Endovaskularno liječenje aneurizmi i pseudoaneurizmi visceralnih ogranaka abdominalne aorte

Svetec, Jelena

Master's thesis / Diplomski rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, School of Medicine / Sveučilište u Zagrebu, Medicinski fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:105:029253

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2020-10-10

Repository / Repozitorij:

Dr Med - University of Zagreb School of Medicine Repository
Jelena Svetec

Endovaskularno liječenje aneurizmi i pseudoaneurizmii visceralnih ogranaka abdominalne aorte

DIPLOMSKI RAD

Zagreb 2015.
Ovaj diplomski rad je izrađen u Kliničkom zavodu za dijagnostičku i intervencijsku radiologiju Kliničke bolnice Merkur Medicinskog fakulteta Sveučilišta u Zagrebu pod vodstvom doc.dr.sc. Vinka Vidjaka i predan je na ocjenu u akademskoj godini 2014./2015.

Mentor rada: doc.dr.sc. Vinko Vidjak
POPIŠ I OBJAŠNJENJE KRATICA KORIŠTENIH U TEKSTU

DSA – digitalna suptrakcijska angiografija
CTA – angiografija računalnom tomografijom
MRA – angiografija magnetskom rezonancijom
MSCT – multislice computed tomography, višeslojna računalna tomografija
MIP – maximum intensity projection, maksimalna vrijednost intenziteta projekcije
VR – volume rendering, volumsko oduzimanje vrijednosti Hounsfieldovih jedinica
TOF – time of flight
CE – contrast enhanced
PC – phase contrast
SADRŽAJ

1. SAŽETAK .. 1

2. SUMMARY .. 1

3. UVOD .. 1

4. ANATOMIJA SISTEMNOG KRVOTOKA ... 2

5. HISTOLOŠKA GRADA KRVNIH ŽILA ... 5

6. PATOLOGIJA I PATOFIZIOLOGIJA ANEURIZMI I PSEUDOANEURIZMI VISCERALNIH ARTERIJA ... 6

7. DIJAGNOSTIKA ANEURIZMI VISCERALNIH ARTERIJA ... 9

 7.1. ULTRAZVUK .. 9

 7.2. CT ANGIOGRAFIJA .. 10

 7.3. MR ANGIOGRAFIJA .. 11

 7.4. DIGITALNA SUPTRAKCIJSKA ANGIOGRAFIJA .. 13

8. KIRURŠKO LIJEČENJE ANEURIZMI I PSEUDOANEURIZMI VISCERALNIH ARTERIJA .. 15

9. ENDOVASKULARNO LIJEČENJE ANEURIZMI VISCERALNIH ARTERIJA 17

 9.1. Uloga interventne radiologije u liječenju aneurizmi i pseudoaneurizmi visceralnih arterija 17

 9.2. Materijali i metode u endovaskularnom liječenju ... 18

 9.3. Endovaskularno liječenje aneurizmi pojedinih visceralnih ogranaka abdominalne aorte 19

 9.3.1. Aneurizme a. splenica .. 19

 9.3.2. Aneurizme a. hepatica .. 20

 9.3.3. Aneurizme truncus coeliacus ... 20

 9.3.4. Aneurizme a. mesenterica superior ... 21

 9.3.5. Aneurizme a. gastroduodenalis i a. pancreaticoduodenalis 21

 9.3.6. Aneurizme a. mesenterica inferior ... 21

 9.4. Postoperativno praćenje .. 21

10. ZAKLJUČAK .. 23

11. ZAHVALE ... 24

13. POPIS LITERATURE .. 25

13. ŽIVOTOPIS .. 27
1. SAŽETAK

Endovaskularno liječenje aneurizmi i pseudoaneurizmi visceralnih ogranaka abdominalne aorte

Jelena Svetec

Pboljšanje slikovnih dijagnostičkih metoda u posljednjih nekoliko desetljeća dovelo je do povećanja frekvencije otkrivanja asimptomatskih aneurizmi visceralnih arterija. Jednako tako, sve učestalija primjena perkutanih interventnih postupaka dovela je do veće incidencije pseudoaneurizmi. Ipak, aneurizme visceralnih arterija su relativno rijetka stanja, no, zbog oslabljene stijenke proširenog dijela krvne žile, sklone su rupturi koju prati krvarenje u 22% slučajeva s mortalitetom od 8.5%. Tradicionalno vaskularna kirurgija u liječenju primjenjuje otvoreni pristup s resekcijom aneurizme sa ili bez uspostave kontinuiteta arterije ili resekcijom distalnog organa, poput slezene. No te metode nije uvijek moguće primijeniti. U slučajevima pratećeg peritonitisa ili pankreatitisa, u pacijenata s prijašnjim abdominalnim operacijama ili multiplim komorbiditetima, otvoreni pristup je otežan i praćen većim morbiditetom i mortalitetom. Sve učestalija upotreba minimalno invazivnih endovaskularnih tehnika je dobra alternativa u tim indikacijama. Endovaskularna embolizacija zavojnicama i tekućim materijalima, postavljanje stent graftova i multilayered stentova se primjenjuje sve češće kako se interventna radiologija razvija. Glavne prednosti takvih transkateterskih metoda su minimalna invazivnost, manja postoperativna bol, niža stopa komplikacija, kraća hospitalizacija i brži povratak pacijenta svakodnevnim aktivnostima.

KLJUČNE RIJEČI: aneurizma visceralne arterije, pseudoaneurizma, endovaskularna tehnika, minimalno invazivna
2. SUMMARY

Endovascular treatment of aneurysms and pseudoaneurysms of visceral branches of the abdominal aorta

Jelena Svetec

In the last few decades, advanced imaging techniques have led to increased detection of asymptomatic visceral artery aneurysms. Also, increased percutaneous endovascular interventions have raised the incidence of iatrogenic pseudoaneurysm formation. Still, aneurysms of visceral arteries are a rare condition, but, due to the weakness of dilated blood vessel wall, they are prone to rupture, resulting in life-threatening hemorrhage in 22% of cases with mortality of 8.5%. Traditional vascular surgery management involves an open exposure to excise the aneurysm with or without re-establishment of vascular continuity or end organ resection (e.g. spleen). However, these methods are not applicable in every case. In cases of concomitant peritonitis or pancreatitis, in patients with previous abdominal surgery or multiple comorbidities, the open repair becomes difficult and carries a higher morbidity and mortality. The rising use of minimally invasive endovascular techniques over the past decade offers a good alternative in these indications. Endovascular coiling, liquid embolization, placement of covered and multilayered stents are becoming more and more common as the intervention radiology develops. The main advantages of this catheter-based methods are minimal invasiveness, less post-operative pain, less complications, shorter hospitalization and sooner incorporation in the everyday activities.

KEY WORDS: visceral artery aneurysm, pseudoaneurysm, endovascular techniques, minimally invasive
3. UVOD

Incidencija aneurizmi visceralnih ogranaka abdominalne aorte raste. Ne toliko zbog činjenice da je moderan čovjek zbog izraženije ateroskleroze podložniji aneurizatskim proširenjima krvnih žila, koliko zbog učestale (racionalne ili ne) primjene naprednih slikovnih dijagnostičkih metoda iz raznih indikacija gdje se nađu kao slučajan nalaz. Jednako tako raste i incidencija pseudoaneurizmi, primarno onih ijatrogene etiologije zbog porasta broja interventnih terapijskih i dijagnostičkih zahvata. Sama prevalencija visceralnih aneurizmi u populaciji nije velika, iznosi 0.1-2%. Međutim, problem se skriva u njihovoj sklonosti rupturi i posljedičnom krvarenju zbog čega se u 22% slučajeva prezentiraju kao teška klinička stanja, a 8.5% pacijenata s rupturom aneurizme umire. 1,2,3

U najvećem broju slučajeva su asimptomatske, rijetko se očituju bolovima, kompresijom susjednih struktura, akutnom trombozom arterije sa ili bez distalne embolizacije. Mišljenja stručnjaka o potrebi intervencije su podvojena, dok neki misle da je svaka dijagnoza aneurizme visceralne arterije indikacija za liječenje, drugi su puno restriktivniji. Međunarodno prihvaćeni kriteriji za intervenciju su promjer aneurizme veći od 2 cm, rast brći od 0.5 cm na godinu, simptomatske aneurizme te aneurizme u žena generativne dobi, trudnica ili kandidata za transplantaciju jetre. Dijagnoza pseudoaneurizme je uvijek indikacija za zahvat. 4,3

Tri su moguća pristupa aneurizmama visceralnih arterija – ekspektativni stav, kirurški i endovaskularni pristup. Ekspektativni stav se svodi na praćenje promjena aneurizme (rast, kalcifikacije, formiranje tromba, odnos sa susjednim strukturama) ponavljanjem slikovnih dijagnostičkih metoda. Kirurški se pristup sastoji od resekcije aneurizatski proširenog dijela krvne žile sa ili bez uspostave njenog kontinuiteta. Mortalitet nakon elektivnog kirurškog zahvata je oko 5%, no značajno raste u slučajevima hitne operacije rupturirane aneurizme. Endovaskularno liječenje kao minimalno invazivni oblik liječenja se sastoji od transkateterskih embolizacije hranidbenih arterija ili same aneurizme i postavljanja stent graftova kako bi se aneurizma isključila iz cirkulacije. 2,3

