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Abstract: The role of metals in the pathogenesis of Alzheimer’s disease (AD) is still debated. Although
previous research has linked changes in essential metal homeostasis and exposure to environmental
heavy metals to the pathogenesis of AD, more research is needed to determine the relationship
between metals and AD. In this review, we included human studies that (1) compared the metal
concentrations between AD patients and healthy controls, (2) correlated concentrations of AD cere-
brospinal fluid (CSF) biomarkers with metal concentrations, and (3) used Mendelian randomization
(MR) to assess the potential metal contributions to AD risk. Although many studies have examined
various metals in dementia patients, understanding the dynamics of metals in these patients remains
difficult due to considerable inconsistencies among the results of individual studies. The most consis-
tent findings were for Zn and Cu, with most studies observing a decrease in Zn levels and an increase
in Cu levels in AD patients. However, several studies found no such relation. Because few studies
have compared metal levels with biomarker levels in the CSF of AD patients, more research of this
type is required. Given that MR is revolutionizing epidemiologic research, additional MR studies
that include participants from diverse ethnic backgrounds to assess the causal relationship between
metals and AD risk are critical.

Keywords: Alzheimer’s disease; essential metals; heavy metals; biomarker; Mendelian randomization

1. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common cause of dementia worldwide (60–70%
of cases), affecting over 55 million people. It is predicted that 74.7 million people will have
dementia by 2030 and approximately 131.5 million by 2050. By 2030, the cost of treating
and caring for dementia patients will rise to USD 2 trillion (http://www.worldalzreport2
015.org/ accessed on 22 February 2023).

The accumulation of two proteins, amyloid beta (Aβ) and tau, in amyloid plaques and
neurofibrillary tangles (NFTs), respectively, is thought to contribute to the development
and progression of AD. Although the precise relationship between these two pathologies is
unknown, there is evidence that they may interact in a bidirectional manner to promote
each other’s aggregation and toxicity [1]. Overall, the relationship between Aβ and tau
in AD is complex, with multiple feedback loops and interactions with other pathological
processes [2].

Aβ is a small peptide derived from the amyloid precursor protein (APP). APP is a
transmembrane protein with an unknown function in the brain, but it is thought to be
involved in cell adhesion, signaling, and synapse formation [3]. Different enzymes can
cleave APP, resulting in the production of a number of peptides of variable lengths. β-
Secretase cleaves APP at the N-terminus of the Aβ domain in the amyloidogenic pathway,
followed by γ-secretase cleavage within the transmembrane domain, resulting in the
production of Aβ peptides with varying lengths [4]. Excessive Aβ formation, aggregation,
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and deposition in the brain are thought to result in the formation of amyloid plaques [5].
Aβ forms insoluble oligomers and even larger insoluble fibers when it aggregates. The
longer form of the peptide (Aβ1–42) promotes abnormal Aβ peptide aggregation more
strongly than the shorter form (Aβ1–40) [6]. The amyloid build-up is thought to activate
microglia and cause an inflammatory response [7]. Aβ can also accumulate in the walls
of meningeal and cerebral arteries, arterioles, capillaries, and veins, causing a condition
known as cerebral amyloid angiopathy (CAA) [8–11].

Tau, on the other hand, is a microtubule-associated protein found primarily in the
axons of healthy neurons. In this context, tau is a critical regulator of microtubule dynamics,
modulating their assembly, elongation, and maturation. Tau helps stabilize microtubules
and keep them aligned, which is necessary for neuronal function and transport of essential
molecules and organelles [12]. Tau regulates the length, stability, and thickness of axonal
microtubules by cross-linking of α and β tubulin monomers [13].

The underlying mechanisms that precede the formation of amyloid plaques and NFTs
in the brains of AD patients as well as the relationships between these pathological lesions
are not well understood [14,15]. The toxicity of Aβ deposits and mechanical damage
to axons that impair axoplasmic transport, resulting in axonal sprouting to bridge the
damaged portion of the axon, are two of the proposed mechanisms [16,17]. Axon sprouts
and their microtubules should become less stable for the sprouts to form synapses, which
becomes possible once tau proteins detach from the microtubules. Tau undergoes numer-
ous post-translational modifications in AD including phosphorylation, acetylation, and
O-glycosylation [18]. The phosphorylation of tau causes it to undergo a change in conforma-
tion and separate from microtubules [19]. When hyperphosphorylated, tau detaches from
microtubules, the axons also disintegrate, resulting in neuronal death [20]. It is possible,
however, that tau cleavage or folding occurs first, followed by phosphorylation and de-
tachment from the microtubules [21]. In addition to amyloid and tau-related mechanisms,
oxidative stress, neuroinflammation, mitochondria, lysosomes, neurovascular, and cell
cycle dysfunction all play important roles in the pathological process of AD [22–25].

Previous studies have revealed that the homeostasis of essential metals is altered
in AD [26–28], where iron (Fe), zinc (Zn), and copper (Cu) are the essential metals most
commonly associated with AD pathological changes. Heavy metal concentrations have
also been found to rise in AD brains [29].

This review summarizes research on the role of essential and heavy metals in AD.
We included human studies that (1) compared the metal concentrations in AD patients
and healthy controls, (2) compared the metal concentrations with concentrations of cere-
brospinal fluid (CSF) biomarkers in AD subjects, and (3) used a Mendelian randomization
methodology (MR) to assess the involvement of essential metals in AD. Two indepen-
dent researchers searched Medline using the following keywords: “Alzheimer’s disease”,
“aluminum”, “arsenic”, “barium”, “cobalt”, “copper”, “cadmium”, “calcium”, “iron”,
“lithium”, “lead”, “mercury“, “magnesium”, “molybdenum”, “manganese”, “nickel”,
“potassium”, “selenium”, “sodium”, “strontium”, “thallium”, and “zinc”. The literature
search was completed on 23 February 2023.

2. Molecular Mechanisms through Which Metals Contribute to Alzheimer’s
Disease Pathology

Increased metal concentration in the brain may contribute to various AD-associated
pathological processes including Aβ-aggregation [30,31], hyperphosphorylation of tau
protein [32,33], neuroinflammation [34], oxidative stress [35], blood–brain barrier (BBB)
impairment [36], apoptosis and necrosis of neurons [37,38], and autophagy [39] (Figure 1).
Experimental evidence indicates that both essential metals and heavy metals increase
the aggregation of Aβ [30,40,41] and the hyperphosphorylation and aggregation of tau
protein [33,42–44]. Furthermore, the exposure of young rats to a mixture of heavy metals
induced neuroinflammation dependent on oxidative stress [45]. In addition, some essential
metals such as Fe [46], Cu [47], Zn, and calcium (Ca) [39] can induce oxidative stress. Fe



Biomedicines 2023, 11, 1161 3 of 29

participates in Fenton reactions and can therefore contribute to the formation of reactive
oxygen species [46]. Both the observed disruption of the BBB [48,49] and the apoptosis and
necrosis of neurons [37,38] upon exposure to heavy metals may be preceded by oxidative
stress, according to experimental evidence. Neurons are extremely sensitive to oxidative
stress. Wang et al. [39] proposed that metal ion imbalance could induce oxidative stress,
with the following downstream effects: (1) imbalance of protein kinases and phosphatases,
increasing tau protein phosphorylation, and (2) imbalance of secretases, resulting in an
increase in Aβ production (reviewed in [39]). On the other hand, essential metals also
serve as cofactors in enzymes that combat oxidative stress. Cu, Zn, and manganese (Mn)
are enzyme components of superoxide dismutase enzymes, while selenium is an enzyme
component of glutathione peroxidase [50].
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Figure 1. Pathological processes enhanced by metals in Alzheimer’s disease.

