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Abstract
Contactin-associated protein-like 2 (CNTNAP2) gene encodes for CASPR2, a presynaptic type 1 transmembrane protein, 
involved in cell–cell adhesion and synaptic interactions. Biallelic CNTNAP2 loss has been associated with “Pitt-Hopkins-
like syndrome-1” (MIM#610042), while the pathogenic role of heterozygous variants remains controversial. We report 22 
novel patients harboring mono- (n = 2) and bi-allelic (n = 20) CNTNAP2 variants and carried out a literature review to char-
acterize the genotype–phenotype correlation. Patients (M:F 14:8) were aged between 3 and 19 years and affected by global 
developmental delay (GDD) (n = 21), moderate to profound intellectual disability (n = 17) and epilepsy (n = 21). Seizures 
mainly started in the first two years of life (median 22.5 months). Antiseizure medications were successful in controlling 
the seizures in about two-thirds of the patients. Autism spectrum disorder (ASD) and/or other neuropsychiatric comorbidi-
ties were present in nine patients (40.9%). Nonspecific midline brain anomalies were noted in most patients while focal 
signal abnormalities in the temporal lobes were noted in three subjects. Genotype–phenotype correlation was performed by 
also including 50 previously published patients (15 mono- and 35 bi-allelic variants). Overall, GDD (p < 0.0001), epilepsy 
(p < 0.0001), hyporeflexia (p = 0.012), ASD (p = 0.009), language impairment (p = 0.020) and severe cognitive impairment 
(p = 0.031) were significantly associated with the presence of biallelic versus monoallelic variants. We have defined the main 
features associated with biallelic CNTNAP2 variants, as severe cognitive impairment, epilepsy and behavioral abnormalities. 
We propose CASPR2-deficiency neurodevelopmental disorder as an exclusively recessive disease while the contribution of 
heterozygous variants is less likely to follow an autosomal dominant inheritance pattern.

Introduction

Contactin-associated protein-like 2 (CNTNAP2) is one of 
the largest genes in the human genome located on chromo-
some 7q35-36.1 (Nakabayashi and Scherer 2001). It encodes 
for CASPR2, a member of the neurexin superfamily of cell 

adhesion proteins (Poliak et al. 1999). CASPR2 is a presyn-
aptic type 1 transmembrane protein, with a large extracel-
lular and smaller intracellular portion that participates in 
cell–cell adhesion and synaptic interactions. CNTNAP2 is 
expressed throughout the developing and adult central nerv-
ous system (CNS) (Peñagarikano 2011). Mouse studies have 
uncovered a role for CASPR2 in neuronal migration and 
postmitotic neuronal development (Canali et al. 2018; Fer-
nandes et al. 2019). Experimental studies on knock-out mice 
and in human cell lines support the hypothesis that CASPR2 
is involved in neuronal migration, myelination, and neuronal 
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transmission with a reduction in both inhibitory GABAergic 
neuronal numbers and excitatory neurotransmission (Peña-
garikano 2011).

A homozygous 1-bp deletion (c.3709delG) of CNTNAP2 
was initially detected in an Old Order Amish kindred, whose 
nine affected children exhibited mild motor delay until the 
onset of intractable seizures during infancy, which were 
followed by deterioration in learning and language abili-
ties, and social behavior (Strauss et al. 2006). Three sub-
jects showed unilateral cortical dysplasia of the anterior 
temporal lobe, and neuronal migration defects from brain 
specimen biopsies. Altogether, this neurological disorder 
was named cortical dysplasia-focal epilepsy (CDFE) syn-
drome (Strauss et al. 2006). Subsequently, homozygous or 
compound heterozygous variants and/or intragenic deletions 
within CNTNAP2 were associated with Pitt-Hopkins like 
syndrome 1 (PTHSL1, MIM#610042), with variable fea-
tures that included intellectual disability (ID), early seizure 
onset, regression of language ability, and hyper-breathing 
patterns (Strauss et al. 2006; Zweier et al. 2009; Smogavec 
et al. 2016). Given the lack of typical Pitt-Hopkins craniofa-
cial features and hyper-breathing patterns in most patients, it 
has recently been proposed that biallelic loss of CNTNAP2 
results in a disorder called “CASPR2-deficiency neurodevel-
opmental disorder (NDD)”, which includes severe ID, early 
infantile seizures, language regression, variable presence of 
autistic features, hyporeflexia and ataxia (Rodenas-Cuadrado 
et al. 2016).

