysis of variance (ANOVA), analysis of covariance (ANCOVA), multivariate analysis 

of variance (MANOVA), and multivariate analysis of covariance (MANCOVA). Additionally, the 

tool used for applying permutation analyses of linear models (PALM) allows for a range of 

regression and permutation strategies, while at the same time being robust to 

heteroscedasticity (differing distributions of noise), and able to work with non-imaging data and 

both surface-based and volume-based neuroimaging data. PALM also utilized robust 

permutation methods to assess classical multivariate statistics and allowed the control of 

family-wise error rate. As already reported by Schleifer et al. (175), this Type I error correction 

method avoids making assumptions on distribution, which has been found to inflate Type I 

error according to Eklund et al. (432). FSL’s PALM tool utilizes Threshold-Free Cluster 

Enhancement (431), and significance was assessed using nonparametric permutations, with 

subsequent analyses benefitting from  the initial Type I error protection.  

Another important aspect of fMRI connectivity data needs to be continuously 

emphasized when presenting/interpreting or discussing related findings. Results of fMRI 

analyses used by themselves do not reflect the existence of anatomical connections or 

changes in those connections, but simply changes in co-activation and synchronous signal 

oscillation (spontaneous or task-induced) of different brain regions – functional connectivity. 

Interpretation of fMRI connectivity results will thus include the need to take into account 

possible wider-distributed interrelated processes, moving away from the more simplistic ‘linear 

two-region communication’ interpretations. Also, importantly, fMRI signal does not directly 

represent a neural activation, but is an indirect blood-oxygenation-related measure (BOLD 

signal) that approximates a neural activity based on the assumed model of hemodynamic 

response. While a more detailed elaboration of these issues would clearly exceed the scope 

of this discussion, in the Introduction section it has already been outlined that simultaneous 

recording of a neural activity and fMRI clearly links BOLD and neural activity (345). In addition 

to that, repeated neuronal activation produces changes in fMRI signal (346), and the duration 

of hemodynamic response can be used as an estimate of the duration of a neural activity (348).  

Regardless of the need for careful interpretation and the mindfulness about 

methodological limitations, fMRI offers an extremely valuable and flexible tool to be utilized in 

research of various mental disorders. Inherent usefulness of fMRI research lies in its non-

invasive nature and good spatial and temporal resolution characteristics, as well as the ability 
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to be combined with other modalities (e.g. EEG) and to be used in the context of computational 

psychiatry.   

 

6.3. Seed-based thalamic connectivity analyses and the pattern of thalamic 

dysconnectivity 

Functional connectivity analyses looking at the thalamus as a single seed, and 

differences between psychosis patients and matched healthy control group, showed general 

effects that have previously been reported by our and other research groups, with over-

connectivity between the thalamus and large sensorimotor regions, but also the associative 

cortex. After stringent Type I error protection and thresholding at p < 0.05, increased thalamic 

connectivity effect survived for: large areas of bilateral primary motor and sensory cortex, 

associative sensory cortex, bilateral Supplementary motor area, left primary and bilateral 

secondary and associative visual cortex, auditory cortex, gustatory cortex, insular cortex, right 

fusiform gyrus, right posterior cingulate, and left supramarginal gyrus (Figure 5 and Table 7). 

Areas showing significant thalamic under-connectivity when comparing psychosis probands 

and healthy controls, unsurprisingly, included large cerebellar areas, but also right primary 

visual cortex, left secondary visual cortex, right superior parietal lobule, and bilateral MD 

nucleus, along with right VL nucleus, and left anterior thalamic nucleus (Figure 6 and Table 8). 

Restricting analysis to just schizophrenia patients and comparing them to a specifically 

matched subset of healthy controls, a similar overall pattern of thalamic over-connectivity with 

sensorimotor regions, and under-connectivity primarily with cerebellum survived. As shown in 

Figure 10 and listed in Table 9, in schizophrenia patients there was significant thalamic over-

connectivity with bilateral primary and secondary sensorimotor cortical areas, including 

bilateral Supplementary motor area, as well as right insular cortex, left auditory cortex, right 

middle temporal gyrus (BA 39), and left secondary and right associative visual cortex. 

Interestingly, while insular cortex was primarily connected to disorders with significant emotion 

regulation impairment, over-connectivity with insular cortex robustly appear in analyses 

comparing SCZ population with healthy controls. Areas showing functional under-connectivity 

with the thalamus (Figure 11 and Table 10), in addition to the cerebellum, included bilateral 

secondary visual cortex, right VL and left MD thalamic nucleus.  

It should be noted that in both wider psychosis sample and the schizophrenia patient 

population thalamic connectivity shows pronounced reduction in variation when compared to 

that in the healthy controls, and then a shift towards over- or under-connectivity. 
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The overall pattern seems to be strikingly similar when we look at schizophrenia 

separately and when we examine it as part of the psychosis spectrum, with SCZ 

conceptualized as just the far end  that is characterized not by any pathognomonic signs or 

symptoms but by increased severity of symptoms and more pronounced functional 

impairments. Some differences were noted, however, including over-connectivity with primary 

visual cortex, gustatory cortex, fusiform gyrus, and posterior cingulate. We could explain these 

differences by the fact that inclusion of SCAD and BDp population is bound to result in changed 

connectivity with brain regions modulating mood or providing emotional salience and context 

like posterior cingulate and fusiform gyrus. Both regions, however, also play an important part 

in wider network implicating cognitive functions and intrinsic control networks. Another way of 

explaining differences in connectivity maps is the increased power in detecting regions with 

the larger sample, suggesting that the same regions might be identified even with an increase 

in size of the SCZ-only sample. Elements possibly supporting the latter explanation are non-

significant difference in Emotional Distress scores between BD and SCZ populations 

(difference in scores on Emotional Distress was driven by SCAD population), and 

identifications of networks in SCZ sample that have previously primarily been linked to BD (i.e. 

insular cortex) (406). 