Although there is a substantial body of evidence linking metals to AD-related patho-
logical processes, it is unclear whether disrupted metal homeostasis is involved in the
pathogenesis of AD, results from AD pathological processes, or both. Given that AD is a
complex disease driven by both genetic and environmental factors, it is unlikely that AD
pathogenesis will be explained by a single factor, but rather by the interaction of many.

3. Heavy Metals in Alzheimer’s Disease

Heavy metals including arsenic (As) [51], cadmium (Cd) [49], lead (Pb) [52], and
mercury (Hg) [52] can cross the BBB and accumulate in the brain, or they can bypass the
BBB and enter the brain directly through the olfactory pathway [53]. Some researchers
have hypothesized that early exposure to heavy metals is associated with the later devel-
opment of AD. Based on their observations of experimental animals, they concluded that
early-life exposure to As [54], Pb [55], and Cd [56] may contribute to the development of
neurodegeneration later in life, which is consistent with the developmental hypothesis of
AD [57–59].

3.1. Arsenic

As is a metalloid that can be ingested through contaminated water, soil, and air, but
primarily through drinking contaminated water. More than 220 million people are esti-
mated to consume water that exceeds the permissible level of 10 µg/L [60]. Epidemiological
studies suggest that As contributes to cognitive impairment [61] and an increased risk of
AD [62], and that elevated As levels in soil are associated with an increase in AD-related
mortality [63]. As exposure has also been associated with memory impairments in animal
studies [64–66]. As exposure also increases Aβ levels [67], promotes tau hyperphospho-
rylation [32,68,69], tau aggregation [32], oxidative stress caused mainly by mitochondrial
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dysfunction [70], vascular damage [71], neuroinflammation [34], and apoptosis and the
necrosis of neurons [37,38] (Figure 1). In the majority of human studies, there were no
significant differences in As levels between AD patients and the controls, although some
studies observed a significant increase in As levels in AD patients [72,73] and a positive
association with CSF AD biomarkers [74].

3.2. Cadmium

Humans are exposed to Cd through food, air, and water [75]. Smokers have Cd
levels that are two to four times higher than nonsmokers [76]. Cd may also play a role in
the development of AD pathological changes. Cd has been linked in human studies to
increased mortality due to AD [77,78] and cognitive decline [79–81]. Ruczaj and Brzoska
proposed that Cd primarily exerts its effects by inducing oxidative stress [82]. Nevertheless,
it also interacts with Aβ [83] and increases Aβ aggregation [30,40], promotes tau hyper-
phosphorylation [33] and aggregation [42], impairs the BBB [48,49], impairs cholinergic
transmission and causes the death of cholinergic neurons in the basal forebrain [84], and
disrupts intracellular cation homeostasis by being an anti-metabolite of Zn and replacing
it in Zn enzymes [85] (Figure 1). In human studies, there is either an increase [86] or no
difference [87] in Cd levels between AD patients and healthy controls (Table 1).

Table 1. Comparison of metal levels between dementia patients and healthy controls.

Reference
Analyzed

Bodily
Fluid

Method Used Measured
Metals

Classification of
Participants
(Number of

Patients)

Number of
Participants

Metals in AD
Patients versus

HC

[74] CSF and
plasma ICP-MS

In CSF and
plasma: As, B, Ca,

Cd, Co, Cu, Fe,
Hg, Li, Mg, Mn,

Mo, Na, Ni,
P, Pb, S, Se, Sr,

Tl, Zn
In CSF: Al, Ba, K

CSF: AD (124),
MCI (50), HC (19)
Plasma: AD (93),
MCI (35), HC (15)

CSF: 193
Plasma: 143

In CSF: Zn↑
(p = 0.024), Al↓
(p = 0.003), P↑

(p = 0.029)
In plasma: Na↑

(p = 0.004)

[87] Bodily
fluids Meta-analysis

Cu, Fe, Zn, Se,
Mn, Pb, Al, Cd,
Cr, As, Hg, Co

In serum:
Cu↑ (SMD [95%

CI]); 0.37 (0.1, 0.65)
In plasma: Fe↓
−0.68 (−1.34,
−0.02), Se↓ −0.61

(−0.97, −0.25)
In hair: Zn↓ −0.35

(−0.62, −0.08)

[88] Serum
Al, Co, Cd, Cr,

Cu, Fe, Mg, Mn,
Se, Zn

Elderly with and
without cognitive

dysfunction
191

Cu↑ in elderly with
cognitive

dysfunction

[73] Urine and
blood ICP-MS

In urine: As
In blood: Cr

and Se
AD (53), HC (217) 270

As↑ (p = 0.023), Cr↑
(p = 0.005), Se↓

(p = 0.001)

[89] Serum, CSF Meta-analysis Mg

Serum and
plasma: AD

(1112), HC (1001)
CSF: AD (284),

HC (117)

In serum and
plasma: Mg↓ (SMD

[95% CI]); −0.89
(−1.36, −0.43)

[90] CSF ICP-MS Fe, Ni, Cr, Zn,
Mn, Co, Cu

AD (20), CAA
(10), HC (10) 40 No difference
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Table 1. Cont.