A growing body of literature over the last two decades 
underscored a possible role of heterozygous chromosomal 
translocations and deletions, single nucleotide polymor-
phisms (SNPs), and rare heterozygous variants of CNT-
NAP2. These were found in a wide array of neuropsychi-
atric disorders, such as autism spectrum disorder (ASD), 
schizophrenia, obsessive–compulsive disorder, Gilles de la 
Tourette syndrome, attention deficit hyperactivity disorder 
(ADHD), dyslexia, specific language impairment and stut-
tering (Verkerk et al. 2003; Arking et al. 2008; Friedman 
et al. 2008; Mikhail et al. 2011; Newbury et al. 2011; Ji 
et al. 2013; Centanni et al. 2015). However, heterozygous 
CNTNAP2 variations are also present in the healthy pop-
ulation including healthy parents of children with either 
mono- or biallelic variants. Thus, the evidence for the role 
of heterozygous variants in CNTNAP2 in neuropsychiatric 
disorders has yet to be clarified (Toma et al. 2018). The iden-
tification and description of new patients with CNTNAP2 
variants may further define the criteria of the syndrome 
and better characterize its genotype–phenotype correlation 
(Rodenas-Cuadrado et al. 2016). We report 22 patients har-
boring mono- or biallelic variants in CNTNAP2 and show 
genotype–phenotype correlations by including a further 50 
previously reported patients.

Material and methods

Patient recruitment

We recruited 22 previously unreported patients from 17 
unrelated families carrying mono or biallelic variants in 
CNTNAP2. Patients were followed up at 16 centers world-
wide for developmental and epileptic encephalopathy (DEE) 
and/or neurodevelopmental disorders. Genetic analyses were 
performed either in a diagnostic or research setting. Subse-
quently, they were enrolled using the international platform 
GeneMatcher (Sobreira et al. 2015).

Firstly, the respective referring clinicians were asked to 
fill in a spreadsheet with all clinical and genetic information 
for each patient (Online Resource). Secondly, all available 
clinical and genetic data, electroencephalography (EEG) and 
neuroradiological images were reviewed by expert pediat-
ric neurologists, neuroradiologist and geneticists. Written 
informed consent was obtained from parents or guardians.

Genetic testing

Most CNTNAP2 variants were detected by epilepsy Next 
Generation Sequencing (NGS) panel (n = 11) or autism/ID 
NGS panel (n = 1). Exome sequencing (ES) (singleton n = 3; 
trios n = 7) was performed in the respective collaborating 
centers using different analysis platforms according to the 
BWA/GATK’s based pipelines. Targeted Sanger sequenc-
ing using standard methods was also performed either for 
verification of identified variants or segregation analysis. 
Sequencing methods and additional genetic analyses per-
formed per individual are summarized in Online Resource. 
All variants were classified according to the ACMG/AMP 
criteria (Richards et al. 2015). CNTNAP2 variants are listed 
according to the transcript NM_014141.6 and copy number 
variants (CNV) refer to the hg19/GRCh37 assembly.

Literature review

We performed a literature review on MEDLINE (accessed 
by PubMed, updated to December 2022) with the search 
term “CNTNAP2” and “CASPR2”, including articles with 
reported pathogenic or likely pathogenic variants or vari-
ants of uncertain significance (VUS) in CNTNAP2 that were 
suspected to contribute to the phenotype of patients. Patients 
with copy number variation (CNV) that encompassed other 
genes that were likely to contribute to the phenotype and/or 
reports without available clinical information were excluded. 
We also excluded reports of subjects with limited clinical 
information.
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Statistical analysis

We used descriptive analysis to characterize our cohort and 
previously published CNTNAP2 patients. Based on both 
datasets, we compared the phenotypes of patients harboring 
a heterozygosity variant versus (vs.) patients with biallelic 
variants using chi-squared test or a Fisher’s exact test.

Results

Patients

We enrolled 22 patients (14 males) aged between 3 and 
19 years (Table 1). Consanguinity was reported in six fami-
lies (6/17, 35.3%); a family history of neurological diseases 
and/or disabilities was present in 11/17 subjects (64.7%).

Auxology and dysmorphology

Five patients (5/22, 22.7%) presented with failure to thrive. 
Four subjects had microcephaly while one was found to be 
macrocephalic. A total of eight patients (8/22, 36.3%) exhib-
ited non-specific facial dysmorphisms (Fig. 1a). In addition, 
café-au-lait stains were observed in two patients.