Posljednjih desetljeća čitava se medicina okreće minimalno invazivnom pristupu pa tako i u liječenju visceralnih aneurizmi i pseudoaneurizmi. Danas endovaskularno liječenje u većini slučajeva predstavlja metodu izbora. Međutim, nije uvijek tako, stoga odluku o tome koji pristup koristiti treba donositi za svakog bolesnika posebno, uzimajući u obzir sve prednosti i nedostatke koje bi mu pojedini terapijski modalitet mogao donijeti.
4. ANATOMIJA SISTEMNOG KRVOTOKA

Aorta je glavna arterija, izlazi iz lijevog ventrikula i uzdiže se iza truncus pulmonalis prema desno kao pars ascendens aortae, potom tvori luk, arcus aortae, prema dorzalno iznad lijevog plućnog hilusa i podjele truncus pulmonalis pa ispred 4. torakalnog kralješka prelazi u silazni dio, pars descendens aortae. Pars descendens prolazi kroz prsnu i trbušnu šupljinu do završne podjele na lijevu i desnu a. iliaca communis u razini 4. lumbalnog kralješka. Dijeli se na pars thoracica i pars abdominalis, a granicu ta dva dijela predstavlja dijafragma.

Pars ascendens aortae se nalazi unutar epikarda, omeđen dorzalno desnim atrijem, desnom plućnom arterijom i desnim bronhom, desno dorzalno gornjom šupljom venom, lijevo i sprijeda truncus pulmonalis. Početni dio, bulbus aorte, je uzdignut s 3 proširenja koja odgovaraju dţepovima aortnog zalistka (sinus aortae dexter, sinister i posterior). Iz desnog i lijevog sinus izlaze koronarne arterije koje opskrbljuju srce.

Arcus aortae je izvan epikarda, neposredno ispod početka truncus brachiocephalicus. U visini 2. rebra prelazi od desno ventralno prema lijevo dorzalno, tako da je zapravo položen sagitalno. Iz luka izlaze truncus brachiocephalicus, zajednički početak za a. carotis communis dextra i a. subclavia dextra, a. carotis communis sinistra i a. subclavia sinistra. Na prijelazu u pars descendens nalazi se suţenje, isthmus aortae.

Pars thoracica se nastavlja na isthmus i seže do hiatus aorticus dijafragme u razini 12. torakalnog kralješka. Nalazi se u straţnjem medijastinumu, lijevo uz kralješnicu, iza lijevog plućnog krila i srca, lijevo od ductus thoracicus i jednjaka koji kriţa prsnu aortu neposredno iznad dijafragme. Daje parijetalne i visceralne ogranke. Parijetalne grane čini 10 straţnjih interkostalnih arterija koje opskrbljuju odgovarajuće meĎurebrene prostore, a visceralne grane su rr. bronchiales za lijevo plućno krilo, 3-6 rr. oesophagei za jednjak, rr. mediastinales prema limfnim čvorovima straţnjeg medijastinuma, rr. pericardiaci za opskrbu perikarda i aa. phrenicae superiores za lumbalni dio dijafragme.

Abdominalna aorta se proteţe od dijafragme do 4. lumbalnog kralješka gdje se dijeli na lijevu i desnu a. iliaca communis. Prolaskom kroz trbušnu šuljinu daje parijetalne i visceralne ogranke. Parijetalne grane su aa. phrenicae inferiores, parne aa. lumbales i a. sacralis mediana koje opskrbljuju donju stijenk dijafragme, zid trbušne šupljine i straţnju stijenku male zdjelice.

Najkranijalnija visceralna grana je truncus coeliacus, koji predstavlja zajedničko deblo za a. gastrica sinistra, a. hepatica communis i a. splenica, a odvaja se od aorte u visini 12. torakalnog kralješka. Pribliţno 1 cm distalnije, u visini 1. lumbalnog kralješka, iza gušterače izlazi a. mesenterica superior, a u visini 3. lumbalnog kralješka a. mesenterica inferior.

Arteria gastrica sinistra se odvaja od truncus coeliacus i teče pored gastropancreatica, prema kranijalno pa u luku na malu krivinu želuca gdje daje male ogranke za jednjak i velike za
želudac i anastomozira s granama a. gastrica dextra. A. gastrica dextra u pravilu izlazi iz a. hepatica propria unutar lig. hepatoduodenale, a na malu krivinu dolazi kroz lig. hepatogastricum i opskrbljuje područje antruma.

A. hepatica communis prelazi gornjim rubom gušterače prema desno i dijeli se u području lig. hepatoduodenale. A. hepatica propria nastavlja svoj tijek prema jetri unutar tog ligamenta zajedno s v. portae i ductus choledochus, a a. gastroduodenalis prolazi dorzalno od pilorusa prema glavi gušterače. Na donjem rubu pilorusa daje ogranak a. gastrooentalis dextra koja unutar lig. gastroduodenalis daje ogranke za veliku krivinu želuca i anastomozira s a. gastrooentalis sinistra, granom a. splenica. Aa. pancreaticoduodenales superiores anterior i posterior s a. pancreaticoduodenales inferiores anterior i posterior iz a. mesenterica superior tvore žilne arkade ispred i iza glave gušterače opskrbljujući nju i duodenum.

A. splenica je najveća grana truncus coeliacus, prolazi kranijalno od v. splenica i gornjeg ruba gušterače i iznad lig. splenorenale ulazi u hilus slezene s 5-6 rr. splenici. Duž gornjeg ruba gušterače daje i rr. pancreatici za opskrbu tijela i repa gušterače.

tankog crijeva, arterije debelog crijeva tvore samo jednu arkadu u blizini samog crijeva, tzv. Drummondovu marginalnu arteriju. 6,7 Nešto niže od truncus coeliacus odvajaju se aa. suprarenales mediae prema nadbubrežnim žlijezdamama, a u visini 1. ili 2. lumbalnog kralješka i bubrežne arterije. Teku postranično prema bubrezima, desna iza donje šuplje vene i glave gušterače, lijeva iza tijela gušterače, dajući pritom ogranke za opskrbu nadbubrežnih žlijezda, mokraćovoda i bubrežne čahure. Aa. testiculares, odnosno aa. ovaricae su ventralni ogranci aorte neposredno ispod bubrežnih arterija. Teku prema kaudalno i lateralno. Aa. testiculares križaju m. psoas, mokraćovod i aa. i vv. iliaca externae i ulaze u preponski kanal kojim zajedno sa sjemenovodom dolaze do sjemenika. Aa. ovaricae preko ruba male zdjelice prelaze u lig. suspensorium ovarii i kojim teku do jajnika, jajovoda i anastomoziraju s granama a. uterina.5
5. HISTOLOŠKA GRAĐA KRVNIH ŽILA

Viseralni ogranci aorte su prema histološkoj klasifikaciji mišićne arterije srednjeg promjera izgrađene od nekoliko slojeva:

1. Intima
 Intima se sastoji od jednog sloja endotelnih stanica koje prekrivaju subendotelno rahlo vezivno tkivo. Granicu prema medijii čini unutarnja elastična membrana građena od elastina s otvorima koji omogućavaju prijenos hranjivih tvari do stanica smještenih duboko u stijenci krvne žile.

2. Medija
 Mediju čini do 40 koncentričnih slojeva spiralno poredanih glatkih mišićnih stanica. Prostori između stanica su ispunjeni elastičnim i retikulinskim vlaknima, proteoglikanima i glikoproteinima koje stanice same sintetiziraju. Od adventicije je odvojena tanjom vanjskom elastičnom membranom.

3. Adventicija
 Adventicija je građena od kolagenih vlakana tipa 1 i elastičnih vlakana. Postupno prelazi u okolno vezivo organa kroz koji krvna žila prolazi.

