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GABAergic cortical interneurons are important compo-
nents of cortical microcircuits. Their alterations are asso-
ciated with a number of neurological and psychiatric dis-
orders, and are thought to be especially important in the 
pathogenesis of schizophrenia. Here, we reviewed neuro-
anatomical and histological studies that analyzed differ-
ent populations of cortical interneurons in postmortem 
human tissue from patients with schizophrenia and ade-
quately matched controls. The data strongly suggests that 
in schizophrenia only selective interneuron populations 
are affected, with alterations of somatostatin and parvalbu-
min neurons being the most convincing. The most promi-
nent changes are found in the prefrontal cortex, which is 
consistent with the impairment of higher cognitive func-
tions characteristic of schizophrenia. In contrast, calretinin 
neurons, the most numerous interneuron population in 
primates, seem to be largely unaffected. The selective al-
terations of cortical interneurons are in line with the neu-
rodevelopmental model and the multiple-hit hypothesis 
of schizophrenia. Nevertheless, a large number of data on 
interneurons in schizophrenia is still inconclusive, with dif-
ferent studies yielding opposing findings. Furthermore, no 
studies found a clear link between interneuron alterations 
and clinical outcomes. Future research should focus on the 
causes of changes in the cortical microcircuitry in order to 
identify potential therapeutic targets.
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Schizophrenia is a psychiatric disorder that affects up to 1% 
of the population and is characterized by the dysregula-
tion of cognitive, emotional, and behavioral functions (1,2). 
The clinical manifestation of schizophrenia is usually cate-
gorized into three groups of symptoms: positive, negative, 
and cognitive. Positive symptoms are experienced during 
psychotic episodes and include hallucinations, delusions, 
and speech disorders, while negative symptoms include 
apathy, flattened affect, abulia, avolition, and anhedonia. 
Cognitive symptoms typically manifest as deficits in mem-
ory, attention, and reasoning. They are often present in the 
prodromal stage, long before the manifestation of the core 
positive and negative symptoms (2). Among these three 
groups of symptoms, positive symptoms best respond to 
pharmacotherapy, while negative and cognitive symptoms 
are more resistant to treatment and are the main cause of 
decreased quality of life in schizophrenia (3).

Schizophrenia is diagnosed based on the Diagnostic and 
Statistical Manual of Mental Disorders (DSM) (4) or the In-
ternational Classification of Diseases (ICD) (5). The most re-
cent versions of these diagnostic handbooks currently in 
use are the DSM-5 and ICD-10, with the ICD-11 being pro-
posed to replace ICD-10 in the near future (6).

The etiology and pathogenesis of schizophrenia are still 
unclear, though it is generally agreed that the clinical man-
ifestation of schizophrenia necessitates a combination of 
environmental and genetic factors. There are several pre-
vailing hypotheses on the origin of schizophrenia, yet 
none of these completely explain all the observed clinical 
manifestations. Nevertheless, most of them are not mutu-
ally exclusive, which leaves open the possibility of multiple 
hypotheses eventually explaining the mechanisms under-
lying the pathogenesis of schizophrenia (2,7).

The potential role of GABAergic cortical neurons in the 
pathophysiology of schizophrenia is of particular interest 
because schizophrenia is often associated with dysfunc-
tion of cortical microcircuits (8,9). Understanding the alter-
ations of different populations of GABAergic cortical neu-
rons in schizophrenia could provide important insight into 
the clinical presentation and treatment of this disorder.

Here, we give a comprehensive overview of the possible 
roles of GABAergic cortical neurons in schizophrenia. In 
particular, we focused on molecular studies done on hu-
man brain tissue and accentuated the strength and con-
clusiveness of the findings, which was not done in previ-
ous reviews on this topic. We also evaluated the different 

hypotheses on its etiology and pathogenesis in relation to 
the dysfunction of GABAergic neurons.