Results of the current analyses are in line with our previously published findings (403), 

but also with the results from other research groups (401, 402, 404, 407), of likely correlated 

patterns of thalamic over-connectivity with sensorimotor areas and under-connectivity with the 

cerebellum.  Cortical areas affected by connectivity changes, along with primary sensory and 

motor areas, include almost without exception areas taking part in the higher-order processing 

of sensory information. It is, therefore, not surprising that among areas showing thalamic over-

connectivity we found the fusiform gyrus that plays a role in higher processing of visual 

information, faces, word recognition and reading (441-443), and the insular cortex that receives 

sensory input via the thalamus and is believed to play a role in sensorimotor processing, but 

also in providing emotional context to sensory information, and in higher cognitive functions 

(e.g. salience, attention, social cognition) (444). Another region centering on temporoparietal 

junction exhibited significant thalamic over-connectivity, and includes structures thought to be 

linked with Wernicke’s area, and, like angular gyrus, thought to play an important role in 

attention, semantic and number processing, default mode network, awareness, and social 

cognition (445).  

Taking into account that the primary input to the thalamus comes from sensory areas, 

and the confirmed pattern of thalamic functional over-connectivity with primary and associative 

sensory cortical areas, it is tempting to interpret this finding through theories of sensory gating 

disruptions in schizophrenia and psychotic disorders. However, one of the regions, previously 
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used to explain thalamic over-connectivity with sensory cortical regions via reduction in top-

down regulatory tone, was conspicuous for its absence – the prefrontal cortex. In our previously 

published analysis of thalamo-cortical dysconnectivity (403), we postulated that there is a case 

to be made for changes in functional connectivity including reduced prefrontal-thalamic 

connectivity, increased connectivity between prefrontal and sensory regions, and finally 

increased thalamic connectivity with sensory regions, with prefrontal regions playing an 

inhibitory/regulatory role and in schizophrenia exhibiting inadequate top-down control indirectly 

through basal ganglia (446). It is important to note that reduced connectivity with prefrontal 

areas is indeed noticeable in unthresholded Figures 3 and 8, but these effects do not survive 

statistical thresholding. Given the wider focus on prefrontal functions disruption in 

schizophrenia (447-449), explanation including dysfunction of top-down prefrontal inhibitory 

tone seems to be mechanistically sound. Although the absence of significant prefrontal-

thalamic connectivity differences between psychosis/SCZ and healthy control groups in the 

current analysis does not rule out the role of prefrontal regions, it naturally warrants discussion 

on possible explanations of thalamic over-connectivity in SCZ patients in the absence of 

prefrontal effects.  

We already mentioned models that move away from conceptualizations of the thalamus 

as a simple relay, or relatively passive ‘switchboard’ on the path of sensory information flow, 

and these models are exactly the ones that could explain primary dysfunctions located in the 

thalamus as driving downstream effects (e.g. observed increased connectivity with sensory 

cortical areas). Dysfunction of glutamatergic neurotransmission, primarily through NMDA 

receptor dysfunction on GABA interneurons, has repeatedly been identified as a possible point 

of origin for defects seen in schizophrenia, and NMDA receptor dysfunction has also been 

hypothesized to be present in the thalamus and to underlie cortico-thalamo-cortical network 

deficits. One of the hypothesized ways in which this could take place is by indirectly 

compromising sensory driver inputs via NMDA receptor-mediated GABA interneuron 

dysfunction, or through thalamic higher-order nuclei dysfunction caused by direct NMDA 

receptor-related attenuation of driver feedforward excitatory inputs projecting from cortical 

areas (450).  

Reticular thalamic nucleus, a thin sheet of inhibitory GABAergic interneurons that 

receives collateral afferents and connects widely with the rest of the thalamus providing a 

strong inhibitory signal, represents an appealing target for the hypothesized primary thalamic 

dysfunction leading to deficits in thalamo-cortical communication and large scale cortical 

communication as well as higher cognitive functions (311). RTN is suggested to be a vital 

communication hub between cortical areas and the thalamus, and disinhibition in thalamo-

cortical circuits has been proposed to significantly affect behavior and cognitive functions 
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(311). We could, therefore, imagine NMDA receptor dysfunction affecting GABAergic inhibitory 

tone in both prefrontal cortex and the thalamus separately, resulting in the disruption in widely 

distributed networks communication, affecting complex cognitive functions and the underlying 

symptoms of psychosis. Important interactions between the thalamus and prefrontal cortex 

would most likely make these changes correlated, but the correlation would not necessarily 

mean causation. Shifting the point of origin towards primary thalamic dysfunction would be in 

line with conceptualizations of ‘cognitive thalamus’ (259), and, although it would remove the 

need for prefrontal effect as the one driving these disruptions, it in no way invalidates the critical 

role the prefrontal cortex plays in the entire model. Interestingly, in our already published 

analysis of thalamo-cortical disturbances (403), we found specifically thalamic over-

connectivity with sensorimotor cortical areas to correlate with general psychopathology score, 

while the same was not seen for under-connectivity with prefrontal areas. This in itself, of 

course, does not allow any clear inference about a possible hierarchy or directionality, the least 

of all any inference about relative importance of prefrontal effects (as over-connectivity effects 

might just be closer to behavioral expression). However, at the very least it confirms that over-

connectivity with large sensorimotor areas presents a stable finding, valuable in overall 

conceptualizations of thalamo-cortical dysconnectivity, its nature, and 

phenomenological/clinical consequences. 

One of the findings regarding thalamic connectivity changes in schizophrenia and 

psychotic disorders, consistent across almost all investigations, like the sensorimotor cortex 

effect, is rarely mentioned or additionally analyzed – the thalamic over-connectivity with almost 

all cerebellar areas in schizophrenia patients. The same effect was clearly replicated in the 

current analysis, in wider psychosis-spectrum population, as well as in schizophrenia patients 

when they were analyzed separately. The cerebellum has been somewhat neglected in 

biological models explaining psychotic disorders or their symptoms, but that has been slowly 

changing with the expanding knowledge of the cerebellar role in non-motor functions. It has 

been shown that schizophrenia patients exhibit changes in the size of the cerebellum, density 

and size of Purkinje cells, as well as decreased blood flow in a range of tasks (e.g. tasks 

evaluating memory, attention, social cognition) (145). Andreasen and Pierson (145) have 

outlined possible models of cerebellar function extending beyond motor control, and motor and 

associative learning, that include modulation of cognitive processes ranging from timing to 

detecting patterns and providing feedback to the cortex following detection of errors (in thought 

as well as in movement). Realization of the role of the cerebellum in schizophrenia, and 

development of wider function models, lead to the conceptualization of dysfunction of 

integration in cortical-subcortical-cerebellar circuits as underlying schizophrenia, with 
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‘cognitive dysmetria’ coined to describe phenomenological outcome of the circuit disruption 

(144, 145, 323).  

