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Aim To compare interleukin-2 levels (IL-2) and IL-2 gene 
site 1 methylation levels between preterm newborns (PN) 
and full-term newborns (FN) and investigate their associ-
ation with the environmental exposure of their mothers 
during pregnancy.

Methods IL-2 and IL-2 gene site 1 methylation levels were 
assessed in 50 PN and 56 FN. Newborns’ mothers filled in 
questionnaires about their living and occupational envi-
ronments, habits, diets, and hobbies.

Results The mothers of PN were significantly more fre-
quently agrarian/rural residents than the mothers of FN. 
PN had significantly higher IL-2 levels, and significantly 
lower methylation of IL-2 gene site 1 levels than FN.

Conclusion IL-2 levels, hypomethylation of the IL-2 gene 
site 1, and the mother’s rural residence (probably due to 
pesticide exposure) were predictive biomarkers for preterm 
birth. For the first time, we present the reference values for 
the methylation of IL-2 gene site 1 in PN and FN, which can 
be used in the clinical setting and biomonitoring.
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Preterm birth (PB) represents a significant medical and so-
cial problem. Annually, 15 million newborns worldwide 
are born preterm (1). The causes of preterm birth range 
from inflammation, severe preeclampsia, and premature 
rupture of the membranes to genetic predisposition (2,3). 
However, preterm birth may also be the consequence of 
the mother’s environmental exposure, diet, and habits 
(4,5). The environmental effects that have been report-
ed to affect the duration of the gestational period are in-
creased levels of organochlorine pesticides, air pollution, 
β-hexachlorobenzene, hexachlorocyclohexane, and heavy 
metals (6,7). Studies on this topic have been conducted us-
ing a limited number of biomarkers.

Preterm newborns have a higher risk of morbidity than FN, 
which is why they need long-term follow-up and medical 
monitoring (8-10). Late PN have a higher rate of neurode-
velopmental problems and hypertension, with a higher 
risk of infant death in their offspring (8,11).

Because health risks in PN are frequently associated with 
immunological and developmental disturbances (12,13), it 
is important to identify biomarkers that may predict spe-
cific health risks. Previous studies revealed that immune 
immaturity in PN (14) was associated with a higher risk of 
asthma, bronchiolitis, cardiovascular disturbances, neoplas-
tic diseases, and a weaker response to vaccination (15-20).

Interleukin-2 (IL-2), primarily produced by activated CD4+ 
T cells, drives T cell proliferation and differentiation (21,22). 
Full-term newborns’ T lymphocytes secrete little or no IL-2, 
compared with adult T lymphocytes (23,24). Increased IL-2 
was shown to be associated with an increased risk of asth-
ma in children, while animal models showed that IL-2 also 
affected other tissues, such as during cardiovascular recov-
ery (25). In PN, IL-2 levels have been measured rarely, with 
contradictory results, and in a small number of subjects. 
The published results showed lower or higher levels of IL-2 
in PN compared with FN (26-28).

Many CpG sites have been associated with preterm birth 
and gestational age (29-31). Differences in CpG site methy-
lation levels were found between preterm and term-birth 
children at 18 years of age (32). Umbilical cord blood cells 
from PN differ in DNA methylation levels compared with 
those of FN, and these differentially methylated sites are 
involved in different pathways, among others in immune 
response (33). In addition, methylation in newborns may 
be significantly modified by the mother’s diet and environ-
mental exposure (34-38).

Although methylation of the IL-2 gene site 1 has been as-
sociated with asthma risk in newborns (39), studies inves-
tigating DNA methylation disturbances in PN are still lim-
ited, while epigenetic biomarkers are not even considered 
in clinical diagnostics (40,41). The interaction between en-
vironmental exposure, methylation, preterm birth risk, and 
health risks during adulthood has not been well investi-
gated. Prenatal exposure to pesticides was shown not only 
to significantly affect the immunological system but also 
to increase the risk of autism. Furthermore, it was associ-
ated with deviations in the level of IL-2, which is known to 
be involved in central nervous system development and 
normal brain physiology (42,43). Additionally, it has been 
reported that autism can be characterized by disturbances 
in DNA methylation (44).

The aim of this study was to: a) measure IL-2 levels in late 
PN and FN newborns, b) compare the levels of IL-2 gene 
site 1 methylation in PN and FN, and c) evaluate the as-
sociation between IL-2 and methylation of IL-2 gene site 
1 levels in PN and FN levels with environmental exposure, 
habits, and diet of their mothers during pregnancy.