NEUROANATOMICAL BACKGROUND OF 
SCHIZOPHRENIA

Research on the neuroanatomical background of schizo-
phrenia is vast; however, the exact regions and functional 
circuits affected are still somewhat contentious. The most 
consistent finding in postmortem and in vivo studies is 
a relatively generalized reduction in brain volume, pre-
dominantly attributed to a reduction in gray matter of 
the cerebral cortex (10,11). Nevertheless, the overall thin-
ning of the cerebral cortex does not adequately explain 
the typical clinical manifestations of schizophrenia, and 
evidence points to more subtle subcellular abnormalities 
being the main driving force behind the cognitive dis-
turbances (9,12-16). Furthermore, even though the ex-
tent to which the white matter is affected varies between 
studies, white matter abnormalities in schizophrenia are 
still frequently reported. Most studies point to disrupted 
white matter integrity and demyelination. Nevertheless, 
the exact impact of white matter lesions on the patho-
genesis and overall clinical presentation of schizophrenia 
is still being studied (17-21). Overall, the gross anatomical 
changes in schizophrenia are largely non-specific and are 
likely merely a consequence of underlying microcircuitry 
alterations.

Despite the lack of specificity regarding gross morphologi-
cal changes in schizophrenia, majority of studies suggest 
that the most affected regions of the brain are the prefron-
tal cortex (PFC), temporal lobe, and basal nuclei.

The most intriguing of these is the PFC. The PFC is gener-
ally divided into two distinct functional parts – the lateral 
PFC (LPFC) and the ventromedial (vmPFC) or orbitomedial 
PFC (omPFC). The term vmPFC is sometimes used partially 
or completely synonymously with the term orbitofrontal 
cortex (OFC). The LPFC is further divided into the dorsolat-
eral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex. 
The LPFC is crucial for the integration of higher cognitive 
functions (executive functions), such as decision making 
and working memory, while the vmPFC is involved in the 
control of emotions and motivation (22). The PFC receives 
rich dopaminergic innervation via the mesocortical path-
way, which originates in the ventral tegmental area (VTA) 
of the mesencephalon (Figure 1) (23). The overall effect 
of dopamine on prefrontal cortical neurons is predom-
inantly inhibitory. However, it modulates the activ-
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ity of cortical neurons in the PFC through at least three 
major modes of action (9). The first is via direct innervation 
of pyramidal neurons, which enables dopaminergic reg-
ulation of cortico-thalamic, cortico-striatal, and cortico-
cortical projections from the PFC. The second is via non-
synaptic dopamine neurotransmission, while the third 
is via the innervation of local circuit non-pyramidal neu-
rons (GABAergic interneurons). This last and particularly 
significant mode of action enables indirect regulation of 
PFC projection pathways via feed-forward inhibition. Al-
terations in the dopaminergic innervation of the PFC via 
the mesocortical pathway are thought to be important in 
the pathophysiology of schizophrenia. The changes in the 
LPFC have been connected to cognitive (DLPFC) and neg-
ative (VLPFC) symptoms in schizophrenia (24). Interesting-
ly, dysconnectivity between the cerebellum and the DLP-
FC has been associated with negative symptom severity 
(25). Furthermore, the thinning of the left medial OFC was 
associated with the severity of negative symptoms (26), 
while vmPFC dysfunction was more strongly associated 
with positive symptoms (24). In addition, the hypoactiv-
ity of the anterior cingulate cortex (ACC), which is often 
considered a functional extension of the vmPFC, was as-
sociated with the presence of negative symptoms (27-29). 
Alterations to von Economo neurons, a highly specialized 
class of projection neurons located in the ACC, have also 
been described (30-32).

Besides the mesocortical pathway, the mesolimbic path-
way is as well affected in schizophrenia. This pathway also 
originates in the VTA; however, its synaptic targets are lo-
cated in the ventral striatum (part of the basal nuclei), 
which includes the nucleus accumbens and olfactory tu-
bercle (Figure 1). In contrast to the mesocortical pathway, 
which is involved in the regulation of executive functions, 
the mesolimbic pathway is involved in aversion-related 
and reward-related cognition (positive reinforcement, 
pleasure response to stimuli, and incentive salience) (23). 
The ventral striatum has been associated with both posi-
tive and negative symptoms in schizophrenia (24).

The medial portion of the temporal lobe contains the hip-
pocampus, which is usually significantly reduced in size in 
schizophrenia. The hippocampus and its adjacent struc-
tures are involved in short-term memory consolidation, 
and their dysfunction in schizophrenia can explain poor 
memory retrieval and some of the positive symptoms. 
Another important part of the temporal lobe affected in 
schizophrenia is the superior temporal gyrus, which is in-
volved in language comprehension, auditory processing, 
and self-monitoring. Its cortico-cortical projections form 
part of the temporal-frontal-parietal network involved in 
language production and interpretation. Cortical thinning 
in the superior temporal gyrus is associated with the sever-
ity of positive symptoms, particularly thought disturbanc-

Figure 1. Dopaminergic pathways altered in schizophrenia – mesocortical pathway (blue) and mesolimbic pathway (light green). 
The origin of both pathways – the ventral tegmental area is shown as a red circle, while the light green circle represents the nucleus 
accumbens (NA), which is part of the ventral striatum. The dark green arrow represents projections from the NA.
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es and auditory hallucinations (33). However, some studies 
showed a less convincing association between the supe-
rior temporal gyrus and positive symptoms (24).