U adventiciji i vanjskom dijelu medije nalazimo brojne kapilare, arteriole i venule (vasa vasorum) koje predstavljaju nutritivni krvotok vanjskih dijelova stijene koji se ne mogu prehranjivati difuzijom iz lumena. Glatke mišićne stanice arterija su inervirane gustom mrežom nemijeliniziranih živčanih vlakana s noradrenalinnom kao neurotransmiterom. Vlakna završavaju u adventiciji i vrlo malim dijelom u mediji pa noradrenalina preko međustaničnih tijesnih spojeva dolazi u slojeve medije, uzrokujući vazokonstrikciju.8
6. PATOLOGIJA I PATOFIZIOLOGIJA ANEURIZMI I PSEUDOANEURIZMI VISCERALNIH ARTERIJA

Klinička slika u pacijenata s aneurizmom može biti asimptomatska i simptomatska, ovisno o tipu aneurizme, njenoj veličini, lokalizaciji i drugim postojećim bolestima. Ukoliko se radi o simptomatskoj aneurizmi, ona se najčešće očituje pulsirajućom tvorbom u arteriji, kompresijom susjednih struktura, embolizacijom distalnog arterijskog stabla, akutnom trombozom arterije koja može dovesti do distalne ishemije, rupturom i posljedičnim krvarenjem i sepsom.\(^{1,9,10}\)

Pseudoaneurizme su proširenja krvnih žila čija stijenka nije graĎena poput stijenke normalne krvne žile, nego zapravo predstavlja hematom koji je uslijed strujanja krvi i reaktivne upale formirao fibroznou čahuru. Nastaju kao posljedica upalnih bolesti okolnih organa, ozljeda, upala stijenki krvne žile ili disrupcija vaskularnih anastomoza, te ih dijelimo na traumatske, anastomotske i infektivne. Traumatske pseudoaneurizme nastaju kao posljedica ozljede stijenke krvne žile, najčešće uzrokovane ijetrogeno prilikom dijagnostičkih i terapijskih zahvata kateterom. Anastomotske pseudoaneurizme se razvijaju na mjestu dehiscencije vaskularnih anastomoza, uslijed infekcije, a infektivne pseudoaneurizme su česte u intravenskih ovisnika zbog upale stijenke krvne žile nastale diseminacijom patogena iz udaljenih žarišta upale. U odnosu na prave aneurizme, pseudoaneurizme pokazuju veću učestalost sekundarnih promjena, uglavnom infekcija, a zbog slabosti stijenke znatno su češće i rupture.\(^{1,10}\)

Aneurizme visceralnih arterija su razmjerno rijetka stanja. Incidenciju aneurizmi visceralnih arterija prikazuje Tablica 1. Češće se javljaju zajedno s aneurizmom abdominalne aorte, dok su izolirane aneurizme visceralnih arterija rijetke. Pokazuju izrazitu sklonost rupturi i razvoju krvarenja koje dovodi do hipovolemijskog šoka, što je i razlog da se u 22% slučajeva očituju kao klinički teška stanja, a 8.5% pacijenata s rupturom aneurizme visceralne arterije umire.\(^{1}\)
Tablica 1. Incidencija aneurizmi visceralnih arterija

<table>
<thead>
<tr>
<th>Arterija</th>
<th>Incidencija aneurizmi</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. splenica</td>
<td>60%</td>
</tr>
<tr>
<td>a. hepatica propria</td>
<td>20%</td>
</tr>
<tr>
<td>a. mesenterica superior</td>
<td>5.5%</td>
</tr>
<tr>
<td>truncus coeliacus</td>
<td>4%</td>
</tr>
<tr>
<td>aa. gastricae et gastroomentales</td>
<td>4%</td>
</tr>
<tr>
<td>aa. jejunales, ileales i colicae</td>
<td>3%</td>
</tr>
<tr>
<td>a. pancreaticoduodenalis i a. pancreatica</td>
<td>2%</td>
</tr>
<tr>
<td>a. gastroduodenalis</td>
<td>1.5%</td>
</tr>
<tr>
<td>a. mesenterica inferior</td>
<td><1%</td>
</tr>
</tbody>
</table>

Od svih aneurizmi visceralnih arterija, najčešće su aneurizme a. splenica. Nalazi ih se u 0.8% arteriograma i na 10.4% obdukcija. Promjerom su uglavnom manje od 2 cm, smještene u središnjem ili distalnom dijelu arterije i 4 se puta češće javljaju u žena, s najvećom incidencijom među ženama tridesetih i sedamdesetih godina, uglavnom multipara. Aneurizme splenične arterije su asimptomatske u 80% slučajeva, a u preostalih 20% se očituju bolovima u epigastriju, lijevom gornjem kvadrantu abdomena ili ledima ili krvarenjem u probavni sustav. Aneurizme dijagnosticirane tijekom trudnoće najčešće su otkrivene zbog rupture koja je uzrok visoke stope mortaliteta majki (70%) i fetusa (95%). Rizik od rupture je upravno proporcionalan promjeru aneurizme. Primarni uzrok aneurizmi splenične arterije su fibrodisplastične bolesti medije i oštećenja mišićno-elastičnih vlakana stijenke, a povećana incidencija je uočena i u pacijenata s pankreatitisom, portalnom hipertenzijom, splenomegalijom, generaliziranom aterosklerozom, autoimunim vaskulitizima, bakterijskim endokarditisom i nakon transplantacije jetre. Odlučujućima za razvoja aneurizmi u trudnoći smatraju se povećan protok krvi kroz slezenu i povišena koncentracija hormona u cirkulaciji koja dovodi do slabljenja stijenke arterije. U pacijenata s pankreatitisom govorimo o pseudoaneurizmi splenične arterije nastajom erozijom stijenke rastom pseudociste u akutnom i kroničnom obliku bolesti.

Aneurizme jetrene arterije su druge po učestalosti među visceralnim arterijama, ali ih se najčešće dijagnosticira. Razlog tome je rastuć broj interventnih dijagnostičkih i terapijskih postupaka koji povećavaju stopu pojave pseudoaneurizmi. Osim toga, standardni dio obrade stabilnih pacijenata s tupom traumom abdomena su slikovne metode koje omogućuju otkrivanje posttraumatskih intrahepatičkih aneurizmi.Odnos učestalosti aneurizmi i pseudoaneurizmi je 1:1. Osim ijatrogenih uzroka, u etiologiji nalazimo aterosklerozu, infekciju i upalu. Aneurizme jetrene arterije su
asimptomatske, osim ako rupturiraju što se događa u 20 do 80% slučajeva. Tada se prezentiraju bolovima u abdomenu, intraperitonealnim krvarenjem ili hemobilijom. Češće se javljaju u muškaraca. Aneurizme gornje mezenterične arterije čine 5.5% svih visceralnih aneurizmi. Morfološki su vrećaste ili vretenaste i gotovo uvijek smještene u proksimalnih 5 cm arterije. Prave aneurizme su uzrokovane aterosklerozom ili bolestima vezivnog tkiva, a pseudoaneurizme nastaju kao posljedica ozljede, disekcije ili pankreatitisa. Uglavnom su simptomatske, s progresivnim bolovima u abdomenu koji oponašaju mezenteričnu ishemiju ili mučninom, povraćanjem, kravrenjem u probavni sustav, hemobilijom i žuticom. Kod nekih pacijenata se prezentiraju kao palpabilna masa u abdomenu. Često se kompliciraju rupturom ili trombozom. Aneurizme truncus coeliacus se u većini slučajeva povezuju s aterosklerozom. Drugi manje česti uzroci su trauma, povišen tlak u disekciji abdominalne aorte i infekcija. Uglavnom su asimptomatske, no ponekad se prezentiraju bolovima, mučninom i povraćanjem. Često se javljaju s aneurizmama drugih visceralnih ili perifernih arterija. Ruptura se javlja u 20% slučajeva, a praćena je stopom mortaliteta od 35 do 80%. U a. pancreaticoduodenalis i a. gastroduodenalis uglavnom se javljaju pseudoaneurizme kao posljedica pankreatitisa. Do 7% takvih aneurizmi je inficirano. Klinička slika se očituje bolovima u epigastriju ili difuzno u abdomenu i nalikuje onoj u pankreatitisu. Incidencija rupture je vrlo visoka: 56% za gastroduodenalnu i 38% za pankreatikoduodenalnu pseudoaneurizmu. Aneurizme donje mezenterične arterije i a. colica su najrjeđe od svih visceralnih aneurizmi, uglavnom se javljuju izolirano i promjera su manjeg od 1 cm. U etiologiji je najčešće aterosklerozata. Češće su u muškaraca kod kojih se prezentiraju bolovima i hipovolemijskim šokom zbog masivnog krvarenja uslijed rupture do koje dolazi relativno često.
7. DIJAGNOSTIKA ANEURIZMI VISCERALNIH ARTERIJA

U dijagnostici aneurizmi i pseudoaneurizmi visceralnih ogranaka abdominalne aorte koriste se ultrazvuk, CT angiografija (CTA) i MR angiografija (MRA) kao neinvazivne metode i digitalna suptrakcijska angiografija (DSA) kao invazivna.1