Reference
Analyzed

Bodily
Fluid

Method Used Measured
Metals

Classification of
Participants
(Number of

Patients)

Number of
Participants

Metals in AD
Patients versus

HC

[27] CSF and
plasma ICP-MS

Cu, Zn, Fe, Na,
Mg, Ca, Co, Mo,

Mn, B

CSF: AD (126),
MCI (52), HC (19)
Plasma: AD (93),
MCI (37), HC (14)

CSF: 197
Plasma: 144

In CSF: Zn↑
(p = 0.027)

In plasma: Na↑
(p = 0.004)

[72] Hair and
nail samples ICP-MS As, Se AD (40), HC (40) 80

In hair and nail
samples: As↑

(p < 0.001), Se↑
(p < 0.001)

[86] Blood and
serum ICP-OES

In blood: Cd, Hg,
Al, Pb, As

In serum: Zn, Cu,
Fe

AD (50), HC (50) 100

Cd↑ (p < 0.001),
Hg↑ (p < 0.001),
Al↑ (p = 0.009),

Cu↑ (p = 0.025), Fe↓
(p = 0.030), Zn↓

(p < 0.001)

[91] Serum AAS Cu, Zn, Se AD (110), HC (60) 170
Se↓ (p < 0.05), Zn↓
(p < 0.001), Cu/Se↑

(p < 0.001)

[92]
Serum,

plasma, and
brain

Meta-analysis Cu

In serum/plasma:
AD (2929), HC

(3547)
In brain: AD

(182), HC (166)

In brain: Cu↓ (SMD
[95% CI]); −0.74
(−1.05, −0.43)

In serum/plasma:
Cu↑ 0.66 (0.34, 0.97)

[93] CSF GF-AAS Fe AD (16), MCI (17),
FTD (22), HC (14) 69 Fe↑ (p < 0.001)

[94] Plasma, ery-
throcytes GF-AAS Se AD (34), HC (68) 102

Se↓ (in plasma and
erythrocytes)

(p < 0.001)

[95] Plasma Standard
hospital assays Mg

AD (1600),
non-AD

dementia (855),
no dementia

(100,193)

102,648

Both Mg↓
(multifactorial-

adjusted HR [95%
CI]; 1.5 [1.21–1.87])

and Mg↑ (1.34
[1.07–1.69])

associated with an
increased risk of
vascular-related

non-AD dementia.
There is no
correlation

observed for AD

[96] CSF and
plasma

Flame
photometer

measurement
Na At risk for AD

(43) 43

In CSF: Na↑ in high
blood pressure

patients at risk for
AD (p < 0.01)

[97] Serum
According to a

photometric
color

Mg Dementia (2761),
HC (42,698) 45,459 No difference
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Table 1. Cont.

Reference Analyzed
Bodily Fluid Method Used Measured

Metals

Classification of
Participants
(Number of

Patients)

Number of
Participants

Metals in AD
Patients versus

HC

[98] Serum

Routinely
performed in

hospital
laboratories

K AD (105), DLB
(78) 183

K↑ predicts poorer
cognitive prognosis

for dementia
patients (p = 0.003)

[99] Plasma ICP-MS Cu, Zn AD (95), HC (84) 179 No difference

[100] Plasma

Total reflection
X-ray

fluorescence
(TXRF)

spectroscopy

Ca, Fe, Zn, Cu, Se,
P AD (44), HC (44) 88 Ca↑ (p = 0.025), P↑

(p = 1.33 × 10−12)

[101] Blood (ery-
throcytes) ICP-MS Cu, Fe, Se AD (32), HC (32) 64 Cu↑ (p < 0.001), Fe↑

(p < 0.001)

[102] Serum
Ion-selective

electrode
method

Na, K MCI (139), HC
(371) 510 No difference

[62] Urine and
blood ICP-MS

In blood: Cd, Pb,
Hg, Se

In urine: As

AD (170), HC
(264) 434 No difference

[103] Blood AAS Pb AD (27), HC (54) 81 Pb↑ (p < 0.001)

[104] CSF ICP-MS Ca AD (45), HC (45) 90 No difference

[105] Serum and
urine

In serum: AAS
In urine:
GF-AAS

Cu AD (385), HC
(336), WD (9) 730

In serum: Cu↑
(p < 0.001)

In urine: Cu↑
(p < 0.001)

[106] Plasma ICP-MS Na, K, Ca, Mg, Fe,
Zn, Cu, Se AD (42), HC (43) 85 Zn↑ (in males)

(p = 0.021)

[107] Plasma ICP-MS

Li, Mg, Al, Ca, Ti,
V, Cr, Ca, Mn, Fe,
Co, Ni, Cu, Zn,

As, Se, Sr, Mo, Ba,
Tl, Pb

AD (92), HC (161) 253

Al↑ (p < 0.001),
Cu↑ (p < 0.001),

Fe↑ (p < 0.001), Li↓
(p < 0.001), Mn↓
(p < 0.001), Zn↓

(p < 0.05)

[108] Serum
Colorimetric

endpoint
method

Mg

Dementia (823,
662 of them had

AD), no dementia
(8746)

9569

Both Mg↓ (HR [95%
CI]; 1.32 [1.02–1.69])

and Mg↑ (1.30
[1.02–1.67])

associated with an
increased risk of

dementia

[109] Serum AAS Mg, Fe, Mn AD (15), MCI
(15), HC (15) 45 Mg↓ (p < 0.01),

Mn↑ (p < 0.001)

[110] Serum Meta-analysis Mn AD (836), HC
(1254) 2090

Mn↓ (SMD [95%
CI]; −0.39 [−0.71,

−0.08])

[111]

Circulatory
(plasma/serum
and blood),

erythrocytes,
CSF

Meta-analysis Se AD (594), HC
(472)

Circulatory: Se↓
(SMD [95% CI];
−0.44 [−0.71,
−0.17])
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Table 1. Cont.

Reference Analyzed
Bodily Fluid Method Used Measured

Metals

Classification of
Participants
(Number of

Patients)

Number of
Participants

Metals in AD
Patients versus

HC

[112] Serum
Photoelectric
colorimetric

assay
Cu, Fe, Zn AD (125), HC (40) 165

Cu↑ (p = 0.014), Fe↑
(p = 0.027), Zn↓

(p = 0.020)

[113] CSF, serum,
erythrocytes

SEC-ICP-MS
and tandem

mass
spectrometry

Se

CSF: AD (10),
MCI (5), HC (31)
Serum: AD (29),

MCI (30), HC (30)
Erythrocytes: AD

(36), HC (39)

CSF: 46
Serum: 89

Erythrocytes:
75

In erythrocytes: Se↓
(p < 0.05)

[114] Plasma AAS Se AD (11), MCI
(17), HC (12) 40

Se↓ (in AD,
p = 0.049 and MCI,

p = 0.003)

[115] Brain and
circulatory

Meta-
analysis

Circulatory: Se
Brain: Se, Zn

Circulatory: AD
(660), HC (536)
Brain: Se—AD
(487), HC (353),
Zn—AD (496),

HC (306)

Circulatory: Se↓
(p < 0.05)

Brain: no difference

[116]

Serum, CSF,
and

post-mortem
brain tissue

ICP-MS K and Rb

For serum: AD
(171), MCI (128),

HC (778)
For CSF: AD (9),
MCI (7), HC (36)
For brain tissue:
AD (30), HC (30)

For serum:
1077

For CSF: 52
For brain
tissue: 60

In serum: K↑
(p < 0.05), Rb↓

(p < 0.001)
In brain: K↓

(p < 0.01), Rb↓
(p < 0.001)