In general, reduced blood flow in the PFC and striatum 
observed on functional MRI is particularly common in pa-
tients with prominent negative and cognitive symptoms. 
Such patients typically experience a prolonged prodromal 
period, characterized by inadequate social functioning, be-
fore the onset of positive (psychotic) symptoms (23).

Overall, numerous studies investigated the neuroanatomi-
cal abnormalities in schizophrenia and their relation to the 
specific symptoms (24,25,27-29,33). An overview of these 
findings is shown in Table 1. Most of the available data re-
fer to neuroimaging correlation studies, which typically do 
not determine whether the relationships are causal to the 
disorder, or whether they are compensatory processes or 
secondary phenomena.

Etiology and pathogenesis of schizophrenia

The hypotheses explaining the etiology and pathogenesis 
of schizophrenia can be grouped into two categories – the 
hypotheses involving altered levels of different neurotrans-
mitters (dopamine, GABA, and glutamate dysfunction) and 
the hypotheses involving reduced cortical synaptic con-
nectivity.

Among the hypotheses related to neurotransmitter dys-
function, the most prevalent is the dopamine hypothesis. 
This hypothesis suggests that the main cause of psychotic 
symptoms in schizophrenia is excessive dopamine D2 re-
ceptor activation. It is supported by the significant efficacy 

of D2-like-receptor antagonists in the treatment of psy-
chotic symptoms. This hypothesis also has a strong neu-
roanatomical basis, since the PFC, cingulate cortex, and 
medial temporal cortex, which are all extensively affected 
in schizophrenia, receive particularly strong dopaminergic 
innervation (2).

The next most prominent hypothesis is the one involving 
glutamate dysfunction. This hypothesis explains the etiolo-
gy of both positive and negative symptoms of schizophrenia 
through the dysfunction of N-methyl-D-aspartate (NMDA) 
glutamate receptors. It is supported by ketamine (an NMDA 
receptor blocker) causing schizophrenia-like symptoms in 
pharmacological models of schizophrenia. Most models 
suggest a hypofunction of NMDA receptors, which could 
explain some of the negative and cognitive symptoms. In-
terestingly, the expression of the NR2D subtype of NMDA 
receptors in schizophrenia is increased. NR2D receptors in 
schizophrenia are characterized by hyperexcitability, prob-
ably as a compensatory response to reduced cortical activ-
ity. This particularly affects the stimulatory input of cortical 
GABAergic interneurons, thus impacting feedback inhibi-
tion in cortical circuits. Such a dysfunction of NMDA recep-
tors is particularly prevalent in the PFC (2).

The GABA hypothesis suggests that schizophrenia occurs 
due to alterations in the GABAergic cortical networks. Pos-
sible mechanisms include altered GABA synthesis and re-
uptake. Once again, such dysfunctions are most promi-
nent in the PFC. Newer models attempted to integrate 
the GABA hypothesis with NMDA hypofunction (2). These 
models explain the altered cortical activity in schizophre-
nia by a disbalance between GABAergic and glutamater-
gic activity. Such a disbalance could cause instability 

Table 1. Overview of the affected anatomical regions in schizophrenia and their relation to the clinical presentation of the disorder. 
The level of association with certain groups of symptoms is shown in parentheses (data extrapolated from 24,25, 27-29,33)

Anatomical region affected in schizophrenia Connection to clinical presentation of schizophrenia

Dorsolateral prefrontal cortex cognitive symptoms (moderate association)
Ventrolateral prefrontal cortex negative symptoms (moderate association)
Ventromedial prefrontal cortex positive symptoms (moderate association)

negative symptoms (inconclusive)*
Ventral striatum (nucleus accumbens) negative symptoms (moderate association)

positive symptoms (weak association)
Hippocampus positive symptoms (weak association)
Amygdala positive symptoms (weak association)
Anterior cingulate cortex negative symptoms (inconclusive)†
Superior temporal gyrus positive symptoms (inconclusive)*
Cerebellum negative symptoms (inconclusive)†
*only some studies showed clear association, while others did not show clear association.
†the number of studies demonstrating a clear association was small.
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within cortical microcircuits and lead to impaired cortical 
functioning, consistent with the negative and cognitive 
symptoms (2).