7.1. ULTRAZVUK

Primjena ultrazvuka u dijagnostici vaskularne patologije počinje 1956. godine Satomurinim otkrićem da eritrociti mogu reflektirati ultrazvuk frekvencije različite od one odaslane. Ukoliko se eritrociti gibaju prema ultrazvučnoj sondi, frekvencija reflektiranog ultrazvučnog vala je veća od one emitiranog, odnosno manja ako se eritrociti gibaju od sonde. Pojava se naziva Dopplerov efekt. Razlika odaslane i emitirane frekvencije je doplerski pomak i proporcionalna je brzini kretanja reflektora, odnosno eritrocita. Sonde koje se primjenjuju u dijagnosticiranju vaskularne patologije u abdomenu imaju frekvencije 2.5 do 5 MHz. Protok u krvnoj žili ovisi o njenu promjeru i građi stijenki. U fiziološkim uvjetima protok je laminaran, odnosno paraboličnog profila što znači da je brzina najveća u središtu lumena, a proporcionalno se smanjuje prema stijenkama. Međutim, na mjestima gdje postoje prepreke toku krvi kao što su aterosklerotski plakovi ili bifurkacije javlja se turbulentni protok, odnosno u svakom presjeku krv istovremeno teče različitim brzinama. Obzirom da se ultrazvuk u patologiji krvnih žila koristi primarno kao funkcionalna pretraga, njegova glavna zadaća je pomoći u određivanju stupnja poremećaja protoka tako što se provede spektralna frekvencijska analiza i njeni rezultati usporede s normalnim nalazom. Spektralna frekvencijska analiza zapravo znači razlaganje ultrazvučnog signala na frekvencijske komponente i njihov grafički prikaz na vremenskoj skali.12 Duplex sustav koji objedinjuje pulsirajući dopler i 2D prikaz omogućuje morfološki prikaz krvne žile i doplersku analizu protoka. Na taj se način mogu izravno vizualizirati patološke promjene na stijenkama, ali i odrediti funkcionalni parametri potrebni za procjenu težine bolesti. 2D prikaz se dobiva usporedbom sukcesivnih 2D slika koje se obrađuju metodom autokorelacije, što znači da se prikazuju samo ono odjeci koji su se promijenili, odnosno samo strukture koje su se pomaknule. Smjer i srednja brzina protoka su kodirani bojom, uglavnom se primjenjuje crvena za protoke u smjeru sonde, a plava u smjeru od sonde. Što su brzine protoka veće, to su tonovi boje svjetliji. Takav tip prikaza se naziva obojeni dopler (color dopler) i koristi se za brzu orientaciju o mjestu na kojem treba izvršiti kvantitativno mjerenje protoka, odnosno spektralnu frekvencijsku analizu. Duplex dopler se koristi u dijagnostici aneurizmi jer omogućuje prikaz još asimptomatskih aneurizmi, praćenje njihovog rasta i eventualnih komplikacija nakon intervencije, mjerenje promjera i duljine aneurizme, detekciju i
mjerenje debljine muralnih tromba, kao i utjecaj aneurizmatskog proširenja na protok u zahvaćenoj krvnoj žili.1,12

Prednosti primjene ultrazvuka su njegova neinvazivnost, niska cijena, izostanak komplikacija i izlaganja ionizirajućem zračenju i mogućnost čestog ponavljanja pretrage. Najveća zamjera njegovoj primjeni je što uspjeh pretrage ovisi o iskustvu i stručnosti osobe koja ga izvodi. Dodatno, u prikazivanju abdominalnih krvnih žila problem predstavljaju pretili pacijenti i prisutnost plina u crijevima koja onemogućuje izravan prikaz.1,12

7.2. CT ANGIOGRAFIJA

CTA je neinvazivna dijagnostička metoda kojom se nakon intravenske aplikacije kontrasta rade poprečni CT-presjeci kroz područje interesa i potom se računalnom obradom stvaraju 3D rekonstrukcije krvnih žila. Razvila se nakon uvođenja spiralnog CT-a u kliničku praksu 90-tih godina 20. stoljeća. Spiralni CT uređaji su omogućili kontinuirani volumni prikaz odabrane regije interesa tako da je postalo moguće u samo jednom snimanju zabilježiti prolaznu opacifikaciju arterijskog sustava nakon intravenske aplikacije kontrasta. Novi višeslojevni CT uređaji (MSCT) imaju višestruke slojeve detektora koji omogućuju brzu pretragu velikog volumena u jednom udahu, čime se isključuju artefakti zbog inspirira i respiratornih pomaka. Povećano područje anatomske prednostom omogućuje bolju kvalitetu slike s optimumom od 30-50%. Međutim, analiza svakog pojedinog presjeka bila bi prespora, a prikaz kontinuiteta krvnih žila nemoguć, stoga se primjenjuju metode 3D rekonstrukcije, a to najčešće maksimalna vrijednost intenziteta projekcije u Hounsfieldovim jedinicama (HJ) (MIP) i volumsko odzimanje vrijednosti HJ (VR). Zbog nevaskularnih struktura čiji je intenzitet veći od intenziteta kontrastnog sredstva u lumenu krvne žile, MIP rekonstrukcija zahtijeva kompleksan postupak uređivanja brisanjem tih hiperdenznih struktura, stoga je danas VR metoda izvora jer ne zahtijeva tako dugotrajno uređivanje slike.1,14

Kontrastna sredstva koja se koriste u CTA identična su onima u DSA pa ova metoda nosi jednak rizik od alergijskih reakcija i nekroze kože u dolje do supkutane ekstravazacije kontrasta pri intravenskoj aplikaciji. Obično se aplicira 100-120 mL toplog jednog kontrasta u antekubitalnu venu kroz intravensku kanilu veličine 18 ili 20 G. Aplikacija se izvodi pomoću intravenske pumpe brzinom 4-5 mL/s. Kontrast slijedi 40-50 mL fiziološke otopine kako bi se osiguralo da sav učinak na vaskularni sustav. U analizi mezenteričnih krvnih žila primjenjuje se i 500-700 mL vode kao negativnog oralnog kontrasta koji izaziva distenziju crijeva i omogućuje bolju vizualizaciju njihove perfuzije. Pozitivni oralni kontrasti poput barijeve kaše mogu interferirati s rekonstrukcijama poput MIP-a pa ih se stoga izbjegava. Regija interesa pri analizi visceralnih arterija se proteže od nekoliko cm iznad truncus coeliacus do publične simfize. Kako bi odredili vršnu arterijsku opacifikaciju, koristi se metoda praćenja bolusa kontrasta koja se sastoji od slijeda niskodoznih snimaka na razini gornjeg dijela
abdominalne aorte. Kad razina intenziteta u tom dijelu dosegne prag od 150 HJ, pacijentu se kaže da zadrži dah i izvrši se snimanje.1,14

Prednost pretrage je u jednostavnosti, brzini i visokoj standardiziranosti zbog čega se koristi kao screening za arterijske bolesti i kao metoda izbora u akutnim bolestima arterija. Obzirom da omogućuje 3D prikaz s visokom prostornom rezolucijom i simultanu evaluaciju vaskularnog lumena, stijenki i okolnih struktura, CTA je izrazito dobra metoda za prikaz odnosa aneurizmi s okolnim strukturama. Vrlo je točna u procjeni njihove veličine, prisutnosti tromba, proksimalne i distalne ekstenzije, kao i u prikazu rupture, leakinga i perianeurizmalne fibroze. Nužna je u planiranju stentgraftova.1,13,14,15

Osnovni nedostatak je relativno visoka doza zračenja, stoga je CTA kontraindicirana u trudnoći, posebno prvom trimestru. Osim toga, prikaz krvnih žila može biti nejasan u pacijenata koji se pomiču tijekom pretrage ili imaju poremećaj srčane funkcije.13

7.3. MR ANGIOGRAFIJA

MRA je neinvazivna dijagnostička metoda koja se primjenjuje kao metoda odabira pacijenata za angiografiske zahvate. Postoji nekoliko principa prikazivanja krvnih žila MR-om, najstarija tehnika je TOF (time of flight), no ona se sve rjeđe koristi, dok je sve više u upotrebi CE MRA (contrast enhanced MRA). Osim te dvije, postoji i PC MRA (phase contrast MRA). MRA omogućuje izvrsnu kontrastnu rezoluciju mezenteričnih krvnih žila, crijeva i mezenterija. Najčešće se primjenjuje 3D prikaz, a česte su i kombinacije s CTA. Njene velike prednosti su submilimetarska prostorna rezolucija, snimanje u vrlo kratkom razdoblju apneje, pacijenti ne trebaju postiti prije pretrage, prisutnost plina u crijevima ne remeti kvalitetu slike, a sama pretraga omogućuje dobivanje i kvantitativnih funkcionalnih informacija o protoku. Kako bi se smanjili pokreti crijeva i povećao protok u visceralnim krvnim žilama, moguće je primijeniti im. ili iv. glukagon ili skopolamin. I visokokalorični obrok prije same pretrage prolazno povećava protok u krvnim žilama mezenterija i tako poboljšava vizualizaciju njihovih manjih ogranaka.1,13,15

TOF tehnika se temelji na razlici u zasićenju radiofrekventnim signalima između nepomičnih tkiva i krvi koja se gibaju. Vrijeme slanja impulsa u tkivo je kraće od vremena relaksacije vodikovih jezgara u tkivu pa se emitirani signali iz tkiva ne stignu registrirati. S druge strane, kada u sloj tkiva dođe krvi sa stanicama čije jezgre nisu zasićene radiofrekventnim signalima, one nakon eksitacije emitiraju signale koji se registriraju i pretvaraju u sliku. Na taj se način prikazuje protok, kao bijela slika krvne žile na tamnoj podlozi. Snima se po slojevima koji se potom slažu tako da prikazuju kontinuitet krvne žile. Takav način se naziva i 2D tehnikom jer se sloj čiji se signal registrira određuje dvodimenzionalno. Biraju se slojevi koji se potom slažu tako da prikazuju kontinuitet krvne žile. Takvim okomitim slojevima nije moguće prikazati izlažišta truncus coeliacus i a. mesenterica.
superior iz aorte što rezultira artefaktima u početnim dijelovima tih arterija. U istoj TOF sekvenci nemoguće je snimiti izlazišta obiju tih arterija, a pretragu je nemoguće učiniti u pacijentata koji ne mogu zadržati dah. Druga mogućnost registracije signala je pomoću 3D tehnike gdje se kao uzorak iz kojeg se registriraju signali uzima trodimenzionalni volumen krvne žile. 2D tehnika može prikazati vrlo spore prokte, dok 3D tehnika ima bolju rezoluciju. Najbolje rezultate daje, naravno, njihova kombinacija.1,13