 

6.4. Thalamic functional subdivision analyses and group-by-seed interactions 

With the aim of performing a more finely grained analyses of thalamic connectivity, 

functional subdivision of the thalamus already reported by our lab (432) was used in separate 

seed based analyses. As seen in Figure 2, of the 12 networks only three did not chart onto the 

thalamus: ventral multimodal (VMM), language (LAN), and orbito-affective (ORA) network. For 

the remaining nine networks, the corresponding functionally connected areas of the thalamus 

were entered into connectivity analysis with averaged signal across all voxels from each of the 

seeds and correlating that averaged value with signal from each other brain voxel. In order to 

investigate the group-by-seed interaction, a 2x9 interaction for groups of psychosis patients 

and healthy controls across all nine functional networks thalamic seeds was calculated. As 

seen from interaction effect reported in Figures 13 and 14, numerous cortical and subcortical 

regions emerge as significant in the interaction, and the regions surviving the analysis largely 

follow those reported in the previously discussed main effects. Reported finding confirms that 

there are significant differences between the two groups as the factor of seeds used for 

connectivity analyses, and the separate look into individual seed connectivity analyses clarifies 

which of the seeds drive the effects. As already reported, for the three of functional thalamic 

seeds no group differences survived the thresholding (frontoparietal cognitive control, cingulo-

opercular, and posterior multimodal), and the cortical surface representation of the remaining 

six thalamic seeds connectivity group difference is reported in Figure 15. As can be seen, 

although there are clear differences in the number and size of cortical regions surviving the 

thresholding for group-difference connectivity maps for each of the six thalamic seeds, the 

overall pattern of affected regions seems not to deviate from the one seen in the whole-

thalamus seed-based analyses. Some seeds had just a few effects that survived for regions 

we would naturally link to the underlying networks, like the auditory seed. Some seeds like one 

of the visual seeds, although seemingly specialized, surprisingly showed increased 

connectivity with large swathes of wider primary sensorimotor cortical areas. Interestingly, one 

of the seeds (dorsal attention network) seemed to strongly capture all of the previously reported 

whole-thalamus group-difference effects, but also, importantly, medial (anterior cingulate) and 

lateral prefrontal areas in the right hemisphere (under-connectivity effect). The pattern of over- 

and under-connectivity for dorsal attention thalamic nucleus is shown in Figure 15, and the 

regions outlined in Tables 11 and 12. 
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Dorsal attention network is, along with fronto-parietal and cingulo-opercular networks, 

a part of task-positive systems that are active during performance of specific tasks, as opposed 

to task-negative default mode network that contains brain regions active during the resting 

state. Dorsal attention network includes DLPFC, inferior precentral sulcus, frontal eye fields, 

superior parietal lobule, superior occipital gyrus, and motion complex of middle temporal gyrus 

(451, 452). As can be seen in Figure 2, dorsal attention thalamic subnucleus (light green) 

positions itself roughly in the posterior lateral region adjacent to the pulvinar, but clear 

anatomical divisions should not be inferred. Spreng et al. (452) found that fronto-parietal 

control network serves as a flexible modulator positioning itself between anti-correlated default 

mode and dorsal attention networks, and coupling with one or the other based on the task. 

While fronto-parietal thalamic seed effects did not survive the thresholding, interestingly, seed-

based analysis map for default mode network follows the same overall general pattern of over-

connectivity with sensorimotor cortex, seen with dorsal attention network seed and the whole 

thalamus effect.  

The approach used to achieve parcellation of the thalamus was based on assignment 

of functional networks to the thalamus reported from our lab by Ji et al. (432). This approach 

has resulted in identification of new functional networks: ventral and posterior multimodal 

networks, and orbito-affective network. Identification of novel networks has been enabled by 

multiband imaging technique and analyses improvements, as the three novel networks have 

been identified in areas that previously suffered from dropout of the signal caused by magnetic 

field inhomogeneity near sinuses (432). New identified networks, however, did not prove to be 

significant for the current thalamic subnuclei connectivity analyses, as ventral multimodal 

network and orbito-affective network do not actually chart onto the thalamus, and were 

therefore not a part of nine thalamic seeds we used, and posterior multimodal network did not 

show any group-difference effects that survived permutation analyses and thresholding.  

Since it is well known that thalamic subnuclei create specific separated networks with 

different cortical regions, the approach of using functional cortical networks to assign 

‘functional thalamic subnuclei’ has been validated through investigation of assignments of 

lateral and medial geniculate nuclei. As expected, using this method of assigning functional 

networks, later geniculate nucleus is assigned to the primary visual network (VIS1), and medial 

geniculate nucleus to the auditory network (AUD) (432). Regardless of this validation of this 

model of functional networks being assigned to functional thalamic subnuclei, it is important to 

keep in mind that we are dealing with functional and not anatomical thalamic nuclei, and that 

there can be a blurring overlap between anatomically defined subnuclei. Two areas 

anatomically separate and with different projection areas, if they are indirectly connected as 

parts of widely distributed complex networks, can show congruent fMRI signal oscillations, and 
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consequently be assigned to the same network and be identified as functionally connected. To 

reiterate what has already previously been outlined, functional connectivity does not 

automatically imply anatomical connectivity. 

In an attempt to simplify the analyses, associative and sensorimotor thalamic seeds 

were lumped together, and the 2x2 group-by-seed interaction was again calculated for both 

wider psychosis sample, and separately for schizophrenia patients. Table 13 (psychosis 

sample) and Table 14 (schizophrenia sample) report regions that were identified in 2x2 

interaction, and that showed the difference between groups as a factor of seed. From the 

interaction effect, it is clear that no significant pattern differences emerged between groups as 

a factor of seed. Certain differences are seen when individually inspecting between-group 

differences for each of the seeds (associative and sensorimotor), not in terms of different 

patterns but in the sense of associative seed still being robustly linked to larger spatial effects 

and additional connectivity effects identified. Robustness of the reported pattern of over- and 

under-connectivity across different thalamic subdivisions, with minor differences in the size of 

the effect but not in the overall pattern differences, warrants a discussion, especially given that 

it has been previously stated how thalamic subnuclei show different anatomical connections 

and form separate circuits with almost no intra-thalamic communication between subnuclei.  