Neurodevelopment

Global developmental delay (GDD), of variable severity, is 
reported in almost all patients (21/22, 95.5%). Moreover, 
individual-1 (Ind-1) and Ind-3 had early normal develop-
ment before the onset of epilepsy, leading to major irrevers-
ible regression, while Ind-17 experienced a partial recov-
ery of her cognitive and motor skills after seizure control. 
Intellectual disability (ID) has been assessed as mild in 4 
patients, moderate in 9, severe in 7 and profound in 1 sub-
ject, whereas Ind-22 had a borderline intelligence quotient.

Epilepsy

Epilepsy occurred in 21 patients (95.5%) with onset at 
median age of 22.5 months [17 25th percentile–29.2 75th 
percentile]. Major findings are summarized in Table 2. 
Seizures were mainly described as primary generalized 
tonic–clonic (GTC) seizures (11/21, 52.3%) or focal motor 
seizures with impaired awareness (FIA) (11/21, 52.3%) 
and focal to bilateral (7/21, 33.3%). Tonic seizures (5/21, 
23.8%), absences (3/21, 14.3%) and atonic seizures (2/21, 
9.5%) were also reported. In three patients fever represented 
a trigger (3/21, 14.3%). Status epilepticus has occurred in 
2 individuals (2/21, 9.5%). Half of the cohort experienced 
daily seizures at onset (10/21, 47.6%). Median number of 
anti-seizure medications (ASMs), prescribed over the course 

of their history, was 3 [3 25th percentile–5 75th percentile]. 
Eight patients (8/21, 38%) achieved seizure freedom for 
more than one year, and the other 8 (8/21, 38%) benefited 
from ASMs by showing a considerable seizure frequency 
reduction greater than 50%. None of them discontinued 
ASMs nor did any of them undergo epilepsy surgery. EEG 
often showed epileptic discharges in the temporal or fronto-
temporal regions (8/21, 38%) (Fig. 2).

Neuropsychiatric features and other neurological 
and neurobehavioral findings

Expressive and/or receptive language was consistenly 
impaired in all patients. A formal diagnosis of ASD was 
reported in nine patients (9/22, 40.9%), variably associated 
with other neuropsychiatric comorbidities such as hyperac-
tivity (4/21, 19%) and behavioral issues (4/21, 19%). More 
specifically, sudden episodes of aggressive and violent 
behavior were reported in Ind-3, Ind-6 and Ind-21, while 
psychomotor agitation occurred occasionally in Ind-8. 
Coprophagia was reported in two sisters (2/22, 9.1%) from 
family 2. No other psychiatric comorbidities have been 
identified in our population. Neurological examination 
revealed hypotonia of varying degrees in 12 cases (12/22, 
55%) and hyporeflexia in 5 (5/22, 23%). Six patients exhib-
ited an ataxic gait (6/22, 27%). Two patients presented with 
breathing disorders consisting of episodes of hyperpnea and 
apnea during the day (2/22, 9%). No sensorineural deficits 
or extrapyramidal disorders were noted.

Neuroimaging

Neuroimaging studies were performed in 21/22 subjects, 
including 18 brain magnetic resonance imaging (MRI) and 
3 computed tomography (CT) studies (Ind-1, Ind-5 and 
Ind-7). Brain MRI revealed non-specific dysmorphisms in 
the majority of subjects (11/21, 52.4%) (Fig. 1b), including 
inferior cerebellar vermis hypoplasia (9/21, 42.9%), abnor-
malities of the corpus callosum (6/21, 28.5%; thick in two 
cases and thin in four other cases), superior cerebellar ver-
mis atrophy (4/21, 19%), mild white matter volume reduc-
tion with ventricular enlargement (3/21, 14.3%), cerebellar 
dentate nuclei signal alterations (2/21, 9.5%), and mild cer-
ebral atrophy (2/21, 9.5%). Signal abnormalities consistent 
with focal cortical dysplasia were noted at the level of the 
anterior temporal lobes in three subjects (Ind-2, Ind-8, and 
Ind-12). Neuroimaging was unremarkable in ten patients 
(10/21, 47.6%).