According to the disconnection hypothesis, rather than 
by a disbalance of particular neurotransmitters, the patho-
genesis of schizophrenia can be explained primarily by 
reduced or dysfunctional synaptic connectivity between 
different cortical areas. These changes in synaptic con-
nectivity could disproportionately affect the mesocortical 
pathway involving the PFC. Synaptic dysfunction impacts 
both local circuit neurons (typically GABAergic interneu-
rons) and projections neurons (typically glutamatergic 
pyramidal neurons), with changes in microcircuits as well 
as in cortico-cortical and cortico-subcortical networks 
(34,35). Cortical connectivity could be greatly affected by 
structural or functional alterations to specific neuron class-
es. The disconnection hypothesis is also particularly inter-
esting because it is in line with the neurodevelopmental 
model and the two-hit hypothesis on the pathogenesis of 
schizophrenia (2).

The neurodevelopmental model of schizophrenia pro-
poses that the first pathological events in the brain occur 
long before the onset of the symptoms (7,36-39). Numer-
ous studies demonstrated a correlation between perina-
tal events (eg, infection in pregnancy, placental insuffi-
ciency) and the occurrence of schizophrenia later in life. In 
this model, at least two hits (noxae) are necessary for the 

clinical manifestation of schizophrenia. The first hit occurs 
during the early development of the brain, either due to 
genetic or prenatal environmental factors. The second hit 
occurs during postnatal brain development. The examples 
of such adverse events include infectious agents, social fac-
tors (eg, social defeat – related to the negative experience 
of being excluded from a majority group; and social cog-
nition – people’s perception of themselves and other indi-
viduals), and substance abuse (36). In the two-hit model, 
the clinical presentation of schizophrenia becomes appar-
ent only after the second hit occurs. Certain hits may occur 
only during certain neurodevelopmental windows. These 
hits can affect the migration and maturation of neurons 
in critical regions of the brain, and their effects become 
apparent when the development of associated functions 
is most pronounced (Figure 2). The neurodevelopmental 
model does not exclude the possibility of more than two 
hits occurring – this is usually referred to as the multiple-
hit hypothesis (36).

Cortical interneurons in schizophrenia

Initially, research on neuropathology in schizophrenia 
mainly focused on cortical pyramidal neurons. The chang-
es to pyramidal neurons were subtle, and included re-
duced arborization and synaptic connectivity. There was 
also a reduced number of specific membrane receptors, 
with GABA receptors being among the most affected. The 
latter alterations suggested that the pathological chang-

Figure 2. The multiple-hit neurodevelopmental model of schizophrenia. The x-axis represents the different prenatal and postnatal 
life periods during which certain hits (shown below the axis) can affect normal developmental processes (shown above the axis).
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es in pyramidal neurons might be related to the dysfunc-
tion of GABAergic cortical neurons (cortical interneurons). 
Therefore, research interest has recently shifted to cortical 
interneurons, which regulate pyramidal neuron activity in 
cortical microcircuits.

There are numerous studies on cortical interneurons and 
their alterations in schizophrenia, in both animals and hu-
mans. We reviewed the data from neuroanatomical and 
histological studies that analyzed different populations of 
cortical interneurons in postmortem human tissue from 
patients with schizophrenia and adequately matched con-
trols. We focused on the studies using the following meth-
odologies: immunohistochemistry, RNA in situ hybridiza-
tion, and real-time polymerase chain reaction. Research 
revealed that even the alterations of cortical interneurons 
were relatively subtle and affected only certain interneu-
ron populations. However, there is a large number of con-
tradicting studies, and certain changes in cortical micro-
circuitry are less supported than others. Many of these 
discrepancies could be attributed to differences in meth-
odology, the use of animal models, prolonged use of phar-
macotherapy, as well as differences in the postmortem de-
lay of the analyzed brain. Furthermore, the predominance 
of different types of symptoms in schizophrenia may be 
related to alterations in different interneuron populations.