Participants and methods

Participants

IL-2 levels and IL-2 site methylation levels were assessed in 
the cord blood of 56 FN and 50 PN and these results were 
compared with data collected through questionnaires 
filled out by their mothers. Preterm birth was defined as 
birth before 37 completed weeks of gestation (GA). In this 
study, the range of GA weeks in PN was from 27 until 36 
weeks, while in the case of FN, the range was from 37 to 
41. Only spontaneous preterm birth newborns were in-
cluded. Newborns too small for gestation age and those 
with malformations were excluded. The mothers signed 
written consent and filled in detailed questionnaires about 
their medical and family history, occupational exposures, 
diet (meat, soft beverages, alcohol, dairy products, vege-
tables, fruit), hobbies (use of plastic materials, paint, glue), 
residence, in-house environment during pregnancy (reno-
vation), and smoking. The exclusion criteria were parental 
occupational exposure to chemical agents or radiation, pa-
rental chemotherapy or radiotherapy during life, parental 
addiction to drugs, and alcohol abuse. The questionnaire 
was based on the experiences from the NewGeneris proj-
ect (45), adjusted for Croatian lifestyle specificities. Cord 
blood vein samples were collected within a 10-month 
period. The samples were centrifuged for serum 
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separation for 10 min at 3000 rpm and were frozen at -80 
°C. The study was approved by the Ethics Committee of Za-
greb University Hospital Center.

Interleukin-2 measurements

The serum IL-2 concentration was measured with ELISA 
(Human IL-2 ELISA Kit High Sensitivity, Abcam, Catalog 
Number #ab46054, Cambridge, UK) according to the man-
ufacturer’s instructions. Serum samples and standards of 
known IL-2 concentrations were added to the appropriate 
microplate wells, coated with a monoclonal antibody spe-
cific for human IL-2, and simultaneously incubated with a 
biotinylated monoclonal antibody specific for IL-2 at room 
temperature. After the washing step, the enzyme strepta-
vidin-HRP that binds to biotinylated antibody was added 
to the wells and incubated at room temperature. Follow-
ing another washing step, Chromogen TMB Substrate so-
lution was added, acting on the bound enzyme to induce 
a colored reaction product. After 15 minutes, the color 
development, which was directly proportional to the IL-2 
concentration present in the samples, was stopped with 
an appropriate stop reagent. The absorbance was read on 
a microplate reader, using 450 nm as the primary wave-
length and 610 nm as the reference wavelength.

DNA methylation analysis

Whole blood (500 μL) was mixed with red blood cell ly-
sis buffer (900 μL, 0.32 M Sucrose, 5 mM MgCl2, 1% Triton 
X-100 and 10 mM Tris-HCl pH 8.0) and centrifuged at 7000 
rpm for 10 minutes to purify white blood cell nuclei. A to-
tal of 500 μL of nucleic lysis buffer (10 mM EDTA pH 8.0, 
10 mM Tris-HCl pH 8.0, 1% SDS and 0.01 mM sodium cit-
rate dihydrate) and 20 μL Proteinase K (20 mg/mL) were 
added to the white blood cell nuclei pellet and incubated 
on a thermal shaker at 56 °C and 600 rpm overnight. DNA 
was then purified and precipitated with a modified salting-
out method (Miller, 1988). Finally, DNA was resuspended in 
50 μL of TE buffer (pH 8.0). DNA concentration and quality 
were measured with the NanoDrop ND-2000 spectropho-
tometer (NanoDrop Technologies, Wilmington, DE, USA). 
Samples were then stored at -20 °C until further use.

All of the procedures were performed according to the 
manufacturer’s instructions. In total, 500 ng of isolated ge-
nomic DNA was used for bisulfite conversion with an Epi-
Tect Plus DNA Bisulfite Kit (#59124; Qiagen, Hilden, Ger-

many). Then, 10 ng of bisulfite-treated DNA was used 
as a template for polymerase chain reaction (PCR) 

amplification of the promoter region of interest with a Py-
roMark PCR Kit (#978703; Qiagen). Primers and annealing 
temperatures for PCR and DNA methylation analysis of IL2 
were as described by Curtin et al (39). The biotinylated PCR 
product was purified with a Pyromark Q24 Vacuum Work-
station (Qiagen). IL2 promoter methylation levels were 
then measured with Pyromark Q24 Advanced System with 
the PyroMark Q24 CpG Advanced Reagents (#970922; Qia-
gen). DNA methylation levels were calculated as the ratio 
of C/T at a CpG site with the Pyromark Q24 Advanced Soft-
ware 3.0.1 (#9022779, Qiagen).