Other comorbidities

Extra-neurological comorbidities occurred in nine indi-
viduals (9/22, 40.9%), including recurrent respiratory 
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infections, haematological disorders (pancytopenia, 
haemolytic anaemia) and rectal prolapse (2/22, 9%). Pre-
cocious puberty, asthma, hypogammaglobulinemia, gas-
troesophageal reflux and osteopenia were reported once 
(1/22, 4.5%). None of our patients presented with congeni-
tal abnormalities of any extra-CNS organ. Two patients in 
our cohort deceased: the first at the age of 13 (Ind-1) due 
to cachexia in the context of feeding difficulties and severe 
GDD, while the other (Ind-20) at 7 years for unknown rea-
sons. No statistically significant differences were observed 
when comparing patients with a history of consanguinity 
and non-consanguinity.

Genetic results

A total of 18 distinct CNTNAP2 variants were identified, 
seven  of which were novel (Online Resource). Except for 
two heterozygous variants, all other individuals were found 
to harbor biallelic variants; either homozygous (n = 16) or 
compound heterozygous (n = 4) variants. Variants included 
ten likely gene-disrupting (LGD) variants, four intragenic 
deletions (identified either by microarray or an epilepsy 
NSG gene panel) and three missense variants. Sanger 
sequencing confirmed variants segregation with the phe-
notype within these families. All variants were absent or 
extremely rare in human population variant databases (allele 
frequency ranging from 0 to 0.0001557 in the gnomAD data-
base). None of the variants were reported in a homozygous 
state in healthy individuals. LGD variants were scattered 

Fig. 1  a Ind- 5, -6, -7, -8, -12, -14, -15, -16 and -17 iconography is 
shown (from left to right). Common facial dysmorphisms are shown 
including prominent ears (Ind-6 and Ind-7) and hypertelorism (Ind-6, 
Ind-12). Ind-7 shows mild ptosis of the left eyelid. Ind-14 presents 
with lips thickness, prognathism, and prominent philtrum. A lean, 
elongated face with mild lax skin is observed in Ind-15. Ind-17 has 
sparse hair. No noticeable dysmorphisms are appreciable in Ind-
5, Ind-8, Ind-16 and Ind-17. b Brain MRI findings of the patients 
and a control; sagittal T1-weighted (first) and coronal and/or axial 
T2-weighted (middle and/or last) images. Inferior cerebellar ver-
mis hypoplasia is noted in all the cases included in the figure (thin 

arrows) associated with mild superior cerebellar vermis atrophy in 
Ind-3, Ind-8, Ind-12, and Ind-17 (empty arrowheads). A thin corpus 
callosum is present in Ind-2, Ind-13 and Ind-16, while a thick pos-
terior corpus callosum is noted in Ind-3 and Ind-8 (empty arrows). 
Mild white matter volume reduction with consequent ventricular 
enlargement is noted in Ind-3, Ind-13 and Ind-16 (asterisks). Cerebel-
lar dentate nuclei T2 hyperintensity is visible in Ind-6 and Ind-12 
(arrowheads). In Ind-2, Ind-8 and Ind-12 there are additional uni- or 
bilateral T2 hyperintensities at the level of the anterior temporal lobes 
(thick arrows) in keeping with focal cortical dysplasias
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throughout CNTNAP2 and included four different frameshift 
and four nonsense changes and two splice site variants. All 
frameshift and nonsense variants were predicted to result 
in premature termination codon and, therefore, likely 
be degraded through nonsense-mediated mRNA decay 
(NMD). As such these were classified as pathogenic/likely 
pathogenic. Of note, the frameshift variant c.1361_1362del 
p.(Asn454ArgfsTer24) was recurrent in eight subjects of 
families 1–4 of Croatian Roman ancestry and the nonsense 
variant c.3262C > Tp.(Arg1088Ter) was found in three sub-
jects of two nonrelated Egyptian families suggesting these 
variants are likely to be founder mutations in these popula-
tions. Two individuals carried homozygous splicing variants 
as follows: the variant c.1777+2T > C (Ind-11) affects the 
consensus GT-splice donor site of intron 11 and was com-
putationally predicted to cause a loss of a splice donor site 
disrupting the reading frame and resulting in NMD (Splice 
AI score 0.98). Thus, it was classified as likely pathogenic 
according to the ACMG criteria. The homozygous variant 
c.550+5G > T (Ind-15) predicts a loss of a splice donor site 
(Splice AI score 0.66), yet it remains a VUS according to the 
current ACMG guidelines. CGH-array revealed two intra-
genic CNTNAP2 deletions in Ind-17: a 31,949 bp deletion in 
7q35(147,651,818–147,683,766) encompassing exon 15 and 
inherited by her mother and a paternally inherited deletion of 