The three most consistent findings among all of these stud-
ies are a general decrease in GAD1 (glutamate decarboxy-
lase; GAD67) mRNA expression, a decrease in SST (soma-
tostatin) mRNA expression, and a decrease in parvalbumin 
(PV) expression and/or PV+ neuron density (Table 2 and Fig-
ure 3).

Glutamate decarboxylase

Many studies found consistent alterations in GAD1 mRNA 
expression in schizophrenia. GAD1 encodes for the GAD67 
protein, which is located primarily in the neuronal cell 
body and synthesizes GABA for numerous metabolic pur-
poses, including neuroprotection and oxidative stress reg-
ulation (40,41). Many studies, using various techniques on 
both animal models and postmortem human tissue, con-
sistently found significantly decreased GAD1 mRNA expres-
sion in the PFC in schizophrenia (42-58). A similar decrease 
in GAD1 expression was also found in other cortical areas, 
such as the visual cortex, hippocampus, ACC, motor cortex, 
and cerebellum (45,59-62). Some studies suggested that 
the overall reduction in GAD1 mRNA expression in schizo-
phrenia might be predominantly due to a selective reduc-
tion in a certain subset of cortical interneurons, rather than 
due to a generalized reduction affecting all interneuron 
populations (8).

Table 2. Changes in specific GABAergic interneuron populations in schizophrenia

Interneuron population Alteration in schizophrenia (method used) Brain region analyzed Relevant studies

Somatostatin decreased expression of SST mRNA (ISH)
reduced number of SOM+ neurons (IHC)

DLPFC
subiculum
entorhinal cortex
hippocampus

Nakatani et al 2006, Hashimoto et al 
2008a, Morris et al 2008, Konradi et al 
2011, Wang et al 2011

Parvalbumin decreased expression of PV protein (IHC)
and/or
reduced number of PV+ neurons (IHC)

DLPFC
subiculum
entorhinal cortex
inferior colliculus
hippocampus

Beasley and Reynolds 1997, Konradi 
et al 2011, Wang et al 2011, Chung et 
al 2016, Kilonzo et al 2020, Kalus et al 
1997, Shepard et al 2019,
Woo et al 1997

Calbindin inconclusive (IHC, ISH, RT-PCR) DLPFC
temporal cortex
striatum
subiculum
entorhinal cortex

Daviss and Lewis 1995, Benes et al 
1998, Holt et al 1999, Iritani et al 1999, 
Takahashi et al 2000, Chance et al 
2005, Fung et al 2010, Wang et al 2011

Calretinin inconclusive (IHC, RT-PCR) DLPFC
striatum

Daviss and Lewis 1995, Woo et al 1997, 
Hashimoto et al 2003, Adorjan et al 
2020

Cholecystokinin decreased expression of CCK mRNA (ISH, RT-PCR) DLPFC Hashimoto et al 2008a, Fung et al 2010
Neuropeptide Y inconclusive (IHC, RT-PCR) DLPFC Ikeda et al 2004, Hashimoto et al 

2008a, Fung et al 2010
Nitric oxide synthase reduced number of NOS+ neurons (IHC) striatum Fritzen et al 2007
Reelin decreased expression of RELN mRNA (RT-PCR) DLPFC Guidotti et al 2000
*Abbreviations: SST – somatostatin mRNA; SOM – somatostatin protein; CCK – cholecystokinin; NOS – nitric oxide synthase; RELN – reelin mRNA; ISH – in 
situ hybridization; IHC – immunohistochemistry; RT-PCR – reverse transcription polymerase chain reaction; DLPFC – dorsolateral prefrontal cortex.



REVIEW116 Croat Med J. 2023;64:110-22

www.cmj.hr

Interestingly, GAD2 mRNA expression in schizophrenia ap-
pears to be largely unaltered or only slightly decreased 
(42,45,58). GAD2 encodes for the GAD65 protein, which is 
located in the axon terminals and is primarily involved in 
GABA synthesis for neurotransmission (40,41).

Since both the GAD1 and GAD2 genes are important for the 
production of GABA, this raises the question why only GAD1 
expression is altered. One explanation might be that GAD2 is 
less expressed in healthy brain tissue compared with GAD1. 
This means that it could be more difficult to detect subtler 
changes in GAD2 expression. Another explanation is the fact 
that GAD67 (the product of GAD1) is predominantly located 
in the soma and involved in metabolic production of GABA, 
while GAD65 (the product of GAD2) is located in the axon 
terminal and is involved in GABA synthesis for neurotrans-
mission. This might suggest that in schizophrenia the neu-
roprotective role of GABA is more affected than GABA trans-
mission. This is also in line with the selective loss of certain 
interneuron populations, such as SOM+ and PV+ cells, which 
seems to occur in this disorder.