Statistical analysis

The univariate comparison between controls and pre-
term births was performed with a Mann-Whitney test for 
continuous variables and a Fisher exact test for categori-
cal variables. The multivariate analysis was performed with 
the generalized linear model (GLM) with a binomial family 
and logarithmic link to the dichotomous variable (0/1) that 
labels controls and pre-term births, in order to estimate 
the risk ratio (RR) (46). The variables that were significantly 
associated with the type of birth in the univariate analy-
sis and those selected by a stepwise procedure, together 
with IL2 and methylated IL2, were included in the statisti-
cal models. The confidence intervals were estimated with a 
bootstraping procedure with 1000 replicates. The analysis 
was performed with Stata Software version 16.1 (StataCorp 
LLC, College Station, TX, USA).

Results

IL-2 levels and IL-2 gene site 1 methylation level were as-
sessed in 56 FN (37-42 weeks GA) and 50 PN (27-36 weeks 
GA). There was no significant difference in sex between PN 
and FN. PN belonged to the group of late PN according to 
gestational age (median 35 GW) (Table 1).

In both groups, the mothers did not drink alcohol during 
pregnancy. There was no significant difference between 
PN and FN in smoking status, probably due to the very 
few mothers who smoked during pregnancy. Significant-
ly more mothers who gave birth to PN had an agrarian 
and rural residence than mothers who gave birth to FN 
(Table 2).

The Mann-Whitney test showed that the mean value of 
IL-2 levels was significantly higher in PN than in FN, who 
did not express IL-2. Methylation of IL-2 gene site 1 levels 
was significantly higher in FN than in PN (Table 3). Sex dif-
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ferences were not detected in either of the groups with re-
gard to IL-2 levels and IL-2 mehylation gene site levels.

In the multivariate GLM model, the IL-2 levels were dichot-
omized with respect to zero, while IL-2 gene methylation 
was dichotomized with respect to the median value of 
70.5. The results showed that, when IL2 was greater than 
zero, the risk of preterm birth was 3.47 (Table 4) and when 
IL-2 gene site 1 methylation was greater than its median 
value, the risk of preterm birth was 0.48. A rural residence 
increased the risk of preterm birth by two times (Table 5), a 
finding confirming the results of the univariate analysis.

Discussion

This is the first study to show that increased levels of IL-2 
and decreased IL-2 gene methylation site 1 levels in cord 
blood were significant predictive factors of preterm birth 
risk. Other studies also detected higher levels of IL-2 in PN 
compared with FN (26,28,47,48). IL-2 and IL-2 gene meth-
ylation site 1 levels were not associated with the moth-
er’s diet, smoking, coffee consumption, or living habits. 
Our study is the first to report the levels of IL-2 gene site 
1 methylation in PN and FN, which may be used as a ref-
erence in future studies and clinical settings, as well as an 
important biomarker of preterm birth.

The importance of preterm birth prevention is reflected in 
the United Nations Sustainable Development Goal 3 tar-
get #3.2, which aims at avoiding all preventable deaths of 
newborns and children under 5 years of age by 2030. Due 
to increased health risks during lifetime and immunologi-
cal disturbances (43,49), PN require specific biomonitoring 
and a personalized approach.

Table 1. Characteristics of preterm and full-term newborns

Preterm newborns Full-term newborns

N
Mean, 

median (SD) 25°/75°* range N
Mean, 

median (SD) 25°/75° range P value
Gestational age 50 34.10, 

35.0±2.28
    33.0/36.0   27-36 56     39.54, 

    40±1.06
    39/40     37-42 <0.001

Weight 50 2284.50, 
2350.0±614.70

1900.0/2665.0 930-3640 56 3508.20, 
3499±404.38

3260/3795 2710-4610 <0.001

N % N %
Sex 0.701
female 23 46.0 28   50.0
male 27 54.0 28     50.0
Mother’s age 50 32.10, 

33.0±6.29
    27.0-35.0   20-49 56     31.91, 

      9±5.17
    29/35     17-42 0.899

Mother’s smoking status 45 90.0 47     83.9 0.402
non-smoker
smoker   5 10.0   9     16.1
*25/75 percentile.

Table 2. Comparison of living environment between the 
mothers of preterm and full-term newborns during pregnancy

Preterm Full-term

N % N % P value

Residence 0.006
Urban 16 32.0 35 62.5
Rural   7 14.0   5   8.9
Agrarian 27 54.0 16 28.6

Table 3. Interleukin (IL-2) levels and the methylation levels of IL-2 gene

Preterm Full-term

N
Mean, 

Median (SD) 25°/75°* Range N
Mean, 

Median (SD) 25°/75° Range P value
IL-2 MET 47 67.32, 

68.0 (5.63)
63.0/71.0 53-80 55 72.76, 

73 (4.57)
69/76 61-82 <0.001

IL-2 38   2.10, 
  0 (4.25)

  0-1.65   0-16.78 54   0.00, 
  0 (0.00)