[117] Serum ICP-MS

Al, Sb, As, Be, Cd,
Ca, Cr, Co, Cu, Fe,
Pb, Hg, Mn, Mo,
Ni, Se, Sr, Tl, Sn,

U, V, and Zn

AD (34), MCI
(20), SMC (24),

HC (40)
118

Hg↓ (in AD, p <
0.001), Mn↓ (in AD,
p < 0.001 and MCI,
p = 0.024), Mo↑ (in
AD, p = 0.001), Se↓
(in MCI, p = 0.015)

[118] Serum,
erythrocytes ICP-MS Pb, Mn AD (206), MCI

(129), HC (758) 1093 Mn↓ (in serum,
p < 0.001)

[119] Plasma

SEC-ICP-MS,
solution

nebulization
(SN)-ICP-MS

Fe AD (34), HC (36) 70 Fe↓ (p = 0.01)

[120] Serum and
hair ICP-MS Cu, Se, Zn, Mg,

Mn, and Fe AD (45), HC (33) 78

In serum: Mn↓
(p = 0.002)

In hair: Se↓
(p = 0.005), Zn↓
(p = 0.02), Cu↑

(p = 0.013), Mn↑
(p = 0.009)

[121] Serum

AAS (Cu, Mn)
and Biorex
diagnostics

kit (Zn)

Cu, Mn, Zn MCI (120), HC
(120) 240 No difference
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Table 1. Cont.

Reference Analyzed
Bodily Fluid Method Used Measured

Metals

Classification of
Participants
(Number of

Patients)

Number of
Participants

Metals in AD
Patients versus

HC

[122] Serum

FAAS

Fe, Cu, Zn

AD (83), HC (83) 166 Cu↑ (p < 0.001), Fe↓
(p = 0.001)

Meta-
analysis

For Fe: AD (1084),
HC (1319)

For Zn: AD (862),
HC (1705)

For Cu: AD
(1768), HC (2514)

Cu↑
(WMD = 10.474,
p < 0.001), Zn↓

(WMD = −5.503;
p < 0.001)

[123]
Serum,

plasma, and
CSF

Meta-
analysis Zn

For serum: AD
(777), HC (1728)
For plasma: AD
(287), HC (166)
For CSF: AD

(292), HC (179)

In serum (plus in
serum and plasma):

Zn↓ (SMD [95%
CI]; −0.46 [−0.76,

−0.16])

[124] Blood ICP-MS Cu, Se, Zn, Pb,
and Hg

AD (15), MS (41),
HC (23), healthy

elderly
controls (10)

89
Pb↓, Cu↓, Zn↓, Se↓
(for all comparisons

p < 0.001)

[125] Plasma ICP-MS Fe AD (211), MCI
(133), HC (768) 1112 Fe↓ (p = 0.049)

[126] Plasma GF-AAS Se AD (79), HC (93) 172 Se↓ (p < 0.001)

[127] Serum ICP-MS Pb, Cd, Hg, As AD (89), HC (118) 207 No difference

[128] Serum ICP-MS
Li, Al, V, Cr, Mn,

Fe, Co, Cu, Zn, Se,
Mo, Cd, and Pb

AD (30), MCI
(16), HC (30) 76

Mn↓ (in AD and
MCI), Al↑ (in AD
and MCI), Se↓ (in
AD and MCI), Fe↑
(in AD and MCI),

Zn↓ (in AD)

[129] Serum and
CSF Meta-analysis Fe AD (1813), HC

(2401) 4214 In serum: Fe↓
(p < 0.001)

[130] Erythrocytes
and serum ICP-MS Zn AD (205), MCI

(126), HC (753) 1084 No difference

[131] Blood and
serum

ICP-MS (for Pb
and Cd) and

Gold
amalgamation

(for Hg)

Pb, Cd, and Hg AD (80), HC (130) 210 No difference

[132] CSF ICP-MS Cu, Fe, Mg, Mn,
and Zn

AD (21), PD (20),
ALS (52), HC (15) 108 Cu↑ (p < 0.01), Zn↑

(p < 0.01)

[133]
Serum,

plasma, and
CSF

Meta-analysis Cu

Serum: AD (761),
HC (664)

Plasma: AD (205),
HC (167)

CSF: AD (116),
HC (129)

In serum: Cu↑
(p = 0.001)
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Table 1. Cont.

Reference Analyzed
Bodily Fluid Method Used Measured

Metals

Classification of
Participants
(Number of

Patients)

Number of
Participants

Metals in AD
Patients versus

HC

[134] Plasma and
CSF ICP-MS

CSF/plasma
quotients of Mg,
Ca, Mn, Fe, Co,
Ni, Cu, Zn, Se,

Rb, Sr, Mo,
Cd, Sn, Sb, Cs,

Hg, and Pb

AD (264), HC (54) 318

CSF/plasma
quotients of Mn↓
(p < 0.001), Rb↓
(p = 0.002), Sb↓
(p = 0.003), Pb↓
(p = 0.001), Hg↓
(p = 0.001), Co↑

(p < 0.001)

[135] Serum ICP-MS
Al, As, Cr, Co,

Cu, I, Fe, Mn, Se,
and Zn

AD (44), HC (41) 85 Zn↓ (p < 0.001)

[136] CSF, plasma ICP-MS Mg, Ca, Mn, Fe,
Cu, Zn, Rb, Sr, Cs

AD (174), AD
with minor

vascular
components (90),
DLB (29), HC (51)

344

In AD compared to
LBD: CSF and
plasma Mg↓

(p < 0.001), Ca↓
(p ≤ 0.001), Cu↓
(p ≤ 0.004), CSF
Cs↓ (p < 0.001),

plasma Zn↑
(p = 0.003)

In AD compared to
HC: No difference

[137] CSF AAS Fe

AD (13), early
stage of MCI (21),

moderate MCI
(10), HC (12)

56 No difference

[138] Serum HR-ICP-MS Zn AD (18), MCI
(19), HC (16) 53 No difference

[139] Plasma and
CSF ICP-MS

Mg, Ca, V, Mn,
Fe, Co, Ni, Cu,

Zn, Se, Rb, Sr, Mo,
Cd, Sn, Sb, Cs,

Hg, and Pb

AD (173),
patients with a
combination of
AD and minor

vascular
components

(AD + VaD; 87),
HC (54)

314

In plasma: Mn↑
(p < 0.001), Hg↑
(p < 0.001), Co↓
(p < 0.01), Se↓
(p < 0.01), Cs↓

(p < 0.01)
In CSF:

V↓, Mn↓, Rb↓, Sb↓,
Cs↓, Pb↓ (for all

comparisons
p < 0.001)

[140] Serum ICP-MS,
ICP-AES

Ca, Cu, Fe, Mg,
Si, Zn, Ba, Be, Bi,
Cd, Hg, Li, Mo,
Pb, Sb, Sn, Sr, Tl,
W, Zr, Al, Co, Cr,

Mn, Ni, and V

AD (53), PD (71),
MS (60), HC (124) 308

Ca↑, Sn↑, Co↓, Fe↓,
Zn↓ (for all

comparisons
p < 0.001)

[141] Serum and
whole blood

ICP-MS,
ICP-AES

Al, Ba, Be, Bi, Ca,
Cd, Co, Cr, Cu,
Fe, Hg, Li, Mn,

Mo, Ni, Pb, Sb, Si,
Sn, Sr, Tl, V, W,

Zn, and Zr

AD (60), HC (44) 104

In serum: Ca↑, Cd↑,
Hg↑, Mg↑, Si↑, Sn↑,
Al↓, Co↓, Fe↓, Zn↓
In blood: Cu↑, Li↑,
Mn↑, Sn↑, Zr↑, Fe↓,
Hg↓, Mo↓ (for all

comparisons
p ≤ 0.05)
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Table 1. Cont.