We previously reported (403) that the thalamic dysconnectivity effect, which includes 

strong over-connectivity with bilateral sensorimotor regions, is primarily driven by area of the 

thalamus converging on MD nucleus, although MD is known to be primarily strongly 

reciprocally linked to prefrontal cortex. We also reported (406) that connectivity patterns for 

thalamic subnuclei with known different anatomical projections forming separate circuits (MD 

– prefrontal vs. lateral geniculate nucleus – occipital cortex) show striking overall over- and 

under-connectivity similarities, with just several regional specific findings (lateral geniculate 

nucleus increased connectivity with primary visual regions and anterior cingulate). Additionally, 

although BD patients show somewhat different dysconnectivity pattern, prominently including 

absence of cerebellar effect, BD patients with psychosis history exhibit more severe and SCZ-

like alterations (406).  

Similar patterns seen for some of the nine thalamic functional subnuclei might seem to 

suggest there has to be an technique-related overlap in seeds, given that BOLD fMRI signal’s 

resolution is not at the level of anatomical boundaries. Several points, however, speak against 

that conclusion. As outlined, three thalamic seeds showed no group difference connectivity 

effects, and the resolution issue with blurring of boundaries would affect those seeds like the 

others. Additionally, for the auditory seed that showed similar but reduced over-connectivity 

pattern with sensory areas, the effect was specifically restricted to superior temporal gyrus 

important for processing of auditory information, arguing for the ability of achieving spatial 
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specificity. Current results, along with our previously reported correlated thalamic over- and 

under-connectivity results (403), and especially our previous finding of similar connectivity 

patterns in subnuclei with anatomically segregated networks (406), suggest the existence of 

connected widely distributed network level disturbances in schizophrenia and psychosis 

spectrum, captured by functional connectivity analyses that do not imply direct anatomical 

connections.  

Previously mentioned hypothesis of dysfunction of GABAeric modulatory/inhibitory 

signal originating from reticular nucleus (possibly due to NMDA receptor dysfunction) could 

also be seen as a possible factor in emergence of correlated connectivity changes patterns 

shared across thalamic subnuclei. As already mentioned, reticular nuclei receive collaterals 

from different input signals and in turn connect to multiple thalamic subnuclei, modulating their 

activity and possibly imposing synchronization. In order to assess the hypothesis of a possible 

role of reticular nucleus in creating the observed effects adequately, investigations including 

multiple research modalities would need to be undertaken, combined with computational 

modeling and pharmacological interventions that mimic specific receptor disturbances (396).  

 

6.5. Clustering results 

Since thalamic connectivity analyses were performed by ‘imposing’ functional thalamic 

subnuclei, previously defined through connectivity with segregated cortical networks, 

dysconnectivity data-driven clustering using between-group signal differences was undertaken 

for a qualitative comparison. Clustering algorithm that was used lumps together voxels based 

on similarity of their dysconnectivity pattern. Clustering was done for both wider psychosis 

spectrum sample, and for the schizophrenia group. Taking into account that nine thalamic 

functional seeds were used, 9-cluster solution was reported. Figure 25, panel a, reports the 9-

cluster solution for psychosis spectrum, and when compared to results for schizophrenia 

sample (reported in Figure 28), it is clear that both yield robust division, and spatially similarly 

distributed nine clusters emerge. It is also clear, however, that nine clusters formed based on 

thalamic ‘intrinsic’ dysconnectivity group differences do not match the nine functional thalamic 

seeds, additionally proving that different divisions we use in segregating the thalamus do not 

usually follow as equally segregated dysconnectivity patterns.  

In line with our previously reported findings (403), 2-cluster solution yielded a large 

cluster centered on MD nucleus but also large areas of lateral thalamic regions, and the smaller 

one in the posterior and anterior thalamic regions. Also, calculated dissimilarity index showed 

voxels exhibiting greatest between group differences to be centered on mediodorsal and 
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ventral lateral thalamic regions, for both psychosis spectrum and for schizophrenia assessed 

separately. 

 

6.6. Relationship with symptoms 

Correlating symptoms with a biological finding represents a point of specific and 

possibly ultimate interest for any clinician, but in analyses like this, for a number of reasons it 

also offers the least opportunity for robust and clear inferences and conclusions. One of the 

problems for this is the way we measure psychopathology. Although psychopathology scales 

we use for different disorders generally fulfill their role in the context of phenomenological 

taxonomy approach, they fall short of helping us fill the gap between biology and clinical 

phenomena. RDoC initiative aims specifically at bridging that gap through integration of 

information spanning from genes, molecules and circuits to behavior, and, recognizing 

inadequacy of current tools, introduces specific systems, constructs and subconstructs that 

might chart onto the underlying circuits/networks disruptions better than symptoms (203). 

Therefore, instead of a specific symptom and a symptom cluster, within this framework, for 

example, we would be talking about positive valence system, subsumed constructs of reward 

responsiveness, and subconstruct of reward satiation.  

Although PANSS is one of the most widely used scales to assess positive and negative 

symptoms in psychotic disorders, even the perfunctory glance at its structure might point to 

problems in using it for correlation with possible underlying biology. Although the name itself 

focuses on positive and negative syndromes, most of the items are originally subsumed under 

General Psychopathology subscale, meaning that most of the composite PANSS score might 

be driven by psychopathology that we do not even specifically designate. That issue can 

partially be overcome by using alternative PANSS loading algorithms that result in 5-factor 

psychopathology systems, practically reorganizing items in the PANSS General 

Psychopathology to yield syndromes like Disorganization, Emotional Distress, and Excitation. 

Another issue cannot, however, be managed by alternative item loadings, and that is the 

diversity of items in the positive and negative subscale. Composite score of the positive 

subscale can tell us little about specific elements of the positive syndrome, and we could 

theoretically imagine patients showing the same score with substantially different item-based 

psychopathology structure. For example, a patient with no hallucinations (score 1) and an 

active stable set of numerous delusions that permeate all aspects of their life and interfere with 

functioning (score 7), will have the same composite score (score 8) as a patient with frequently 

occurring hallucinations that affect their behavior to a minor extent (score 4) and one or two 

vague delusions that do not affect their behavior or social relations (score 3). Since positive 
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syndrome subscale consists of five items that can be scored from one to seven, the number 

of different combinations that can yield the same composite score is significant. Separate items 

(e.g. hallucinations and conceptual disorganization), although part of the same syndrome, can 

be expected to show different underlying biological processes.  