U novije se vrijeme razvila tehnika prikaza krvnih žila nakon injiciranja magnetnog kontrastnog sredstva, CE MRA. Koriste se pozitivna ili paramagnetna kontrastna sredstva, kelati gadolinija koja skraćuju T1 vrijeme relaksacije jezgara u odabranom volumenu tkiva. Injiciraju se u venu, a dolaskom u arterije odašilju signal različit od okoline. CE MRA omogućuje bolji prikaz nekih arterija, kraće vrijeme registracije signala i samim tim manje artefakata nastalih zbog micanja pacijenta. Nedostaci tehnike su poteškoće u određivanju vremena dolaska kontrasta u arterije, upotreba skupih magnetnih uređaja i cijena kontrastnog sredstva. CE MRA ne ovisi o efektima protoka nezasićenih spinova poput TOF tehnike. Dobiveni slojevi su debljine manje od 3 mm što omogućuje prikaz manjih ogranaka krvnih žila. Snima se prije, za vrijeme i nakon intravenske aplikacije kontrasta (0,1 mmol/kg u jednoj dozi ili dvostruka doza). Metoda je točna za evaluaciju izlazišta visceralnih arterija iz aorte, no ima premaulu rezoluciju za optimalan prikaz a. mesenterica inferior. Prikaz manjih ogranaka je također ograničen prostornom rezolucijom.1,13,16

PC MRA se zasniva na pojavi da spin postavljen u magnetsko polje dobiva pomak u fazi rotacije proporcionalan jačini magnetskog polja. Spinovi koji se kreću dobivaju pomak ovisno o udaljenosti koju su prešli duž gradijenta jačine magnetskog polja, odnosno ovisno o brzini kretanja. U tkivima koja miruju, obzirom da nema brzine, nema ni signala, odnosno signali su suprimirani. Obzirom na supresiju signala ekstravaskularnih struktura, PC MRA pokazuje sličnost s konvencionalnom DSA, međutim ne zahtijeva upotrebu intravenskog kontrasta, već se kontrast krvnih žila i okolnih struktura temelji na manipulaciji fazom magnetizacije, gdje pomak faze za mirujuća tkiva iznosi nula. Metoda omogućuje 2D ili 3D prikaz, iz raznih projekcija, no zahtijeva relativno dugo vrijeme izvođenja.1,19

MRA daje informacije o vaskularnom sustavu u 3 dimenzije, jednako kao i podatke o brzini i volumenima protoka, ne zahtijeva primjenu jednog kontrasta ni ionizirajućeg zračenja, može se kombinirati s drugim MRI tehnikama za prikaz okolnih struktura i utjecaja vaskularne patologije na njih, signal krvnih žila nije atenuiran kostima ni drugim superponiranim strukturama.17

prikaz vena koji otežava interpretaciju nalaza i činjenica da nastojanja za postizanjem veće prostorne rezolucije rezultiraju i duljim trajanjem pretrage. Postoji opasnost od pomaka feromagnetnih sredstava zbog čega je pretraga kontraindicirana u pacijenata s pacemakerom, stimulatorima medulle spinalis i većinom klipsi aneurizmi. Ortopedske pločice i vijci su sigurni jer nisu izrađeni od feromagnetnih materijala. Naposljetku, MRA u zatvorenom uređaju je nemoguće napraviti pacijentima koji pate od klaustrofobije.12,13,17

7.4. DIGITALNA SUPTRAKCIJSKA ANGIOGRAFIJA

DSA je invazivna metoda koja omogućuje prikaz krvnih žila nakon izravnog injiciranja kontrasta u krvnu žilu koju želimo prikazati. Zahvaljujući digitalnoj tehnologiji i računalima na zaslonu se prikazuje samo kontrast u lumenu krvne žile (lumenogram), dok su okolne strukture izbrisane, odnosno suptrahirane. Injicirani kontrast se može prikazati kao crni na čistoj bijeloj pozadini i obratno. Kao i u svakoj dijagnostičkoj metodi postoji mogućnost artefakata, primarno onih nastalih zbog pokreta, bilo respiracije, srčanih pulzacija ili peristaltike. Međutim, njihov utjecaj je moguće minimizirati snimanjem u apneji i primjenom farmakoloških supstanci poput intravenskih sedativa ili glukagona.18

Takav način prikaza je postao moguće uvođenjem Seldingerove tehnike punecije perifernih arterija, najčešće a. femoralis communis. Tehnika se izvodi po svim pravilima antisepe. Na dezinficiranoj koži se načini incizija u duljini od 2-3 mm. Punkcijom se vršak igle veličine 18-22 Gauge (G) uvodi u lumen arterije, obično na osnovi digitalne palpacije, no moguće je i pod kontrolom ultrazvuka, što dodatno smanjuje mogućnost nastanka komplikacija na mjestu punecije, kao što su stvaranje hematoma, pseudoaneurizme ili AV-fistule. Potom se kroz iglu u lumen krvne žile uvodi savitljiva metalna žica vodilica. Vodilice najčešće sadrže jezgru od nitrinola, nehrđajućeg čelika ili platine, a prekrivene su politetrafluoretilenom (Teflon) ili drugim hidrofilnim ovojima. Ovisno o gradi razlikuju se u otpornosti na savijanje, krutosti i radioopacitetu. Nakon uvođenja žice vodilice, igla se izvodi, a preko vodilice se uvodi kateter potrebne veličine, u dijagnostici je to najčešće 5 French (F). Kateteri su izrađeni od polietilena (PE), politetrafluoretilena (PTFE), poliamida (najlon) ili aramida (Kevlar) uz prisutnost neke radioopacitetne tvari koja im omogućuje bolju vidljivost na fluoroskopiji.

Pod kontrolom dijaskopijske, metoda omogućuje selektivno i supraselektivno prikazivanje krvnih žila. Jednom kad kateter ude u željenu krvnu žilu, aplicira se bolus kontrasta. Najčešće se primjenjuju pozitivna vodotopiva kontrastna sredstva, derivati trijodbenzena. Pozitivna kontrastna sredstva sadrže približno jednak broj atoma po jedinici volumena kao i meke česti, no neki atomi imaju znatno veći atomski broj od atoma u mekim čestima što rezultira i jačom atenuacijom rendgenskih zraka. Apliciraju se u više manjih bolusa, prosječni ukupni volumen kontrasta po pretrazi iznosi 100-150 mL. Ista vrsta kontrasta se primjenjuje i u CT angiografiji, što znači da obje pretrage nose podjednak rizik reakcije na kontrastno sredstvo. Reakcije obično nastaju bez prethodne izloženosti pa ih ne možemo
objasniti klasičnim mehanizmom alergijske reakcije. Smatra se da nastaju zbog interakcija sa staničnim membranama s posljedičnim otpuštanjem vazoaktivnih tvari, sustavom komplementa, kininom, faktorima koagulacije i fibrinolize. U blažem obliku očituju se kao mučnina, povraćanje, urtikarija, bronhospazam, dok se teški oblik prezentira kao anafilaktički šok. Učestalost blagih reakcija je do 10%, a teških 1:900 do 1:3000, dok smrtnost iznosi 1:50 000 do 1:100 000. Faktori rizika za reakciju na kontrastna sredstva su anamnestički podaci o prijašnjim reakcijama, osobna i obiteljska alergijska dijateza, alergijske reakcije u dobi do godinu dana i nakon 60. godine života, kardiovaskularne bolesti, astma, bubrežna insuficijencija i šećerna bolest. Alternativna kontrastna sredstva su kelati gadolinija i ugljični dioksid. Prednost CO₂ je u njegovoj cijeni, tome što nije hepatotoksičan ni nefrotoksičan i ne izaziva alergijske reakcije, no ne primjenjuje se često zbog visoke cijene potrebne opreme.15,16,18,19

Nakon završetka pretrage, koja najčešće traje manje od sat vremena, kateter se uklanja, a na mjesto punkcije se kroz nekoliko sati postavlja kompresivni zavoj. Šivanje stijenke punktirane krvne žile ni kožne incizije nije potrebno jer se zatvaraju spontano zbog elastičnosti tkiva. Obično se preporučuje mirovanje pacijenta najmanje 6 sati nakon punkcije.18,19

Prednost DSA pred neinvazivnim dijagnostičkim metodama su snimanje u stvarnom vremenu, veća vremenska i prostorna rezolucija, primjena bolusa kontrasta u željenu krvnu žilu kojom se izbjegava imbibicija pozadine, simultani sumacijski prikaz velikog volumena, mogućnost istovremene interpretacije nalaza, kao i ponavljanja ili modifikacije pretrage s ciljem boljeg prikaza i bržeg prepoznavanja komplikacija poput disekcije, rupture ili tromboze.