Reference Analyzed
Bodily Fluid Method Used Measured

Metals

Classification of
Participants
(Number of

Patients)

Number of
Participants

Metals in AD
Patients versus

HC

[142] Serum

Chromato-
graphic or

spectro-
photometric

methods

Fe, Zn, Mn,
Se, Co, Cr, Cu,

Mo, and AI

AD (8), VaD (8),
cognitive

impairment
non-dementia (8),

HC (11)

35

Se↓, Co↓, Cr↓, Cu↑,
Al↑ (for all

comparisons
p < 0.001)

[143] CSF, serum AAS Se AD (27), HC (34) 61 No difference

[144] Plasma AAS Cu AD (44), HC (44) 88 No difference

[145] Blood AAS Hg

AD (33), control
group with major
depression (45),

control
group with

non-psychiatric
disorders (65)

143 Hg↑ (p < 0.001)

[146] Serum and
CSF AAS Fe, Cu, Mn,

and Zn AD (26), HC (28) 54 CSF Zn↓ (p < 0.05)

[147] Serum AAS Al
AD (17), HC
(189), other

dementias (15)
221 Al↑ (p = 0.001)

[148] Whole blood GF-AAS Cd AD (6), demented
(10), HC (19) 35 No difference

[149] CSF and
serum

Ca was
determined using

the o-Cresol-
phthalein

method, whereas
P was determined

using the
molybdate

method

Ca and P

AD (40), multiple
infarct dementia

(25), aged
controls (20),

adult
controls (20)

105

CSF Ca↓ (p < 0.01),
P↓ (p < 0.01)

(compared to adult
controls)

[150] CSF AAS Zn AD (34), HC (34) 68 No difference

[151] CSF

Inductively
coupled argon

plasma emission
spectroscopy

Al, As, Ba, Be,
Cd, Co, Cr, Cu,
Fe, Mn, Mo, Ni,
Pb, Se, Si, Sn, Ti,

V, and Zn

AD (33), other
dementia (16), no

neurological
disease (20)

69 Si↑ (p < 0.05), Zn↑
(p < 0.05)

Only studies conducted on humans were included in this table. (↓) decrease, (↑) increase. AAS, atomic absorption
spectrophotometry; AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; AMD, age-related macular
degeneration; CAA, cerebral amyloid angiopathy; CI, confidence interval; CSF, cerebrospinal fluid; DLB, dementia
with Lewy bodies; FAAS, flame atomic absorption spectrometry; FTD, frontotemporal dementia; GF-AAS,
graphite furnace atomic absorption spectrophotometry; HC, healthy controls; HR, hazard ratio; HR-ICP-MS,
high resolution inductively coupled plasma mass spectrometry; ICP-AES, inductively coupled plasma atomic
emission spectrometer; ICP-DRC-MS, inductively coupled plasma dynamic reaction cell mass spectrometry;
ICP-MS, inductively coupled plasma mass spectrometry; ICP-OES, inductively coupled plasma optical emission
spectroscopy; MCI, mild cognitive impairment; MS, multiple sclerosis; PD, Parkinson’s disease; SEC-ICP-MS, size
exclusion chromatography inductively coupled plasma mass spectrometry; SMC, subjective memory complaint;
SMD, standardized mean differences; VaD, vascular dementia; WD, Wilson disease; WMD, weighted mean
difference.

3.3. Mercury

Exposure to Hg occurs through food, air, and water, with seafood consumption being
the primary source of mercury poisoning [152]. Three- to 5-fold increases in Hg levels in
the air and water have been documented as a result of industrialization [153]. A systematic
review [154] and meta-analysis [155] demonstrated an association between Hg exposure
and cognitive decline and progression of AD, but a subsequent report [156] did not confirm
these findings. In addition, a neuropathological study of 286 brains by Morris et al. revealed
no correlation between higher brain Hg levels and neuropathological alterations [152].
However, there are multiple molecular mechanisms through which Hg may contribute
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to the pathogenesis of AD. It promotes Aβ production [157] and aggregation [30], tau
hyperphosphorylation [158,159] and aggregation [160], induces oxidative stress [35], and
alters calcium homeostasis [161] (Figure 1). Human body fluid Hg measurements yielded
contradictory results. Both an increase and a decrease were observed in Hg levels between
the AD and control subjects, or there was no change (Table 1). In addition, the CSF Hg level
was positively correlated with several CSF AD biomarkers [74], whereas the blood Hg level
was positively correlated with the CSF Aβ1–42 level [145].

3.4. Lead

In addition to food, air, and water, humans are also exposed to lead [29] through
ingestion. Epidemiological studies have demonstrated that lead exposure contributes to
cognitive impairment [162,163]. Moreover, experimental studies have reported an associ-
ation between Pb and AD pathological changes. Pb interacts with Aβ [31] and increases
Aβ production [45,164] and aggregation [31], increases tau hyperphosphorylation [165],
compromises the BBB [36], induces epigenetic modifications by altering the expression of
AD-related genes [166,167], disrupts intracellular cation homeostasis by interfering with Ca
homeostasis and replacing Zn ions in Zn enzymes [168], and induces oxidative stress [169].
In human studies, there was a decrease or no difference in the Pb levels between the AD
patients and control subjects (Table 1), whereas a recent MR study found that higher blood
Pb levels were a risk factor for AD [170].

3.5. Aluminum

Aluminum (Al), the most abundant metal in the Earth’s crust [171], is not an essential
element for life; however, in its free, solvated, and trivalent forms, Al3+ is biologically
reactive [172], accumulating in the central nervous system [173,174]. In AD-affected brain
regions including the entorhinal cortex, hippocampal region, and amygdala, the concentra-
tion of Al is higher [175,176]. Al was co-deposited with fibrillar Aβ in amyloid plaques in a
study of brain tissue samples from donors with familial AD (fAD) and the PSEN1-E280A
(Glu280Ala) mutation [172,177]. Cortical Aβ levels are elevated in donors with this muta-
tion, and this mutation is associated with an aggressive etiology of AD [178]. Aluminum’s
unique association with Aβ and the high levels of Al found in these brain tissues suggest
that Al plays a role in the neuropathology of fAD [177].