Taking all of these PANSS characteristics into consideration, as well as the fact that no 

a priori assumptions about specific psychopathology phenomena and their link to thalamic 

pathology were made, investigation of link between the thalamic dysconnectivity and 

symptoms was restricted to just a few questions. Another reason for restrictions in the situation 

where no specific a priori assumptions are made is the fact that PANSS item-level analyses 

would necessarily lead to spurious correlations that would be difficult to interpret, regardless 

of Type I error protections used.  

In our previously reported thalamo-cortical dysconnectivity findings (403), thalamic 

over-connectivity with sensorimotor cortex, but not under-connectivity with prefrontal regions 

and the cerebellum, was found to correlate with total PANSS score as a measure of the overall 

symptom severity. In a slightly more detailed evaluation, no correlation with dysconnectivity 

effects was seen for positive or negative symptoms, but general psychopathology subscale 

significantly correlated with over-connectivity effects, leading to the conclusion that thalamic 

disturbances might be more related to non-specific illness severity (403). In the current 

analysis, for psychosis spectrum population, only general psychopathology subscale showed 

a significant association with the thalamic under-connectivity effect (F(1,434)=5.12, p=0.024, 

R2=0.00886). Restricting analysis to just schizophrenia patients, as reported in Table 17, there 

was a significant association to both composite PANSS score and for general 

psychopathology, for both thalamic over-connectivity and under-connectivity. Interestingly, 

although both over-connectivity and under-connectivity were related to total PANSS score and 

general psychopathology, in line with our previous findings identifying association with over-

connected regions, the effect was clearly stronger for thalamic over-connectivity.  

As already reiterated, the more finely grained evaluation using GLM model was done 

through applying Van der Gaag loading to PANSS items, resulting in 5-factor psychopathology 

structure. Analyses of those five symptom clusters failed to find any correlations between 

thalamic over- and under-connectivity and Positive or Emotional Distress subscales. On the 

other hand, there was a significant effect for Negative symptoms subscale and over-connected 

regions (F(1,165)=11.85, p<.001, R2=0.06137), and Negative subscale and under-connected 

regions (F(1,165)=5.33, p=0.022, R2=0.02543). Similarly, a significant effect was found for 

Excitation subscale and over-connected regions (F(1,165)=10.55, p=0.001, R2=0.05442), and 

Excitation subscale and under-connected regions (F(1,165)= 7.21, p=0.008, R2=0.03607). 

There was no significant scaling between under-connected regions and Disorganization 
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subscale, but there was a statistically significant effect for under-connected regions 

(F(1,165=9.34, p=0.002, R2=0.04785).  

As a rule, more pronounced effect, whether it was over- or under-connectivity, predicted 

increased severity of the symptoms.  

Several points from these findings warrant discussion. Although lower values of R-

squared for all analyses seem to point to a relatively poor fit to regression models, given the 

attempt at predicting human behavior, for which lower values are expected, the nature of 

behavioral data, and the expected 'separation' between biological measures and behavioral 

scores, these results can still be taken to represent a meaningful information on how changes 

in biological predictor value affect changes in the psychopathology response value. In line with 

our previous findings (403), over-connectivity effect seems to consistently be more associated 

with the general symptom severity. Previously identified General Psychopathology effect 

associated with thalamo-cortical dysconnectivity (403) now seems to be successfully parsed 

into Excitation and Disorganization clusters that keep the correlation with the dysconnectivity 

pattern. Additionally, the sample size that significantly increased since the previous analyses, 

also helped identify a possible association with negative symptoms. Taken together, these 

results seem to suggest that thalamo-cortical dysconnectivity shows no meaningful 

relationship with positive symptoms, but that it could be associated with symptoms considered 

more to be SCZ ‘signature symptoms’, negative symptoms, and disorganization cluster that 

can be associated with cognitive disturbances. Even Excitation subscale, given the items used 

to determine its score, could be taken to imply a loss of coherence in specific cognitive 

functions. In addition, these results seem to confirm the interconnection between over- and 

under-connectivity, which corroborates the previously reported findings. Importance of the 

correlation between thalamic over- and under-connectivity effects, in the context of their 

relationship with symptoms, can be important in assessing therapeutic interventions. Knowing 

that the thalamus connects with segregated networks, amelioration of one effect through 

pharmacological or non-pharmacological interventions (e.g. over-connectivity), will not 

necessarily correct the opposing disturbances, possibly leading to residual symptoms and 

functional impairment. 

One significant problem in analyzing psychopathology relationship with thalamo-

cortical connectivity changes, and the one that could also explain the absence of most of the 

effects in the wider psychosis spectrum sample, is the fact that we were analyzing a relatively 

stable population with low psychopathology scores across almost all symptom clusters. By far 

least affected population was the population of bipolar patients with a history of psychotic 

symptoms, and analyses including them could result in an attenuation of effect. That assertion 

cannot be made, however, without a formal comparison of the different groups. Additionally, 
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with the inclusion of SCAD and BDp populations, we saw certain additional regions, or increase 

in the size of regions identified, that appear in the connectivity analyses (whether they follow 

the same pattern of regions seen in SCZ or are novel like posterior cingulate). Since mean Fz 

for linear regression analyses is calculated by averaging the signal across all over- or under-

connected regions, additional regions might lead to the ‘blurring’ and reduce the ability to detect 

association of specific brain regions with the symptoms. If we follow that line of thinking, 

although we have the same general connectivity pattern, a restricted list of regions surviving 

the SCZ-only analyses might be in better position to capture the meaningful connections, as 

they are free from the ‘noise’ induced by additional identified regions. It is among those regions 

that we might look for candidate regions that would help analyze symptom biology in a more 

mechanistic way. This explanation can also help us understand the incongruence with results 

reported by Ferri et al. (411) showing a positive correlation between increased connectivity 

with middle temporal gyrus and hallucinations and delusions. It is possible that isolating just 

one over- or under-connected region might show specifically significant relationship with 

positive symptoms or other psychopathology phenomena, and this approach seems to be a 

valuable approach in the future testing of specifically focused hypotheses.   