Negativne strane su primjena relativno velikih volumena potencijalno alergogenog kontrasta, prilično visoke doze zračenja, neugoda za pacijenta, veći rizik za komplikacije na mjestu punkcije, ali i subintimalni prodor u stijenku i disekciju, rupturu malih krvnih žila ili aneurizmi i distalnu embolizaciju, neprikazivanje stijenke krvnih žila ni odnosa s ekstravaskularnim strukturama.18

Danas se DSA primjenjuje ukoliko neinvazivnim dijagnostičkim metodama nije bilo moguće postaviti dijagnozu, odnosno ako se smatra da će biti potreban i terapijski zahvat.15,18
8. KIRURŠKO LIJEČENJE ANEURIZMI I PSEUDOANEURIZMI VISCERALNIH ARTERIJA

Međunarodno prihvaćeni kriteriji za liječenje aneurizmi visceralnih arterija su brz rast aneurizme, promjer veći od 2 cm, bol, distalna embolizacija i ishemija. Zbog specifičnosti njihove grabe, sama dijagnoza pseudoaneurizme je indikacija za intervenciju. Kirurško liječenje je i dalje prihvaćeno kao zlatni standard, no endovaskularni pristup postaje sve korištenija opcija.\(^4\)

Prihvaćena kirurška metoda liječenja se sastoji od resekcije aneurizme, sa ili bez rekonstrukcije arterije. Indikacije za intervenciju u elektivnih pacijenata nisu točno definirane.

Obzirom da je rizik rupture aneurizme \(a.\) splenica izrazito povećan, te bi aneurizme trebalo liječiti prije planirane trudnoće. U žena generativne dobi aneurizma promjera 2 cm ili više ili aneurizma čiji je promjer 2 puta veći od promjera proksimalnog dijela žile predstavlja indikaciju za intervenciju. Aneurizme treba liječiti i u starijih žena. Ukoliko pacijent ima značajan komorbiditet, moguće je i samo pratiti aneurizmu promjera do 3 cm. Aneurizme \(a.\) splenica se liječe resekcijom. Ukoliko se radi o aneurizmi proksimalnog dijela arterije, slezena se može poštedjeti, no ako se aneurizma nalazi u distalnom dijelu, potrebna je splenektomija. Uspostava kontinuiteta krvne žile nakon resekcije nije potrebna jer je perfuzija slezene preko \(aa.\) gastricae breves obično dovoljna. Ponekad se kao metoda liječenja može primijeniti i laparoskopska ligacija \(a.\) splenica. Potencijalna postoperativna komplikacija je razvoj apscesa slezene.

Rizik rupture aneurizme \(a.\) hepatica je 20\%, a mortalitet 35\%, što zahtijeva intervenciju. Dok je za intrahepatične arterijske aneurizme bolje endovaskularno liječenje, aneurizme proksimalnog dijela se mogu liječiti jednostavnom resekcijom ili isključivanjem iz cirkulacije jer je kolateralna cirkulacija dovoljno dobro razvijena za opskrbu jetre. Ako se aneurizme nalaze u distalnijem dijelu arterije, potrebna je rekonstrukcija krvne žile s interpozicijom grafa. Kao graft se najčešće koristi autologna vena, no moguća je i primjena alogenih krvnih žila ili proteza.

Ruptura aneurizme \(a.\) mesenterica superior i \(truncus coeliacus\) nužna je ponovna uspostava kontinuiteta krvne žile kako bi izbjegli ishemiju crijeva.

Pacijenti koji se prezentiraju rupturi aneurizme i intraabdominalnim krvarenjem zahtijevaju hitnu nadoknadu volumena i kiruršku intervenciju. Važno je pokušati povisiti krvni tlak kako bi se lakše pronašlo mjesto rupture. Ako ima dovoljno vremena, u svrhu lokalizacije rupture, moguće je prije operacije napraviti arteriografiju.

U slučaju aneurizme \(a.\) splenica, često je potrebna splenektomija kako bi se olakšala vizualizacija krvne žile i omogućila njena ligacija. Ruptura aneurizme \(truncus coeliacus\) se može liječiti ligacijom, i iako je isto moguće napraviti i s rupturiranim aneurizmama \(a.\) hepatica, korisno je pokušati rekonstruirati krvnu žilu grafitom. Ruptura aneurizme \(a. mesenterica superior\) zahtijeva zamjenu grafa. Većina rupturiranih aneurizmi manjih visceralnih arterija se može liječiti ligacijom.
Operativna smrtnost za elektivno liječenje visceralnih aneurizmi je manja od 5%, no znatno raste u slučaju rupture. Ukupna stopa mortaliteta nakon rupture aneurizme a. splenica je 25%, za aneurizme truncus coeliacus i a. mesenterica superior 40-60%, a za aneurizme a. hepatica čak do 70%. 20,21

Angiokirurški zahvat na pseudoaneurizmi se sastoji od pražnjenja hematomu i rekonstrukcije arterije izravnim šavom ili graftom.10
9. ENDOVASKULARNO LIJEČENJE ANEURIZMI VISCERALNIH ARTERIJA

9.1. Uloga interventne radiologije u liječenju aneurizmi i pseudoaneurizmi visceralnih arterija

Interventna radiologija se razvila unutar dijagnostičke radiologije, primarno kao invazivna dijagnostička subspecijalnost. Danas je ona i dijagnostička i terapijska medicinska specijalnost koja obuhvaća invazivne dijagnostičke metode, kao i minimalno invazivne terapijske postupke pod kontrolom slikovnih radioloških metoda. Broj bolesti i stanja koja predstavljaju indikaciju za primjenu postupaka interventne radiologije raste iz dana u dan, a obuhvaća entitete iz područja vaskularnog, gastrointestinalnog, hepatobilijarnog, genitourinarnog, muskuloskeletalnog, respiratornog, a u nekim zemljama i središnjeg živčanog sustava. U nekim zemljama interventna radiologija djeluje kao subspecijalnost dijagnostičke radiologije, dok je u drugima priznata kao zasebna radiološka specijalnost. Osnovne postavke koje je definiraju su stručnost u primjeni dijagnostičkih metoda i zaštiti od zračenja, minimalno invazivnim terapijskim postupcima pod kontrolom slikovnih metoda i evaluaciji pacijenata pogodnih za interventne zahvate, kao i kontinuirani rad na usavršavanju novih uređaja i tehnika.22

Metode interventne radiologije, odnosno endovaskularnog pristupa, postaju sve zastupljenije u liječenju aneurizmi visceralnih ogranaka aorte jer predstavljaju sigurnu i učinkovitu alternativu konvencionalnom kirurškom pristupu s niskim stopama perioperativnog morbiditeta i mortaliteta.21

Endovaskularno liječenje je minimalno invazivno liječenje koje ne zahtijeva uvođenje pacijenata u opću anesteziju, već je dovoljna samo lokalna anestezija u području pristupne arterije. Kao takvo, omogućuje brži oporavak, kraću hospitalizaciju i brži povratak pacijenata aktivnosti svakodnevnog života, uz manju postoperativnu bol. Endovaskularni pristup ima prednost pred otvorenim kirurškim u liječenju pseudoaneurizmi kao i aneurizmi u pacijenata s urođenom slabošću veziva gdje postoji opasnost od dehiscencije angioskuriških šava. Kao metoda izbora primjenjuje se kod aneurizmi peripankreatičnog prostora koje nisu dostupne kirurškoj intervenciji. Pogodna je metoda za hemodinamski nestabilne pacijente, primjerice u slučajevima rupture aneurizme, ali i za sve one s multiplim komorbiditetima koji bi predstavljali apsolutne ili relativne kontraindikacije za otvoreni kirurški pristup. U slučaju konkomitantnog peritonitisa ili pankreatitisa, ovakav pristup nosi manji morbiditet i mortalitet. Stopa komplikacija u pacijenata s abdominalnim operacijama u anamnezi, kod kojih postoji rizik priraslici, je znatno niža.2,23

Osnovni nedostaci endovaskularnog pristupa liječenju aneurizmi visceralnih arterija su izlaganje pacijenata relativno visokim dozama zračenja i korištenje kontrastnog rješetka što ograničava mogućnost primjene u pacijenata s alergijom na jodne kontraste ili bubrežnom insuficijencijom. Moguće je razvoj hemATOMA i/ili pseudoaneurizme na mjestu punkcije. Ponekad nije moguće kateterizirati željenu