When Al binds to various proteins, oligomerization can occur, resulting in confor-
mational changes that prevent proteases from degrading the proteins. In addition, Al3+

binds strongly to phosphorylated amino acids, causing highly phosphorylated cytoskeleton
proteins to aggregate and accumulate [179]. As a result, Al induces the apoptotic death
of neurons and glial cells. Al-Aβ co-deposition in fAD has been hypothesized, but its
association with intraneuronal NFTs has not been confirmed [177,180], as demonstrated
by Mold et al. [181]. While Al binding to Aβ in amyloid plaques is anticipated in the
early stages of disease progression [177,178,182], an association with tau may occur in later
disease stages [177,178,182]. Numerous studies have investigated the association between
oral exposure to Al in drinking water and AD [183]. According to Martyn et al. [184], AD
is more prevalent in regions with high levels of Al in their drinking water. In conclusion,
even though Al has been proposed as a potential risk factor for AD, there is insufficient
evidence to support a causal relationship (Table 2). Many studies have investigated the
association between oral exposure to Al in drinking water and AD; however, more research
is required to better understand how genetic, environmental, and lifestyle factors influence
the onset and progression of AD.
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Table 2. Correlation between metals and CSF protein AD biomarkers.

Reference
Analyzed

Bodily
Fluid

Measured
Metals

Measured
Biomarkers

Association of Metals
with CSF Protein

Biomarkers

Classification
of Participants

(Number of
Patients)

Number of
Participants

[74] CSF and
plasma

In CSF and
plasma: As, B,
Ca, Cd, Co, Cu,
Fe, Hg, Li, Mg,

Mn, Mo, Na, Ni,
P, Pb, S, Se, Sr,

Tl, Zn
In CSF: Al,

Ba, K

CSF Aβ1–42,
t-tau, p-tau181,

p-tau231,
p-tau199, NFL,
S100B, VILIP-1,

YKL-40,
PAPP-A, and

albumin

Positive association of
CSF heavy metals (As,

Cd, Hg,
Ni, Pb, and Tl), essential
metals (Ca, Co, Cu, Fe,

Mg, Mn, Mo, Na, K, and
Zn), and essential

nonmetals
(P, S, and Se) and plasma

Ni with CSF p-tau
isoforms, VILIP-1,

S100B, NFL, and YKL-40
(for all comparisons

p ≤ 0.001)

CSF: AD (124),
MCI (50),
HC (19)

Plasma: AD
(93), MCI (35),

HC (15)

CSF: 193
Plasma: 143

[185] Serum and
blood Blood Se Serum Aβ1–40

and Aβ1–42

Negative association of
Se with Aβ1–40 and
Aβ1–42 and positive

association with
Aβ1–42/Aβ1–40 ratio

(p < 0.05)

Elderly
individuals 469

[90] CSF Ni, Cr, Zn, Mn,
Co, and Cu

Aβ1–42, Aβ1–40,
t-tau, p-tau181,

NFL

The negative correlation
of Fe and ferritin with

Aβ1–42 (r = −0.506,
p < 0.001)

AD (20),
cerebral
amyloid

angiopathy (10),
controls (10)

40

[186] Serum, CSF Serum Ca CSF Aβ1–42,
t-tau, p-tau181

Serum Ca negatively
correlated with CSF
Aβ1–42 (β = −0.558,

p = 0.008)

MCI (811),
cognitively

normal (413)
1224

[187] Serum Al, Pb, Mn,
and Zn T-tau

The negative correlation
between Mn and t-tau
(r = −0.341, p = 0.003)

Aluminum
foundry

workers (75),
non-

occupationally
exposed

subjects as
controls (75)

150

[188] CSF Fe, Cr, Mn, Ni,
Cu, Zn

Aβ1–42, t-tau,
p-tau, and

CSF/serum
albumin ratio

Positive correlation of Fe
and Cu with Aβ1–42
(βFe = 0.21, p = 0.004,
βCu = 0.23, p = 0.001),

t-tau (βFe = 0.27,
p < 0.001, βCu = 0.23,

p = 0.001), p-tau
(βFe = 0.30, p < 0.001,
βCu = 0.26, p < 0.001)

and CSF/serum albumin
ratio (βFe = 0.52,

p < 0.001, βCu = 0.65,
p < 0.001). Positive

correlation of Zn with
CSF/serum albumin

ratio (β = 0.17, p = 0.02).

AD (85), MCI
(72), subjective

cognitive
impairment
(32), VaD (7)

196



Biomedicines 2023, 11, 1161 13 of 29

Table 2. Cont.

Reference
Analyzed

Bodily
Fluid

Measured
Metals

Measured
Biomarkers

Association of Metals
with CSF Protein

Biomarkers

Classification
of Participants

(Number of
Patients)

Number of
Participants

[104] CSF Ca Aβ1–42, t-tau,
p-tau181

No association of CSF Ca
with CSF AD biomarkers

AD (45),
HC (45) 90

[189] CSF Se CSF Aβ1–42,
t-tau, and p-tau

The negative correlation
between Se and Aβ1–42

(β = −0.27, 95% CI;
−0.66–0.11)

MCI (56),
during the 42

months, 21
developed AD,
4 FTD, and 2

DLB

56

[190] Blood,
plasma Blood Se Plasma Aβ1–42,

t-tau
No association of Se with
plasma AD biomarkers

AD (30),
VaD (35),
HC (40)

105

[191] Blood and
plasma Blood Mn Plasma Aβ1–40

and Aβ1–42

Positive correlation of
Mn with Aβ1–40

(R2 = 0.127, p = 0.024)
and Aβ1–42 (R2 = 0.163,

p = 0.010)

AD (20), MCI
(10), HC (10) 40

[192] CSF

Mg, Ca, V, Cd,
Sn, Sb, Mn, Ni,
Cu, Zn, Se, Rb,
Fe, Co, Sr, Mo,
Cs, Hg, and Pb

Aβ1–42, t-tau,
p-tau181

Positive correlation
between Mn and t-tau

(rs = 0.22, p = 0.004) and
p-tau181 (rs = 0.18,

p = 0.021).
The negative correlation

of Cs with t-tau
(rs = −0.49, p = 0.026),

and a positive correlation
of Cs with Aβ1–42

(rs = 0.49, p = 0.026).