A follow-up exploratory analysis in psychosis spectrum population with five specific 

PANSS items was done using dorsal attention seed. That specific seed was chosen since it 

was the only one for which prefrontal effects survived the stringent analysis algorithm and 

thresholding. Due to lack of a priori formed hypothesis about links of specific regions with 

specific items, averaging across all over-connected and then all under-connected regions was 

utilized, notwithstanding the previously described risk for the ‘signal blurring’. Psychosis 

spectrum population was analyzed to increase the power of the analysis. Of all the items 

examined, for only one the linear regression model showed a statistical significance when 

entered into the model with under-connectivity effect – disorientation (F(1,434)= 4.87, p=0.028, 

R2=0.008809). Even with all the limitations of making inferences from these results already 

mentioned, the nature of dorsal attention network and the fact that corresponding thalamic 

seed showed link to disorientation score suggest a  trend that warrants further more focused 

investigation. Furthermore, it serves as the proof of a concept for using thalamic subnuclei 

connectivity to expand knowledge on biological underpinning of specific phenomena. 

Any future studies examining the role of specific thalamic subnuclei and their 

connectivity changes in the context of symptoms will need to combine different research 

modalities (e.g. task- and resting state-based fMRI models combined with DTI and 

computational modelling) in a longitudinal approach that will help to better control for possible 

confounders.  
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6.7. Limitations 

Several limitations of the study have already been mentioned throughout the previous 

section but it is necessary to emphasize them again. Arguably, the biggest impediment for 

making clear inferences based on current analyses is their cross-sectional nature that reduces 

the ability to control for specific factors possibly exerting a confounding effect. Although 

duration of illness, age, sex, and antipsychotic medication expressed in CPZ equivalents were 

entered into the PALM model, and did not alter the reported effects, the only way to adequately 

address their possible impact would be through a longitudinal study design. Longitudinal 

design would also allow a more detailed investigation of the correlation of symptoms with 

thalamocortial changes, observing simultaneously changes in both of them over time (possible 

as a factor of medication and other variables), putting us also in a positon of making inferences 

on whether the observed changes represent a trait or a state factor.  

Lumping of all antipsychotic medications together might also present a weak spot of 

most of the current studies utilizing such approach, as there is expected to be a difference in 

the ways drugs with significantly different receptor profiles affect neural networks dependent 

on a number of neurotransmitter systems perturbed by medications. A detailed classification 

of medications used and comparison to not-medicated population will help clarify some of the 

effects.  

The patient population identified for this study included mostly non-acute patients, 

which can be seen from relatively low psychopathology scores (especially in BDp population), 

limiting the power for making strong inferences regarding biology underlying the symptoms. If 

we assume the existence of a specific state-related biological ‘signature’ for symptoms, we are 

most likely to capture those patterns during an acute state. We are otherwise more likely to 

identify trait-related phenomena, although such phenomena might also identify the population 

with proneness to specific symptom profile. A longitudinal study following individuals across 

different illness stages would allow for more robust conclusions regarding the nature of the 

disturbances to be made.  

Research attempting to analyze complex network disturbances and their link to clinical 

phenomena is always severely limited in case it does not use multiple and complementary 

research modalities. As an example, a detailed investigation into thalamo-cortical disturbances 

and their relationship with symptoms would benefit from additions to the resting-state 

paradigm, including utilizing tasks targeting specific functions, DTI, MRS, and computational 

modelling. It is only with multiple research modalities offering complementary information about 
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the researched phenomenon, that complex models of disturbances in correlated and widely 

distributed networks can be made.  

Although we used state-of-the-art fMRI algorithms and protocols, parcellation of the 

thalamus still presents a difficult task, with current fMRI resolution not matching the anatomy, 

which could create the possibility of overlap between different regions with inclusion of different 

tissue types within a voxel. Previous studies, however, argue against a significant effect of 

major registration issues for subcortical nuclei, as we already reported (403). Additionally, 

there is a certain circularity in achieving parcellation of the thalamus by using functional 

connectivity with previously identified cortical networks, just to in turn assess the functional 

connectivity of those same subnuclei. If there is a change in connectivity with specific networks 

in certain disorders, we might expect then that functionally defined subnuclei might differ 

between healthy population and those showing changes due to that specific disorder. We 

offered a possible future solution for those problems in the form of data-driven clustering that 

would enable us to identify areas of significant connectivity differences within the thalamus 

without imposing any a priori defined models.  
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7. Conclusions 

 

 In schizophrenia, changes of the thalamo-cortical functional connectivity, 

measured by fMRI, show robust over-connectivity effects centered primarily on 

sensory and motor regions, and associative cortical regions important for 

information integration, as well as under-connectivity with multiple cerebellar 

regions. Thalamo-cortical disturbances seem to represent correlated disruptions 

in widely distributed networks, with severely restricted connectivity variations in 

psychotic patients.  

 

 Analyzing schizophrenia as just the far end of the larger psychosis spectrum (that 

includes schizoaffective disorder and psychotic bipolar disorder patients) does not 

result in overall ‘attenuation’ of previously seen thalamic connectivity effects, 

suggesting that robust thalamo-cortical connectivity changes exist across 

psychotic disorders, and might underlie processes shared across psychosis 

spectrum, standing in line with genetic, family, structural, clinical, and 

phenomenological evidence. However, it cannot be excluded that thalamic 

dysconnectivity, suggesting wider system disruptions associated with psychosis,  

might also potentially differently affect specific phenomena seen in individuals 

disorders that make up the spectrum.  

 

 Although previously linked more specifically with affective disorders, the insular 

cortex emerged robustly as one of the regions with altered thalamic connectivity 

across the psychosis spectrum, as it was also clearly seen in schizophrenia 

patients when analyzed separately.  

 

  Parcellation of the thalamus using thalamic connectivity with separate functional 

cortical networks results in nine thalamic ‘functional subnuclei’ (not matching 

anatomical division) that show different connectivity changes in psychosis 

spectrum patients. For three of those functional subnuclei, frontoparietal cognitive 

control, cingulo-opercular, and posterior multimodal, no regions show between 

group differences (psychosis vs. healthy controls), while main effect seems to be 

driven by visual, default mode network, and dorsal attention functional seeds.  