9317 bp in 7q36.1 (148,071,316–148,080,632), encompass-
ing exon 22. These deletions were confirmed by multiplex 
ligation-dependent probe amplification. Epilepsy gene panel 
showed two compound heterozygous deletions in Ind-10, 
namely the c.98-?_402+? that encompasses exons 2–3 of 
CNTNAP2 and the heterozygous deletion c.98-?_1348+?, 
encompassing exons 2–8. Both deletions were confirmed 
by CGH-array. Individual-13 harbored the compound het-
erozygous missense variant c.400T > G p.(Trp134Gly) and 
c.2449G > A p.(Gly817Arg) that were classified as VUS. 
We included subjects harboring these biallelic VUS given 
supporting criteria of pathogenicity and consistent phe-
notype. The heterozygous missense variant c.3814A > T 
p.(Ile1272Phe) was found to be de novo in individual 21 
while an ID/ASD panel identified in Ind-22 the frameshift 
variant c.1628del p.(Ser543Ilefs*13) that was maternally 
inherited. Both variants were classified as VUS.

Overall, we ascertained a diagnosis with biallelic CNT-
NAP2 pathogenic/likely pathogenic variants in 18 out of 
22 subjects included in this study. No other pathogenic/
likely pathogenic variants were identified in the currently 
known NDD-related genes in the ES data in these families. 
Additional VUS detected in our cohort either by ES or 
microarray are listed in Online Resource.

Fig. 2  EEG features. a. Ind-1, 10  years old. Sleep recording. High 
voltage bilateral anterior delta waves and focal spikes over the fron-
tal regions of both hemispheres.  b Ind-2, 2  years 9  months. Awake 
recording. Synchronous and asynchronous spikes on bilateral fron-

tal–temporal regions. c Ind-10, 3 years old. Awake recording. Right 
central-temporal medium voltage sharp waves. d Ind-10, 3 years old. 
Sleep recording. Nearly sub-continuous trend of right central-tempo-
ral sharp waves in the N2 phase, with a tendency to spread
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Previously published cases

We identified 50 previously published patients from 17 
articles (Strauss et al. 2006; Friedman et al. 2008; Jackman 
et al. 2009; Zweier et al. 2009; Gregor et al. 2011; Al Mur-
rani et al. 2012; Watson et al. 2014; Pippucci et al. 2015; 
Smogavec et al. 2016; Rodenas-Cuadrado et al. 2016; Ric-
cardi et al. 2019; Falsaperla et al. 2020; Freri et al. 2021; Lu 
et al. 2021; Mittal et al. 2021; Scala et al. 2021; Badshash 
et al. 2022) reporting the clinical phenotype of patients car-
rying pathogenic or likely pathogenic CNTNAP2 variants 

or VUS suspected to contribute to the phenotype (Online 
Resource). Figure 3 summarizes the main phenotypic fea-
tures observed in our cohort and in the literature, distin-
guishing between heterozygous and homozygous variants, 
while variant positions are shown in Fig. 4.

Genotype–phenotype correlation

Altogether, GDD and epilepsy were significantly more pre-
sent in patients harboring homozygous variants than in hete-
rozygous patients (p < 0.0001) (Online Resource). Similarly, 

Fig. 3  Summary of the key 
clinical features of patients 
carrying mono- or bi-allelic 
pathogenic CNTNAP2 variants 
in our cohort and the literature. 
ID intellectual disability, NPsy 
neuropsychiatric findings. 
Statistical significance refers 
to patients with biallelic versus 
monoallelic variants

Fig. 4  CNTNAP2 variants position in our cohort (in bold, # individual) and previously published patients. The arrow indicates a deletion, and the 
line a duplication
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ASD (p = 0.009), hyporeflexia (p = 0.012), language impair-
ment (p = 0.020), as well as a moderate to severe degree of 
ID (p = 0.031) were more frequent in patients with biallelic 
variants.