AD (173), AD +
minor vascular

components
(87), HC (54)

314

[193]
CSF (taken
from brain
ventricles)

Cu, Zn, Fe, Mn,
and Cr Aβ1–42

The negative correlation
of Cu (β coefficient =
−1.3, p < 0.001), Zn

(β coefficient = −1.26,
p < 0.001), Fe (p = 0.001),
Mn (p = 0.003), and Cr
(p = 0.01) with Aβ1–42

AD (25),
VaD (18), other
dementias (6),

clinically
non-demented
individuals (82)

131

[194] CSF Cu intake Aβ1–42, t-tau,
p-tau181

Cu intake did not affect
the t-tau and p-tau181
levels, but the Aβ1–42

levels decreased by 30%
in the placebo group and

only by 10% in the
verum group

AD (68) 68

[195] CSF, serum Serum K CSF Aβ1–42

Low serum K in
mid-life, but not late life,

is associated with low
CSF Aβ1–42 in late life
(β = 153.9, p = 0.041)

Women from
Goteborg 1080

[196]
Serum,
plasma

and CSF
Cu (in serum) Aβ1–42, t-tau (in

CSF)

The negative correlation
of Cu with Aβ1–42

(r = −0.46, p = 0.002),
and the positive

correlation of Cu with
t-tau (r = 0.4, p = 0.03)

AD (28),
HC (25) 53
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Table 2. Cont.

Reference
Analyzed

Bodily
Fluid

Measured
Metals

Measured
Biomarkers

Association of Metals
with CSF Protein

Biomarkers

Classification
of Participants

(Number of
Patients)

Number of
Participants

[145] Blood and
CSF

Hg (in the
blood)

Aβ1–42
(in CSF)

Positive correlation
between Hg and Aβ1–42

(r = 0.744, p < 0.001)

AD (33),
age-matched

control patients
with major

depression (45),
and a control

group of
patients with a

variety of
non-psychiatric
disorders (65)

served as
comparison

groups

143

This table only included research conducted on human subjects. Aβ1–42, amyloid β1–42; AD, Alzheimer’s disease;
CSF, cerebrospinal fluid; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia; HC, healthy control;
MCI, mild cognitive impairment; NFL, neurofilament light chain; PAPP-A, pregnancy-associated plasma protein
A; p-tau181, tau protein phosphorylated at Thr 181; p-tau231, tau protein phosphorylated at threonine 231; p-tau199,
tau protein phosphorylated at serine 199; S100B, S100 calcium-binding protein B; t-tau, total tau; VaD, vascular
dementia; VILIP-1, visinin-like protein 1; YKL-40, chitinase-3-like protein 1.

4. Essential Metals in Alzheimer’s Disease

The homeostasis of essential metals is altered in AD patients [26–28]. This term refers
to metals that are naturally present in the body and play a role in the function of numerous
proteins and enzymes or act as second messengers. Sodium (Na), Ca, and magnesium (Mg)
are the most abundant essential metals in the human body, while Fe, Cu, Zn, molybdenum
(Mo), cobalt (Co), Mn, and chromium (Cr) are present in trace amounts. Many previous
studies have also demonstrated the association between essential metals (primarily Fe, Cu,
and Zn) and AD pathological changes.

4.1. Iron

Many biological processes in the body including the brain are regulated by Fe ions.
Fe is essential for protein synthesis [197], cell growth and differentiation [198,199], the
regulation of Fe-dependent enzymes [200], oxygen transport [201], and the electron transfer
chain in oxidation–reduction reactions [201]. Fe is also crucial for the processes of myelina-
tion [202], development [203], and the function of numerous neurotransmitter systems [204].
Both amyloid plaques and NFTs have been found to have elevated Fe concentrations [205].
Fe is also involved in oxidative stress and the formation of reactive oxygen species in the
brains of AD patients via the Fenton reaction [46]. Fe also promotes in vitro Aβ aggrega-
tion [206], tau protein phosphorylation [207–209], and tau aggregation [210] (Figure 1). It is
interesting to note that APP is necessary for the persistence of ferroprotein (iron exporter)
on the cell surface, and thus promotes Fe release [211].

In meta-analyses, a significant decrease in Fe levels was observed in the plasma [87]
and serum [129] of AD patients, but no significant change was observed in the CSF [129]
(Table 1). In contrast, a number of studies observed a correlation between the Fe levels
in CSF and various CSF AD biomarkers [74,188,193] (Table 2). Nonetheless, in many
observational studies, there was no difference in the Fe levels between the AD patients and
controls (Table 1).
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4.2. Zinc

The brain has a higher Zn concentration than other organs [212]. Zn is essential for
neurotransmission because, as an antagonist of glutamate NMDA (N-methyl-D-aspartate)
receptors, it protects neurons from glutamate-induced excitotoxic damage [213]. Zn accu-
mulates in amyloid plaques [214], binds to Aβ, and promotes Aβ aggregation and plaque
formation [214]. Zn also promotes tau protein aggregation [215], phosphorylation [216,217],
and translation [217] (Figure 1). In meta-analyses, however, a significant decrease in Zn
levels was observed in the serum and plasma [123] as well as in the hair of AD patients [87],
whereas there was no significant change in the CSF [123] and brain [115] levels (Table 1).
To date, MR studies have not identified Zn as a risk factor for AD [218–220]. An in vivo
study demonstrated positive effects of Zn supplementation in mouse models of AD [221],
and a small double-blind clinical trial observed the stabilization of cognitive abilities in
AD patients after six months [222]. Thus, adding Zn to the diet has been suggested to
improve the cognitive abilities of AD patients [223], whereas Loef et al. found no significant
benefit of Zn supplementation in AD [224]. In addition, in vivo studies have shown that
Zn supplementation promotes the formation of NFTs [225] and Aβ deposition [226].

4.3. Copper

Normal brain function requires optimal Cu levels, as indicated by the disruption of its
metabolism. Patients with Menkes syndrome, for example, suffer from intellectual deficits
and neurodegeneration. This disorder is caused by a sex-linked mutation of the ATP7A
gene on the X chromosome (which encodes a protein involved in the transmembrane
transfer of Cu ions) and is characterized by the decreased absorption of Cu in the intestine,
and consequently, a decreased concentration of Cu in the cytosol of all body cells except in
the intestines and kidneys [227]. In Wilson’s disease, excessive Cu accumulation in the body
is associated with psychosis, parkinsonism, and dementia [228,229]. Cu homeostasis is also
impaired in AD [28]. Cu promotes the formation and accumulation of Aβ-oligomers by
binding to Aβ [41]. Cu chelation can prevent the cytotoxic effect of the Cu-Aβ complex [230].
Cu accumulates in plaques [231,232], and the interaction between Cu and APP has been
demonstrated [232]. Cu can induce both the phosphorylation and aggregation of tau [42,43]
(Figure 1) and its interaction with apolipoprotein E (ApoE) contributes to the pathogenesis
of AD. ApoE2 has the highest binding affinity for divalent Cu, Zn, and Fe ions, while ApoE4
has the lowest [233,234]. In meta-analyses, Cu levels in the serum of AD patients increased
significantly [87,92,122,133], whereas Cu levels in the brains of AD patients decreased [92]
(Table 1). Recent MR studies [218,220] have surprisingly found that higher Cu levels are
protective against AD risk.