  0/0   0-0 <0.001

*25/75 percentile.
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Earlier studies demonstrated an association between pre-
term birth and rural residence (50-52). Also, large-scale 
studies in humans are increasingly being undertaken to 
assess the effect of bendiocarb, a carbamate insecticide 
used in public health and agriculture, on the neonatal im-
mune system (53,54). Bendiocarb was found to cause in-
creased IL-2 in cord blood, and to be correlated with the 
maternal plasma concentration of bendiocarb (55). In an 
animal model, organophosphorus insecticides such as 
pirimiphos-methyl (O-2-diethylamino-6-methylpyrimidin-
4-yl O,O-dimethyl phosphorothioate) or endosulfan signif-
icantly increased IL-2 production (56,57).

Immunological disturbances such as deviations in cytokine 
levels in newborns and early childhood may be related to 
allergies, susceptibility to inflammation, and neurodevel-
opmental disturbances later in life (39,58,59). Increased 
IL-2 was shown to obstruct T follicular helper cell differen-
tiation, a process critical for long-term immunity and rein-
fection (60).

Besides immunological effects, IL-2 has been associated 
with neurological disturbances during development. Ani-
mal models suggested that IL-2 was required for cell de-
velopment in the mesolimbic and mesostriatal systems, 

whose pathology is associated with autism and cog-
nitive disturbances (61-63). Autism and deviations 

in cognitive capacity are also characterized by disturbed 
IL-2 and associated to pesticide exposure (53,64,65). Thus, 
our results may contribute to retrospective and prospec-
tive research on the associations between transplacental 
exposure to pesticides, IL-2 levels, and neurodevelopmen-
tal risks.

DNA methylation status was shown to be significant in T-
cell differentiation during intrauterine development (40). 
Preterm and term neonates show differences in methyla-
tion in umbilical cord T-cells and erythrocytes. Compared 
with preterm neonates, term neonates have global hyper-
methylation in term T-cells (3,66-68). The common profile 
of all preterm newborns is that they carry lifelong patterns 
of disturbed DNA methylation (3,30). Hypermethylation of 
IL-2 gene site 1 was observed in newborns of mothers with 
atopic asthma, while increased methylation indicated an 
increased risk for asthma exacerbations (39). Hypomethyla-
tion of the IL-2 gene was also found in children with peanut 
allergy, a finding that could explain their elevated levels of 
IL-2 when exposed to peanut proteins (69). Although there 
was no association of spontaneous preterm birth with IL-2 
methylation in the African-American population of the US, 
an association was established with hypomethylation of 
CYTIP, which is known to be upregulated by IL-2 (70).

Prenatal exposure to fine particles, perfluorinated alkyl 
compounds, PAHs, and some xenoestrogens has been as-
sociated with DNA hypomethylation of leukocytes in the 
umbilical cord (35,71,72). A single study evaluated moth-
ers’ exposure to dichlorodiphenyltrichloroethane in two 
small groups of six newborns, who showed disturbances 
in genome-wide methylation levels (25). Some of the iden-
tified pesticides caused hypomethylation in adults (73,74), 
which suggests that the hypomethylation detected in our 
study may also be associated with mothers’ exposure to 
pesticides.

A limitation of this study is the relatively small sample size, 
which may limit the generalizability of the findings to a 
broader population.

In conclusion, research on the causes of preterm birth and 
preventive measures should focus more on transplacental 
exposure, which may be modified by educating parents 
through consulting during pregnancy. Increased levels 
of IL-2 and decreased levels of IL-2 gene site 1 methyla-
tion are predictors of preterm birth and may affect health 
risks during life, associated not only with the immunologi-
cal system, but also with the central nervous system. The 

Table 4. A generalized linear model for the association 
between interleukin-2 (IL-2) and preterm birth, adjusted by 
residence and painting

Risk ratio 95% confidence interval P value

IL-2
zero 1.00
nonzero 3.47 1.97-6.10 <0.001
Residence
urban 1.00
rural 1.41 0.16-12.62 0.757
agrarian 1.61 0.84-3.06 0.150

Table 5. A generalized linear model for the association be-
tween methylated interleukin 2 (IL-2) gene site 1 and preterm 
birth, adjusted by residence and painting

Risk ratio 95% confidence interval P value

IL-2met
53-70.4 1.00
70.5-82 0.48 0.30-0.76 0.002
Residence
rural 2.10 1.15-3.82 0.016
agrarian 1.84 1.13-2.98 0.014
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exposure to pesticides should be further investigated, and 
education about the associated risks should be included in 
counseling protocols for pregnant women. Further studies 
should assess disturbances of the IL-2 receptor in PN, as an 
important part of the involved pathways.
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