Besides the described alterations to GABAergic markers, 
the expression of certain subtypes of GABA receptors, lo-

cated predominantly on pyramidal neurons, also appears 
to be altered in schizophrenia (Figure 3) (8).

Somatostatin and calbindin

Besides GAD1 expression, there is additional convincing 
evidence for the alterations of SST mRNA expression in 
schizophrenia. Multiple studies demonstrate a significant 
decrease in SST expression in the PFC and hippocampus in 
schizophrenia (42,63-66). There is also evidence of a reduced 
number or density of somatostatin (SOM+) cells (63,66).

Unlike that on SOM, research on calbindin (CB) in schizo-
phrenia yielded inconclusive results, with different authors 
finding increased, decreased, or unchanged levels of CB 
protein or mRNA (66-73). Several st<<udies demonstrated 
a reduction in SST expression, but did not demonstrate a 
reduction in CB expression (66,73,74).

This discrepancy between SOM and CB alteration in schizo-
phrenia is particularly interesting. In the human PFC, SOM 
and CB are expressed in highly overlapping interneuron 
populations – up to 70% of CB+ interneurons co-express 
SOM and up to 50% of SOM+ interneurons co-express CB 

Figure 3. The alterations of cortical interneurons in schizophrenia. The synaptic targets of different interneuron types are shown on the 
pyramidal neuron in the center. Somatostatin-positive Martinotti cells (SOM) target the pyramidal neurons’ apical dendrites, parvalbu-
min-positive basket cells (PVb) target the somata, while the parvalbumin-positive chandelier cells (PVc) target the axon initial segments. 
Alterations (or lack thereof) of other common GABAergic markers are shown in the framed box on the right: cholecystokinin (CCK), 
reelin, choline acetyltransferase (ChAT), nitric oxide synthase (NOS), calretinin (CR), neuropeptide Y (NPY), and calbindin (CB).
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(75). Therefore, the discrepancies in the expression of SOM 
and CB in schizophrenia point to a very selective change in 
the non-overlapping SOM and CB interneuron subpopula-
tions. This could be especially notable because SOM and 
CB are predominantly co-expressed by interneurons in the 
supragranular cortical layers (layers II and III). The non-over-
lapping subpopulations are located predominantly in the 
infragranular layers (layers V and VI) and may have different 
synaptic targets with involvement in different cortical mi-
crocircuits (75). Nevertheless, it is also possible that SOM as 
a neuromodulator is differently affected in schizophrenia 
than CB as a calcium-binding protein.

Parvalbumin

Even though PV+ neurons have probably been the most 
studied interneuron population in schizophrenia, there is 
still no consensus on how exactly PV+ cells are altered in 
this disorder.

Most research suggests a decrease in PV protein or PVALB 
mRNA levels (47,63,66,76-78). However, some animal mod-
els and some human studies found the levels of PV pro-
tein to be elevated (79,80). A smaller number of studies 
revealed no significant alterations in PV+ cell density (47). 
Some studies claimed that lower PV levels in schizophre-
nia reflected only a decrease in PV expression in a subset of 
PV+ neurons and not an actual deficit in PV+ neuron num-
bers (76,81-84). Though these opposing claims could be 
explained by methodological and regional differences be-
tween studies, it is difficult to determine whether this is 
truly the case. Possibly, different cohorts exhibited different 
changes to the PV+ interneuron population, some result-
ing in cell loss and others resulting in decreased PV expres-
sion. The overall findings could also be influenced by the 
severity and type of symptoms, as well as the pharmaco-
therapy the patients were exposed to during the course 
of their lives.

Some studies demonstrated that a reduction in PV+ neu-
rons also confirmed a reduction in Wisteria floribunda ag-
glutinin (WFA+) perineuronal nets (PNNs) in schizophrenia 
(83), which are predominantly related to a certain subpop-
ulation of PV+ neurons (85). Such findings suggested that 
PV+ neuron loss in schizophrenia could be rather selective, 
targeting only specific neuronal subpopulations (86). How-
ever, in the amygdala and the entorhinal cortex, a reduc-
tion in the number of PNNs was not accompanied by a re-
duction in PV+ cell density (83). WFA+ PNNs are also found 
around certain pyramidal neurons – this means that reduc-

tions in the number of WFA+ PNNs and PV+ cells are not 
necessarily always related to each other.