Discussion

We reported a cohort of 22 new patients harboring either 
biallelic (20) or monoallelic variants (2) in CNTNAP2. 
To the best of our knowledge, this is the largest cohort of 
patients with CNTNAP2 variants reported together to date. 
Our study corroborates previous literature, confirming that 
CNTNAP2 deficiency due to biallelic variants leads to a 
distinct neurodevelopmental disorder typically character-
ized by developmental delay, seizure onset within the first 
2 years followed by developmental regression, moderate 
to severe ID and variable occurrence of ASD and behavio-
ral abnormalities. Similarly to previous reports, hypotonia 
and hyporeflexia are frequent, whereas only a few patients 
display ataxia. Likewise, occipital frontal circumference is 
normal in the majority of patients in contrast to the initial 
reports of relative macrocephaly. Furthermore, our patients 
harboring biallelic variants do not display the typical crani-
ofacial features and abnormal breathing patterns reported for 
PTHS. Together, this supports previous literature suggesting 
that the name PTHS1 should be replaced by CASPR2-defi-
ciency NDD (Rodenas-Cuadrado et al. 2016). In addition, 
the occurrence of epilepsy in virtually all patients within 
the first 2 years with consequent regression of development 
and cognitive impairment would suggest a DEE. Epilepsy is 
indeed a cardinal feature in patients with biallelic CNTNAP2 
variants. The onset of seizures typically occurs in the first 
two to three years of life. Seizures initially are very fre-
quent and difficult to treat. However, most patients achieve 
good seizure control within a few years after onset. Seizures 
are most frequently focal motor, at times with secondary 
generalization This is in line with previous descriptions in 
the literature (Strauss et al. 2006; Rodenas-Cuadrado et al. 
2016; Smogavec et al. 2016). Cortical areas most typically 
involved seem to be the frontal and temporal regions (Strauss 
et al. 2006).

CASPR2 is found in the inhibitory presynaptic compart-
ment and, to a lesser extent, in the excitatory postsynaptic 
compartment where it is involved in several pivotal pro-
cesses, such as neurite development and synapse matura-
tion, stability, and function (Horresh et al. 2008). It also 
localizes to juxtaparanodes of myelinated axons, where it is 
involved in neuron-glia interactions, and mediates the clus-
tering of potassium channels via interaction with contactin 
2 (also known as TAG-1) (Horresh et al. 2008). Similar to 
humans, Cntnap2−/−mice display epilepsy in addition to 
ASD features and cortical developmental abnormalities 

(Peñagarikano et al. 2011). RNAi-mediated knock-down of 
Caspr2 produced a cell-autonomous decrease in dendritic 
arborization and spine development in pyramidal neurons, 
decreasing the number of excitatory and inhibitory synapse 
numbers, and impairing synaptic transmission (Anderson 
et al. 2012). Together, these observations suggest that a 
perturbation of synaptic homeostasis and function due to 
CASPR2 deficiency leads to an imbalance of excitatory and 
inhibitory post-synaptic currents in neural networks that may 
contribute to epilepsy phenotypes (Anderson et al. 2012).

Strauss et al. (2006) described neuroimaging features of 
focal cortical dysplasia in three subjects that were consistent 
with findings of neuronal migration defects from brain biop-
sies. These results were in line with neuropathological and 
physiological studies in the Cntnap2−/−mice showing neu-
ronal migration abnormalities, reduced number of interneu-
rons and abnormal neuronal network activity (Peñagarikano 
et al. 2011). Subsequent to this, no further reports have 
described malformations of cortical development: however, 
cerebellar hypoplasia and nonspecific white matter abnor-
malities have been occasionally reported in subjects with 
biallelic CNTNAP2 variants (Zweier et al. 2009; Smogavec 
et al. 2016). Here, we describe the largest cohort of sub-
jects for whom brain MRI was available, showing that three 
subjects had unilateral or bilateral anterior temporal lobe 
T2 hyperintensities consistent with focal cortical dysplasia, 
supporting the notion of malformation of cortical develop-
ment due to CNTNAP2-deficiency. Interestingly, we also 
noted several nonspecific findings that have been described 
in subjects with PTHS, including callosal anomalies, white 
matter volume reduction, dentate nuclei signal alterations 
and other minor posterior fossa abnormalities.