2
arteriju. Komplikacije same embolizacije aneurizme mogu biti arterijska tromboza s potencijalnom embolijom i infarktom, odnosno formiranjem apscesa, u distalnim organima, kao i migracija embolizacijskog materijala koja može dovesti do embolizacije susjednih, neželjenih arterijskih ogranaka. Postoji opasnost od nepotpune okluzije aneurizme i nepotpunog isključivanja iz cirkulacije koje nosi rizik razvoja rupture i krvenja. Do rupture može doći i intraoperativno. Smjernice za primjenu antiagregacijske i antitrombotske terapije nakon postavljanja stent grafta ne postoje, pa postoji rizik od njegove stenoze i tromboze. Za sad nije poznato koliki je vijek trajanja embolizacijskog materijala i treba li se i kada očekivati potreba za reintervencijom, zbog čega je osobito važno ponavljanje slicnih dijagnostičkih pretraga u razdoblju praćenja nakon intervencije.2,24

9.2. Materijali i metode u endovaskularnom liječenju

Cilj bilo kojeg oblika liječenja aneurizmi i pseudoaneurizmi visceralnih arterija je prevenirati njihov rast i rupturu isključivanjem iz cirkulacije. Endovaskularne metode koje se primjenjuju u liječenju su embolizacijske metode koje uključuju embolizaciju zavojnicama ili tekućim embolizacijskim sredstvima, postavljanje stent graftova i stentova sa zavojnicama i, u novije vrijeme, postavljanje multilayered, odnosno flow diverting stentova. Izbor tehnike ovisi o anatomiji zahvaćene arterije i iskustvu interventnog radiologa koji izvodi zahvat.3,23

Embolizacijske metode obuhvaćaju aplikaciju embolizacijskih sredstava putem katetera u željenu krvenu žilu s ciljem njene okluzije. Embolizacijski materijali se dijele na mehaničke, česticne i tekuće. U liječenju visceralnih aneurizmi koriste se zavojnice (coils) kao mehanička sredstva i tekući embolizacijski materijali poput Onyxa. Aneurizme pogodne za embolizacijsko liječenje su sakularne aneurizme uskog vrata i aneurizme arterija koje ne predstavljaju jedinu opskrbu nekog od organa trbušne šupljine. Najčešće su u primjeni zavojnice. Standardne zavojnice su veličina 0.034-0.038 inch, napravljene od nehrđajućeg čelika ili platine, no danas su u širokoj primjeni mikrozavojnice od platine veličine 0.018 in. Takve mikrozavojnice su manje trombogene i sklonije migraciji, a zbog manje veličine potreban ih je veći broj te je njihova primjena skuplja. Postoje dvije tehnike embolizacije zavojnicama, sandwich tehnika i coil packing. Sandwich tehnika se primjenjuje kod aneurizama širokog vrata gdje bi u slučaju primjene coil packing tehnike moglo doći do migracije zavojnica, a uključuje embolizaciju eferentne i aferentne arterije čime se sprječava i anterogradni i retrogradni protok kroz aneurizmu putem kolateralne cirkulacije. To je ujedno i metoda izbora za liječenje pseudoaneurizama jer coil packing nosi veći rizik rupture. Nije pogodna u slučaju loše kolateralne cirkulacije jer okluzija arterije može dovesti do ishemije distalnih organa. Coil packing tehnika se primjenjuje za aneurizme uskog vrata gdje je važno očuvati prohodnost glavne arterije. Temelji se na
ispunjavanju aneurizmatske vreće zavojnicama pri čemu je važno osigurati njihovu dovoljnu gustoću kako bi se spriječila rekanalizacija. Moguća je i kombinacija tih dviju tehnika. Tekući embolizacijski materijali su pogodni za liječenje aneurizama širokog vrata i aneurizama koje zahvaćaju arterijske bifurkacije jer smanjuju rizik embolizacije važnih ogranaka. Primjenjuju se kad nije moguće kateterizirati eferentnu arteriju, kada postoje multipli eferentni ogranci ili kada embolizacija zavojnicama nije dovela do isključenja aneurizme iz cirkulacije. Njihova je primjena praćena rizikom embolizacije distalnih neželjenih ogranaka u slučaju prebrzog injiciranja ili prespore polimerizacije. Tehnička uspješnost perkutane transkateterske embolizacije je 67-92%. Kada je važno održati kontinuitet i prohodnost glavne arterije, koriste se stent graftovi ili se postavlja običan stent preko vrata aneurizme, a zatim se kroz njegovu mrežicu mikrokateterom aneurizmatska vreća puni zavojnicama. Stentovi su fleksibilne metalne ili plastične ejevčice koje se postavljaju u lumen krvnih žila, ali i drugih šupljih struktura u tijelu, kako bi ga održali otvorenim u slučaju stenoze. Stent graftovi se razlikuju od stentova time što je metalna ili plastična struktura mrežice presvučena nekim otpornim materijalom, poput Gore-Texa. Na taj način, postavljanjem preko vrata aneurizme, isključuju aneurizmu iz cirkulacije. Primjena stent graftova je ograničena u izrazito zavojitim arterijama malog promjera zbog veličine i rigidnosti sustava koji se koriste za njihovo postavljanje. Dokazano je da stent graftovi u arterijama promjera manjeg od 6 mm izazivaju trombozu. Važna je i dovoljna duljina arterije kako bi uopće bilo moguće postaviti stent graft. Nakon intervencije je potrebna antikoagulacijska terapija kako bi spriječili trombozu stenta i ishemiju i nekrozu distalnih organskih ogranaka. Stent graftovi u arterijama promjera manjeg od 6 mm izazivaju trombozu. Važna je i dovoljna duljina arterije kako bi uopće bilo moguće postaviti stent graft. Nakon intervencije je potrebna antikoagulacijska terapija kako bi spriječili trombozu stenta i ishemiju i nekrozu distalnih organskih ogranaka. Multilayered ili flow diverting stentovi se također primjenjuju kad je važno održati prohodnima i glavnu arteriju i njene ogranke. Radi se zapravo o 2 međusobno isprepletanih kobaltovih stenta koji funkcioniraju kao modulatori protoka i usporavaju turbulentni protok kroz samu aneurizmu posješujući stvaranje organiziranog tromba, a poboljšavaju laminarni protok kroz glavnu arteriju. Istraživanja su pokazala da smanjuju protok kroz sakularne aneurizme i do 90%. Nakon primjene flow diverting stenta također je potrebna antikoagulantna terapija.

9.3. Endovaskularno liječenje aneurizmi pojedinih visceralnih ogranaka abdominalne aorte

9.3.1. Aneurizme a. splenica

Odobir interventnog radiološkog postupka ovisi o tome zahvaća li aneurizma glavno deblo a. splenica ili njene intraparenhimske ogranke. Ako je aneurizma locirana u proksimalnom dijelu arterije i ima...
širok vrat, moguće je postavljanje stent grafta. Distalnije lokalizacije su pogodnije za embolizaciju. Najčešće se koristi sandwich tehnika embolizacijskim zavojnicama veličina od 0.035 do 0.014 in. Distalniji dijelovi arterije i intraparenhimski ograniči se mogu sigurno embolizirati samo proksimalno jer predstavljaju funkcionalno završne ogranke pa nema rizika retrogradnog punjenja aneurizme. Koriste se i tekući embolizacijski materijali, posebice u supraselektivnoj embolizaciji aneurizama intraparenhmskih ogranaka. Coil packing tehniku je moguće koristiti kod aneurizama uskog vrata, no nosi rizik rupture. Moguća je i njena primjena nakon postavljanja stenta za aneurizme širokog vrat. Za aneurizme smještene u hilusu moguća je selektivna embolizacija uz čuvanje susjednih ogranaka, ili isti postupak kao za aneurizme glavnog debla. Tehnička uspješnost embolizacijskih postupaka je do 90%.

Obzirom na bogatu kolateralnu cirkulaciju, okluzija glavnog debla rijetko dovodi do infarkta slezene i posljedične insuficijencije njene imunološke funkcije. Ipak, pacijentima se nakon zahvata preporučuje primjena cjepiva protiv \textit{N. meningitidis, S. pneumoniae} i \textit{H. influenzae}.^{3,23,28}

9.3.2. Aneurizme \textit{a. hepatica}

U aneurizmama \textit{a. hepatica communis} najčešće se primjenjuje sandwich tehnika, no za to je važno znati postoji li dostatna opskrbu jetre preko \textit{a. gastroduodenalis} jer ona može biti znatno narušena u slučajevima prijašnjih abdominalnih kirurških zahvata ili u generaliziranoj aterosklerozi. Aneurizme \textit{a. hepatica propria} se rješavaju kirurški ili postavljanjem stent grafta. Intrahepatične aneurizme se emboliziraju zavojnicama, no prije zahvata je potrebno provjeriti prohodnost v. portae kako bi se izbjegla ishemija jetre. Ako aneurizma zahvaća bifurkaciiju ili početni dio \textit{a. hepatica communis} i \textit{a. gastroduodenalis}, optimalno rješenje je postavljanje flow diverting stentova. Potencijalne komplikacije zahvata su ishemija jetre i žučnjaka, razvoj kolecistitisa, formiranje jetrenih apscesa, progresija postojeće ciroze i konačno hepatalna insuficijencija.3,23,28