 

 Although previously reported thalamic under-connectivity with prefrontal cortical 

areas did not survive the stringent permutation analyses and thresholding, 
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unthresholded connectivity images suggest prefrontal under-connectivity trend, 

and furthermore, prefrontal areas thalamic under-connectivity was seen for the 

dorsal attention functional subnucleus seed-based fMRI analysis in psychosis 

spectrum patients. Reported results suggest that dorsal attention functional 

thalamic subnucleus might be driving prefrontal connectivity effects, and also call 

into question previous conceptualizations of the role of prefrontal disturbances in 

driving other described effects.  

 

 Grouping nine functional thalamic subnuclei into associative and sensorimotor 

groups resulted in overall similar main connectivity patterns, replicated robustly 

across seeds and analyses, but also resulted in little added value, and ultimately 

in the loss of information that was gained from more finely grained analysis using 

multiple functional subnuclei (e.g. specific prefrontal connectivity effect seen for 

dorsal attention functional subnucleus). Associative seed analyses did show more 

pronounced effects when compared to sensorimotor seed or the whole thalamus, 

confirming again that majority of the effects seem to be driven by areas of 

thalamus functionally connected to associative areas.  

 

 Data-driven thalamic clustering based on the between-group connectivity 

differences results in clusters that do not match a priori defined functional 

subnuclei. Two-cluster clustering solution identifies a large cluster centered on the 

mediodorsal nucleus and large areas of lateral thalamic regions, and the smaller 

one in the posterior and the anterior thalamic regions. Areas roughly 

corresponding to the mediodorsal nucleus and ventral lateral thalamic regions 

show most pronounced between-group connectivity differences.  

 

 Identified thalamo-cortical connectivity changes seem not to be related to positive 

symptoms of psychosis, but in schizophrenia sample (characterized by more 

pronounced negative and cognitive symptoms) are associated with negative 

symptoms, and scores for the Excitation and Disorganization aspects of the 

PANSS’ general psychopathology. The more pronounced over- /under-

connectivity effects predict more severe symptoms.  

 

 The thalamo-cortical connectivity changes might underlie more non-specific trait 

features and overall severity of the disorder, in line with previous robust 

relationship with general psychopathology scores, but given the relationship with 

negative, excitation, and disorganizations symptoms in our large schizophrenia 

sample, could also prove to confer a risk for a specific and more schizophrenia-
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like clinical presentation. Due to reported relationships with symptoms, links 

between symptoms (e.g. negative and cognitive symptoms) and specific brain 

regions warrant evaluation by using regions that were identified in the analyses of 

the schizophrenia sample. 

 

 Connectivity changes of the dorsal attention thalamic functional subnucleus 

(under-connectivity that includes prefrontal areas) correlate specifically with 

disorientation, suggesting a possible trend and the utility of using item-based 

approach (avoiding composite psychopathology scores) and separate thalamic 

subnuclei as opposed to whole-thalamus approaches, in attempts to elucidate 

biological underpinnings of specific psychopathology phenomena. 
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8. Sažetak 

Naslov: Utvrđivanje obilježja talamo-kortikalnih promjena i njihovog odnosa sa 

simptomima u shizofreniji 

Hipoteza doktorskog rada bila je da će se kod pacijenata kojima je dijagnosticirana 

shizofrenija, uz uporabu funkcijske magnetske rezonance u stanju mirovanja, pokazati stabilni 

i specifični obrasci promjene funkcijske povezanosti talamusa, koji će imati različitu vezu sa 

specifilnim simptoma psihotičnih poremećaja.  

Ciljevi istraživanja su bili detaljnije utvrđivanje obilježja promjene talamo-kortikalne 

funkcijske povezanosti (jača ili slabija funkcijska povezanost) u kliničkoj skupini uspoređenoj 

sa zdravim kontrolnim ispitanicima, koristeći najsuvremenije protokole funkcijske magnetske 

rezonance i Projekta ljudskog konektoma (engl. Human Connectome Project), kao i 

specifičnije određivanje razlika unutar samog talamusa i određivanje njihovog relativnog 

doprinosa opisanim promjenama u funkcijskim vezama. Konačno, cilj je bio utvrditi vezu 

između utvrđenih promjena u funkcijskoj povezanosti i specifičnih simptoma poremećaja. 

Ispitanici za istraživanje prikupljeni su multicentrično, u sklopu postojeće incijative, 

konzorcij Bipolarna-shizofrenija mreža indermedijarnih fenotipa (engl. Bipolar-Schizophrenia 

Network on Intermediate Phenotypes – B-SNIP), koja je nastala s ciljem istraživanja 

intermedijarnih fenotipa kroz sve psihotične poremećaje. Procedure istraživanja i analiza 

podataka provedeni su u sklopu odobrenog projekta na Sveučilištu Yale Identificiranje obilježja 

kliničkih i farmakoloških neuroslikovnih bioloških biljega (engl. Characterizing Clinical and 

Pharmacological Neuroimaging Biomarkers). Nakon identificiranja ispitanika koji su prošli 

strogu kontrolu kvalitete podataka funkcijske magnetske rezonance, istraživanje je uključivalo 

436 ispitanika s psihotičnim poremećajem (167 pacijenata s dijagnosticiranom shizofrenijom, 

119 sa shizoafektivnim poremećajem i 150 sa bipolarnim poremećajem raspoloženja s 

povijesti psihoze) i 219 demografski usklađenih zdravih kontrolnih ispitanika. Analize temeljene 

na ispitivanju povezanosti cijelog talamusa provedene su kako bi se utvrdile opće promjene u 

funkcijskim vezama talamusa, praćene zatim podjelom talamusa uporabom a priori 

definiciranim funkcijskim talamičkim jezgrama, te grupiranjem temeljenom na funkcijskim 

neuroslikovnim podacima kako bi se definirali detalji poremećaja povezanosti talamusa s 

moždanom korom u shizofreniji i psihotičnim poremećajima.  