Calretinin

Unlike the alternations in SOM+ and PV+ interneuron pop-
ulations, most research found no significant alterations in 
the CR+ cortical interneuron population in schizophrenia 
(47,69,81,87). However, some studies found a reduction in 
CR+ neurons in subcortical structures, such as the striatum 
(88). Together, CR, PV, and SOM likely mark the vast majori-
ty of GABAergic cortical neurons, at least in the human PFC 
(89). Out of these three large non-overlapping populations, 
CR+ neurons are the most numerous in the primate brain 
(90). It is, therefore, intriguing that this is the only interneu-
ron population that is largely unaffected in schizophrenia. 
Furthermore, CR+ neurons are relatively unaltered in most 
other neuropsychiatric or neurodegenerative disorders, 
such as Alzheimer’s disease and depression (91). CR is a 
calcium-binding protein that protects neurons from cal-
cium cytotoxicity, and this neuroprotective role might pro-
vide CR+ neurons with a unique resistance to various noxae 
(92). Nevertheless, this would still not explain why other 
neuron populations expressing different types of calcium-
binding protein, particularly PV, are significantly affected in 
schizophrenia and other disorders. Another explanation is 
that CR+ neurons, as a vital component of cortical micro-
circuits in the human brain, are significantly altered only in 
rare and/or extremely severe disorders.

Other interneuron markers

Significant findings regarding other interneuron markers 
include reduced expression of CCK mRNA (cholecystoki-
nin) (42,73), decreased expression of RELN mRNA (reelin) 
(45), and a reduced number of nitric oxide synthase (NOS+) 
neurons (93). Studies on neuropeptide Y were less conclu-
sive and demonstrated no changes or a very subtle de-
crease in its expression or cell number (42,73,94).

DIFFERENT DEVELOPMENTAL ORIGINS OF INTERNEURON 
POPULATIONS AFFECTED IN SCHIZOPHRENIA COULD BE 
IN LINE WITH THE NEURODEVELOPMENTAL MODEL OF 
SCHIZOPHRENIA

The differences in alterations between different interneu-
ron populations could also be explained by the distinct 
developmental origin of CR+ neurons compared with 
SOM+ and PV+ neurons (95). Whereas CR+ neurons 
originate from the caudal ganglionic eminence and 
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the dorsal proliferative zones (in primates), SOM+ and PV+ 
neurons originate from the medial ganglionic eminence 
(MGE) and preoptic area (POA) (89). If interneuron altera-
tions in schizophrenia are caused by an early hit during in-
terneuron development, this could mean that pathologi-
cal changes primarily occur in the MGE and POA. However, 
interneuron alterations could also be caused by a later hit 
occurring during adolescence, when most interneuron 
maturation occurs. If this is the case, PV+ and SOM+ neu-
rons might simply be more vulnerable to the pathological 
changes occurring in schizophrenia or to the specific hits 
typically occurring in this life period (eg, cannabis abuse). 
Therefore, both an early and a late hit possibility could be in 
line with the neurodevelopmental model of schizophrenia 
and the multiple-hit hypothesis. Moreover, multiple hits to 
specific interneuron populations at different life stages are 
not mutually exclusive.

Conclusions

In conclusion, specific populations of GABAergic corti-
cal interneurons are selectively affected in schizophre-
nia. Changes in the somatostatin interneuron popula-
tion are the most substantiated in the literature, followed 
by alteration of parvalbumin neurons. Calretinin neurons 
seem to be largely unaltered, at least in the cerebral cor-
tex. The changes in selective interneuron populations are 
most pronounced in specific cortical regions, particularly 
the PFC, where they likely have highly specific effects on 
the cortical microcircuitry. Nevertheless, the question re-
mains whether the described changes in schizophrenia are 
part of the underlying pathophysiological mechanism that 
contributes to the clinical manifestation of the disorder, 
or whether they are a consequence of other underlying 
mechanisms. Future research should focus on determining 
the exact causes of these changes in the cortical micro-
circuitry in order to identify potential therapeutic targets. 
Such research could be especially beneficial if we want to 
better understand the pathophysiology and treatment of 
negative and cognitive symptoms.
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