4.4. Calcium

Ca is an indispensable second messenger that regulates hundreds of signaling path-
ways crucial for the normal functioning of memory and cognition-related cells and net-
works [235]. Many neurodegenerative diseases including AD [236] are characterized by
a disruption of cellular Ca signaling. The excessive entry of Ca ions through ionotropic
glutamate receptors is a known mechanism of excitotoxic neuronal death [237,238]. Ca
homeostasis disruption promotes Aβ and tau pathology [239]. However, human stud-
ies have produced contradictory results, with both decreased [240,241] and increased
Ca [186,242] being risk factors. In recent MR studies, higher Ca levels were shown to
reduce the risk of AD [241,243], or no association between Ca levels and AD risk has been
observed [218,220] (Table 3).
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Table 3. Mendelian randomization studies that investigated the role of metals in AD.

Reference MR Analysis Measured Metals Observed Association

[218] Two-sample MR Mg, Ca, Fe, Cu, Zn, Se, P Higher Cu levels as a protective factor for AD risk

[170] Two-sample MR Pb (in the blood) Higher Pb levels as a risk factor for AD

[241] Two-sample MR Ca (in serum) Higher Ca levels as a protective factor for AD risk

[243] MR Ca (in serum) Higher Ca levels as a protective factor for AD risk

[219] Two-sample MR Cu, Zn, Fe No association

[220] Two-sample MR Ca, Mg, Fe, Cu, Zn
(in the blood) Higher Cu levels as a protective factor for AD risk

AD, Alzheimer’s disease; MR, Mendelian randomization.

4.5. Manganese

Mn is a crucial element for protein synthesis, lipid and glucose metabolism, and
oxidative stress protection [244]. However, Mn is also an environmental toxin, and elevated
Mn levels have been linked to diminished cognitive performance [187,245,246]. A rise in
Mn levels has also been observed in patients with AD [109]. Nonetheless, a meta-analysis
by Du et al. [89] revealed a significant decrease in Mn levels between AD and the controls.

4.6. Magnesium

Human studies have demonstrated that Mg deficiency impairs memory [247] and that
Mg supplementation can improve memory in dementia patients [248–250]. In addition,
a decrease in Mg concentration has been observed in the tissues of AD patients [251,252].
However, no change in Mg concentration was observed in the brains of AD patients in
some studies (reviewed in [253]). Mg influences the processing and transport of APP,
with low Mg levels favoring the β-secretase pathway and high Mg levels favoring the
α-secretase pathway [254], whereas the treatment of experimental animals with Mg sulfate
reduces tau phosphorylation and influences the maintenance of cognitive functions and
synaptic plasticity [255]. According to the meta-analysis by Du et al. [89], the serum and
plasma Mg concentrations were lower in the AD patients than in the controls, whereas
the CSF Mg concentrations did not differ between groups. Thomassen et al. [95] did not
find an association between the plasma Mg levels and the risk of AD in a study involving
more than 100,000 participants. Kieboom et al. demonstrated that both low and high Mg
concentrations were associated with an increased risk of dementia. They concluded that the
relationship between Mg and the risk of dementia was U-shaped rather than linear [108].

4.7. Other Essential Metals

AD also perturbs the homeostasis of Na, K, and Co. Previous studies have associated
elevated Na levels with AD [27,96,256,257]. Both increased [102] and decreased [195] K
levels have been associated with AD, whereas in some studies, no change in the K levels was
observed in AD. Co is an essential component of vitamin B12 and is an environmental toxin.
Zheng et al. showed that mice exposed to Co develop age-related neurodegeneration [258].

5. Treatment of Alzheimer’s Disease Based on the Metal Hypothesis

So far, therapeutic interventions based on the metal hypothesis of AD have progressed
in two directions. Taking metal supplements is one approach. As previously stated, there
have been several clinical studies on the effect of Zn and Cu supplementation on cognitive
performance [259]. Although it was previously thought that metal supplementation could
delay the onset of dementia, the majority of studies have found no significant effect on
cognitive function improvement [259]. Cu supplementation had no positive effects in
a pilot phase 2 clinical trial in AD patients [260]. In contrast to this viewpoint, there
is a theory about the therapeutic effect of chelating excess Zn, Cu, or Fe metals based
on their ability to stimulate Aβ aggregation [261]. Chelators are substances that bind
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metals so that they cannot interact with the Aβ further. Based on promising results from
in vivo studies on animal models [262], one of the compounds with chelating activity,
clioquinol (CQ), has entered the second phase of clinical trials [263]. CQ can effectively
bind Zn2+ and Cu2+ ions, and in vitro studies have shown that its effect can be achieved
by stimulating neuroprotective signaling pathways by increasing the cellular uptake of
Zn and Cu ions [264]. Furthermore, CQ can reduce the number of Aβ aggregates within
the cells [264]. A clinical study found that the CQ had a promising effect on cognitive
improvement, but only in patients with the worst starting point [263]. PBT-2, another
similar substance, had a similar effect on AD patients. In a 2008 clinical trial, PBT-2
demonstrated an impact on Aβmetabolism by lowering the Aβ CSF concentrations, and
a group of patients who received a higher dose of PBT-2 had better results in two of the
executive functions tests, while other cognitive tests revealed no significant differences [265].
A recent study investigated the different capacities for chelating Cu from Cu(II)Aβ(1–42)
complexes, and the results showed that CQ and B2Q were more efficient than PBT-2 [266],
but it must be noted that when using such substances, they must be not too effective as
chelators to disrupt the normal metal functions in the brain. Another recent in vivo study
examining the effect of Cu ions on tau protein pathological changes found that lowering
the Cu concentrations in the brain could help alleviate spatial memory deficits, but, neither
lowering nor increasing the amounts of Cu affected the tau protein pathology [267]. A
recent review study called the chelating theory into question on multiple levels [268]. As
a result, there is no single metal-target approach for treating AD, and more research is
needed to better understand this complex aspect of the disease.

6. Conclusions

In this review, we discussed the studies examining the role of essential metals and
heavy metals in AD. Relevant studies involving human subjects were included. It is still
challenging to paint a complete picture of how metals interact in AD pathogenesis because
of the significant degree of variability in the results between studies. Cu and Zn showed
the most consistent results, with most studies revealing that the AD patients’ Cu levels rose
while their Zn levels fell (Table 1). However, several studies also failed to find such a link
(Table 1). Comparing the metal levels with biomarkers from the AD subjects’ CSF has rarely
been undertaken, and the results were sometimes contradictory (Table 2). The use of various
methodologies to determine the metal levels and examine various body fluids may be the
cause of the studies’ contradictory findings. Atomic absorption spectrophotometry (AAS)
was the second most often employed method, while inductively coupled plasma mass
spectrometry (ICP-MS) was the method of choice, being the method utilized in the majority
of investigations into the metal measurements. Several MR studies have investigated the
relationship between metals and the risk of AD (Table 3). Since MR is revolutionizing
epidemiologic research [269], and given the importance of elucidating the role of metals in
AD pathogenesis, additional MR studies examining the causal association between metals
and AD risk and including people from various ethnic backgrounds are crucial.
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