Kako u shizofreniji tako i u širem spektru psihoza utvrđen je jasan obrazac pojačanih 

funkcijskih veza sa senzoričkim i motoričkim područjima kore, kao i s asocijatvinim područjima 

zaduženim za integraciju ulaznih podataka s nižih razina, te slabije funkcijske povezanosti s 

područjima malog mozga. Prethodno objavljeno sniženje u funkcijskoj povezanosti s 

prefrontalnim područjima bilo je vidljivo samo u mapi funkcijskih veza za funkcijsku talamičku 
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jezgru dorzalne pozornosti. Devet funkcijskih talamičkih jezgri imalo je donekle različite 

promjene talamičke funkcijske povezanosti, u rasponu od toga da je rezultat potpuno 

nedostajao za neke funkcijske jezgre, do postojanja proširenih promjene pojačane ili 

oslabljene talamičke povezanosti, no u načelu te su promjene općenito pratile obrasce 

promjene povezanosti koji su uočeni i za cijeli talamus. Grupiranje područja talamusa je 

pokazalo da postupci grupiranja temeljeni na podacima, oslobođeni okvira a priori definiranih 

talamičkih jezgri, imaju za rezultat rješenja koja se razlikuju od prethodno postojećih funkcijskih 

jezgri ili anatomskih podjela, s područjima oko mediodorzalne jezgre i ventralnih lateralnih 

područja kao nositeljima razlika u talamičkim vezama između kliničke populacije i kontrola. 

U shizofreniji su promjene u talamo-kortikalnim funkcijskim vezama pokazale vezu s 

negativnim simptomima, kao i s rezultatom skala uzbuđenja i dezoganiziranosti, navodeći na 

zaključak da izraženija promjena (pojačanje ili slabljenje funkcijskih veza) predviđa izraženiji 

specifični symptom. Sniženje funkcijske povezanosti funkcijske talamičke jezgre dorzalne 

pozornosti (uključujući sniženu povezanost s prefrontalnim regijama moždane kore) također je 

koreliralo s dezorijentacijom. 

Zaključno, obrasci izgledno povezanih promjene talamičkih funkcijskih veza (pojačne i 

oslabljene funkcijske povezanosti) snažno su prisutni u shizofreniji ali i u spektru psihoza. Iako 

je sličan obrazac prisutan u različitim talamičkim regijama, njegov se opseg razlikuje među 

talamičkim funkcijskim jezgrama, navodeći na zaključak kako su rezultati primarno vođeni 

upravo specifičnim asocijativnim funkcijskim talamičkim jezgrama. Konačno, iako bi talamo-

kortikalne promjene u funkcijskoj povezanosti mogle biti više vezane uz nespecifične značajke 

kao što su težina poremćaja ili indikatori osobina poremećaja, čini se kako su ipak negativni 

simptomi, dezorganiziranost i uzbuđenje izravnije povezani s tim promjenama nego li su to 

pozitivni simptomi ili disregulacija emocija. 
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9. Abstract  

Hypothesis of the doctoral thesis was that, using resting-state functional magnetic 

resonance imaging (fMRI), patients diagnosed with schizophrenia would exhibit stable and 

specific patterns of thalamic connectivity changes that will show different relationship with 

specific symptoms of psychotic disorders.  

The aims of the study were to characterize in a more detailed way changes in thalamo-

cortical connectivity (over- and under-connectivity) in a clinical sample compared to healthy 

controls, by using state-of-the-art resting-state functional resonance and Human Connectome 

Project protocols, as well as to more specifically determine within-thalamus differences and 

their relative contribution to described connectivity changes. Finally, the aim was to determine 

relationship between identified connectivity changes and specific symptoms of the disorder.  

Subjects for the study were pooled from multiple centers, as part of an existing initiative, 

Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium, created 

with a goal of investigating intermediate phenotypes across psychotic disorders. Study 

procedures and data analyses were done under the approved Yale University project 

Characterizing Clinical and Pharmacological Neuroimaging Biomarkers. Following 

identification of subjects that passed stringent quality controls for fMRI data, and matching with 

the clinical and healthy control populations, study included 436 psychosis probands (167 

schizophrenia patients, 119 schizoaffective disorder patients, and 150 patients diagnosed with 

bipolar disorder with history of psychosis) and 219 matched healthy controls. Whole-thalamus 

seed-based analyses were used to determine thalamic connectivity changes, followed by 

parcellation of thalamus using a priori defined functional subnuclei, and data-driven clustering, 

to define details of the thalamo-cortical dysconnectivity in schizophrenia and psychotic 

disorders.  

Both in schizophrenia, and in the wider psychosis spectrum, there was a robust pattern 

of thalamic over-connectivity with sensory and motor regions, as well as with associative areas 

tasked with integration of lower-level inputs, and under-connectivity with cerebellar regions. 

Interestingly, previously reported under-connectivity with prefrontal regions was evident only 

in dorsal attention functional thalamic subnucleus connectivity map. Nine functional thalamic 

subnuclei showed relatively different thalamic connectivity changes, ranging from altogether 

missing effects to wide-spread over- /under-connectivity, but overall followed same general 

dysconnectivity pattern described for the whole thalamus. Clustering analyses revealed that 

the data-driven clustering, released from constraints of a priori defined thalamic subnuclei, 

resulted in solutions that significantly differed from existing functional subnuclei or anatomical 

divisions, with areas centered on mediodorsal nucleus and ventral lateral areas driving the 

dysconnectivity effect. 
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In schizophrenia, thalamo-cortical connectivity changes showed relationship with 

negative symptoms, as well as with excitation and disorganization subscale scores, suggesting 

that a more pronounced over- or under-connectivity effect predicted more pronounced specific 

symptoms. Under-connectivity effect of the dorsal attention functional subnucleus (including 

reduced connectivity with prefrontal cortical regions) also correlated with disorientation.  

In conclusion, thalamo-cortical dysconnectivity patterns of seemingly correlated over- 

and under-connectivity effects seems to be robustly present in schizophrenia, but also across 

the psychosis spectrum. Although the same general pattern exists across different thalamic 

regions, its extent differs among different thalamic functional subnuclei suggesting that the 

effect is driven by specific associative functional subnuclei. Finally, although thalamo-cortical 

connectivity changes might be linked to a more non-specific disease severity or trait indicators, 

negative symptoms, disorganization, and excitation seem to be connected more directly to 

those changes than positive symptoms or emotional dysregulation.  
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