9.3.3. Aneurizme \textit{truncus coeliacus}

Liječenje aneurizmi \textit{truncus coeliacus} je relativno zahtjevno zbog kratkoće same arterije i činjenice da aneurizma najčešće zahvaća neki od važnih ogranaka. U odlučivanju o metodi koja će se primijeniti važno je znati postoji li adekvatna kolateralna cirkulacija preko pankreatikoduodenalne arkade iz \textit{a. mesenterica superior}. Stoga se najprije izvodi selektivna angiografija \textit{a. mesenterica superior}, često uz privremenu okluziju \textit{truncus coeliacus} balonom kako bi vizualizacija kolateralna bila što bolja. Jedna od mogućnosti je postavljanje stent grafta u abdominalnu aortu na razini \textit{truncus coeliacus} uz prethodnu embolizaciju njegovih ogranaka kako bi se spriječilo retrogradno punjenje aneurizme. Moguće je i postavljanje stent grafta kroz \textit{truncus coeliacus} u \textit{a. hepatica} uz svjesno žrtvovanje \textit{a.}
spleenica. U novije vrijeme koriste se i flow diverting stentovi. Moguće komplikacije su ishemija žučnjaka, apses apses etre i progresija ciroze i razvoj ulkusa čeluća. Potencijalnu opasnost predstavlja i mogućnost migracije zavojnica i erozija arterijske stijenke s krvarenjem. 3,4,28

9.3.4. Aneurizme a. mesenterica superior

Aneurizme a. mesenterica superior predstavljaju isti problem interventnim radiolozima kao i one truncus coeliacus. Primjenjuju se stent graftovi, flow diverting stentovi kao i embolizacija zavojnicama, ovisno o blizini važnih ogranaka koje se ne smije okludirati. Promjene u proksimalnom dijelu arterije obično zahtijevaju postavljanje stent grafa, dok se distalno od odvajanja ogranaka za arkađe za opskrbu crijeva primjenjuje sandwich tehnika embolizacije zavojnicama uz prethodnu provjeru razvijenosti kolateralne cirkulacije angiografijom uz balonsku okluziju. 3,23,28

9.3.5. Aneurizme a. gastroduodenalis i a. pancreaticoduodenalis

Prije zahvata je najvažnije provjeriti kvalitetu kolateralne cirkulacije putem truncus coeliacus i a. mesenterica superior. Ako je ona zadovoljavajuća, moguće je zrtvovati glavnu arteriju, ali je tada važno i onemogućiti retrogradno punjenje aneurizme pa se primjenjuje sandwich tehnika embolizacije zavojnicama ili embolizacija tekućim materijalima. Čestični materijali se rijetko koriste zbog većeg rizika embolizacije neželjenih ogranaka s posljedičnom ishemijom glave gušterače. Često se primjenjuju hibridne kirurške i endovaskularne metode liječenja. 3,4,28

9.3.6. Aneurizme a. mesenterica inferior

Prije intervencije na a. mesenterica inferior važno je provjeriti jesu li truncus coeliacus i a. mesenterica superior prohodni kako bi spriječili ishemiju kolona nakon embolizacije. 23

9.4. Postoperativno praćenje

Međunarodno prihvaćene smjernice za postoperativno praćenje nakon interventnih zahvata na aneurizmama visceralnih arterija ne postoje. Preporučuju se slikovne pretrage nakon 1 mjesec, zatim nakon 3 i nakon 6 mjeseci. Moguća je primjena UZV, CTA, MRA, DSA ili njihove kombinacije. CE (contrast enhanced) UZV je jeftina, neinvazivna i sigurna metoda, ali uvelike ovisi o iskustvu radiologa, eventualnoj pretilosti pacijenta, prisutnosti zraka u probavnom sustavu, aterosklerotskim
kalcifikacijama stijeni krvnih žila i potrebi superpozicije aneurizme ispunjene zavojnicama nad glavnu arteriju. CTA ne može sa sigurnošću potvrditi potpunu okluziju aneurizme zbog prisutnosti metalnih artefakata stentova i zavojnica pa se rekanalizacija vrata aneurizme i rezidualni protok kroz aneurizmu mogu previdjeti. 3D CE MRA je optimalna metoda za provjeru hemodinamskog statusa, rekanalizacije vrata aneurizme i kompakcije zavojnica unutar nje koje bi dovele do povratka protoka kroz samu aneurizmu, promjene veličine aneurizme i postojanja eventualnih infarkata distalnih organa. Korišteni materijali ne stvaraju artefakte, a pretraga se može izvoditi jer nisu feromagnetni. Obzirom da nema primjene zračenja, pretragu je moguće ponavljati. DSA kao metoda praćenja nije pogodna obzirom da je invazivna, a i radioopacitetne oznake na zavojnicama i stentovima smanjuju kvalitetu dobivene slike.\[23]\[29\]
10. ZAKLJUČAK

Odluku o odabiru terapijskog modaliteta treba donijeti na temelju lokalizacije aneurizme ili pseudoaneurizme, njene dostupnosti, pacijentovog općeg stanja i eventualno postojećih komorbiditeta, kao i iskustva operatera. Dugo vremena se kao zlatni standard u liječenju koristio otvoreni kirurški pristup, no endovaskularne metode ga postupno zamjenjuju. Uspješnost interventnih radioloških postupaka je podjednaka onoj kirurških, a stopa komplikacija izrazito niska. Zbog minimalne invazivnosti postupaka, primjene lokalne, a ne opće, anestezije, postoperativna kvaliteta života pacijenata je znatno manje narušena, a oporavak znatno brži što zahtijeva kraću hospitalizaciju (2-3 dana), a možda će u budućnosti biti moguće i endovaskularno liječenje na principu dnevne bolnice. Samim tim, ukupni troškovi liječenja su manji. Stanja poput aktivnog peritonitisa ili pankreatitisa i abdominalnih operacija u anamnezi koja predstavljaju kontraindikaciju za kirurško liječenje zapravo su indikacija za endovaskularni pristup. Iz svega toga proizlazi da bi endovaskularno liječenje aneurizmi i pseudoaneurizmi visceralnih ogranaka abdominalne aorte trebalo biti metoda izbora za pacijente kod kojih je takav pristup moguć. Kirurške metode ostaju i dalje rezervirane za pacijente s teškom bubrežnom insuficijencijom, teškim alergijskim reakcijama na jedne kontraste ili vaskularnom anatomijom koja onemogućuje endovaskularni pristup.
11. ZAHVALE

Hvala doc. Vinku Vidjaku što je pristao biti mojim mentorom, što je u svom punom rasporedu odvajao vremena za sastanke sa mnom i čitanje svega što bih napisala, što mi je pružio priliku da uđem u svijet interventne radiologije sudjelovanjem na 10. susretu interventnih radiologa Hrvatske i naučim mnogo toga, što je cijenio moj rad i trud i davao mi poticaj da se trudim još više i budem još bolja.

Hvala gđi Sanji Markulin, tajnici doc. Vidjaka, koja je odgovarala na sva moja pitanja i nalazila „rupe“ u docentovu rasporedu za naše sastanke.

Hvala dr. Slavenu Suknaiću koji mi je pomogao s kirurškim poglavljem mog diplomskog rada.

Hvala mojim roditeljima na svojoj ljubavi koju mi pružaju, na podršci u mojim odlukama, razumijevanju mojih briga i strahova i neuobičajenih izvora radosti, dobrom sjajnom savjetima i utjehama kad stvari ne ispadnu onako kako sam zamisli la da bi trebale. Hvala na svim, malim i velikim, žrtvama napravljenima za mene.

Hvala mojoj seki, prijateljici i cimerici koja se nosila sa svim mojim promjenama raspoloženja, radostima i ljutnjama i pristajala biti model za učenje internističkog i neurološkog statusa.

Hvala mojim bakama na svim izgovorenim molitvama i beskrajnoj vjeri u mene.

Hvala Nataliji na prijateljstvu koje traje godinama, na 3 godine zajedničkog života, na iskustvu započinjanja studija u nekom drugom gradu koje smo lakše prebrodile jer smo imale jedna drugu, na svim neprospavanim noćima punim smijeha i suza... Hvala što sam znala i znam da uvijek mogu računati na tebe.

Hvala mojim dragim sestričnama, Suzani i Lidiji, zahvaljujući kojima se nisam osjećala kao Pale sam na svijetu kad sam tek došla u Zagreb.

Hvala Martini, Luciji i Tihani na svim satima zajedničkog učenja, dijeljenju nervoze prije ispita i olakšanja nakon u nekoj slastičarnici. Drago mi je što sam vas upoznala i što smo postale prijateljice.

Hvala Goranu što je tu za mene.
13. POPIS LITERATURE

2. Cordova AC, Sumpio BE. Visceral artery aneurysms and pseudoaneurysms – should they all be managed by endovascular techniques? Ann Vasc Dis 2013; vol.6, no. 4: 687-693.

28 Burdick TR, Hoffer EK i sur. Which arteries are expendable? The practice and pitfalls of embolization throughout the body. Semin Intervent Radiol 2008;25:191-203.