All our patients suffered from severe speech impairment 
and one-third had ASD or other behavioral abnormalities 
including aggressive behavior and stereotypic movements. 
There is evidence that supports a role for CNTNAP2 in lan-
guage development, including enriched expression during 
human brain development in frontotemporal-subcortical 
circuits known to be critical for human executive function 
(Alarcón et al. 2008). Despite some conflicting results (Sam-
path et al. 2013; Murdoch et al. 2015; Toma et al. 2018; 
Zhang et al. 2019), several studies have linked SNPs in 
CNTNAP2 variants with ASD and/or language-related dis-
orders (Vernes et al. 2008; Li et al. 2010; Gregor et al. 2011; 
Uddin et al. 2021). Further, some SNPs (e.g. rs2710102 and 
rs7794745) have been associated with abnormal activation 
of the right inferior frontal gyrus (Broca’s area homologue) 
and right lateral temporal cortex in subject with ASD and 
reduced volume of specific grey matter areas (Whalley et al. 
2011). Together this evidence supports an impact of CNT-
NAP2 variation on language related brain regions and pheno-
types; however, it is not yet clear what role (if any) CASPR2 
has in the development of language.
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While the loss of function (LoF) mechanism due to bial-
lelic CNTNAP2 variants is well understood, the impact of 
heterozygous CNTNAP2 variants is more controversial. It 
has been suggested that the phenotypic picture of each het-
erozygous variant may result from the combination of two 
mechanisms. On the one hand a dominant-negative effect 
on wild-type Caspr2 function might be due to endoplasmic 
reticulum (ER) retention mimicking the homozygous null 
phenotype (Canali and Goutebroze 2018). On the other hand 
a loss of function mechanism for adhesion-defective variant 
proteins, could enable the interaction with their extracel-
lular partners (Canali and Goutebroze 2018). According to 
this model, the phenotype of our patient, Ind-21 (mild ID, 
epilepsy and behavioral abnormalities) harboring the de 
novo missense variant p.(Ile1272Phe) lying in the extracel-
lular domains may be due to a LoF mechanism if the pro-
tein is secreted from the ER. However, the impact of the de 
novo frameshift variant in the patient (Ind-22) with isolated 
ASD remains controversial since it is predicted to undergo 
nonsense-mediated decay and thus it would unlikely exert 
a dominant negative effect. It is also noteworthy that CNT-
NAP2 is not constrained for missense and Lof variants in the 
gnomAD databse (Z score − 0.29, pLI score 0) indicating 
that heterozygous missense and Lof variants of CNTNAP2 
are not subject to negative selection (Lek et al. 2016). This 
is in line with the fact that carrier parents of CNTNAP2 vari-
ants are healthy. Furthermore, large scale studies on gene 
enriched for de novo variants in NDD have failed to high-
light this gene with any meaningful significance (Kaplanis 
et al. 2020; Satterstrom et al. 2020) and several other stud-
ies did not identify a significant burden for CNTNAP2 rare 
variants in patients with ASD or schizophrenia comparing to 
controls (Murdoch et al. 2015; Toma et al. 2018; Zhang et al. 
2019), suggesting that CNTNAP2 is not a a primary risk 
gene for psychiatric disorders. Although it might be possible 
that CNTNAP2 heterozygous variants contribute to ASD and 
related neuropsychiatric phenotypes with a polygenic inher-
itance pattern, it seems unlikely based on the above observa-
tions that they solely result in a neuropsychiatric phenotype 
following a classical autosomal dominant Mendelian inherit-
ance. Taken together, we propose CNTNAP2-related NDD 
as an exclusively recessive disorder while the dominant ver-
sion is becoming weaker with the increase body of evidence 
in the literature and in human population variant databases.

In conclusion, we report the largest cohort of patients 
with CNTNAP2 variants to date and define the core phe-
notype associated with biallelic CNTNAP2 variants. These 
data suggest that patients with biallelic variants are likely to 
develop severe cognitive impairment, epilepsy and variable 
behavioral abnormalities.

In most cases, patients have an unremarkable perinatal 
history and a normal psychomotor development or slightly 
delayed during the first year of life. Concomitant with the 

epilepsy onset, occurring more often during the second year 
of life, developmental stagnation or regression is observed. 
Epilepsy can be difficult to control at the beginning, with a 
“stormy” phase, while during childhood seizures are usu-
ally well-controlled with ASMs. Response to ASMs may 
be associated with a slight cognitive improvement in some 
cases, although most patients still suffer from moderate to 
profound ID throughout their lives. In more severe cases, 
feeding difficulties, failure to thrive with increased poten-
tially fatal comorbidities may be observed.

The role of heterozygous variants remains to be fully 
elucidated. Future studies should address the functional 
impact of heterozygous CNTNAP2 variants and the related 
pathomechanisms with ultimately important implications for 
patient management and counselling.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00439- 023- 02552-2.
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