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Abstract

Sarcopenia is a process of progressive aging-associated loss of skeletal muscle mass

(SMM) recognized as a serious global health issue contributing to frailty and increased

all-cause mortality. Exercise and nutritional interventions (particularly intake of dairy

products and milk) demonstrate good efficacy, safety, and broad applicability. Here,

we propose that at least some of the well-documented favorable effects of milk

and milk-derived protein supplements on SMM might be mediated by D-galactose, a

monosaccharide present in large quantities in milk in the form of disaccharide lac-

tose (milk sugar). We suggest that ingestion of dairy products results in exposure

to D-galactose in concentrations metabolized primarily via the Leloir pathway with

the potential to (i) promote anabolic signaling via maintenance of growth factor (e.g.,

insulin-like growth factor 1 [IGF-1]) receptor mature glycosylation patterns; and (ii)

provide extracellular (liver glycogen) and intracellular substrates for short (muscle gly-

colysis) and long-term (muscle glycogen, intramyocellular lipids) energy availability.

Additionally, D-galactosemight optimize themetabolic function of skeletal muscles by

increasingmitochondrial content and stimulating glucose and fatty acid utilization. The

proposed potential of D-galactose to promote the accretion of SMM is discussed in the

context of its therapeutic potential in sarcopenia.
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INTRODUCTION

The importance of the optimization of skeletal muscle mass (SMM)

across the lifespan has been recognized in the context of health main-

tenance and disease prevention for a long time[1]. Skeletal muscles are

not only an integral part of the locomotor system responsible for pos-

ture, movement, and breathing, but also take part in the bidirectional

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.
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communicationwith other organs such as the liver, pancreas, and brain

laying the foundations for integrative multiorgan signaling responsible

for the achievement of homeostasis.[1,2] Furthermore, skeletalmuscles

serve as the principal reservoir for the replenishment of blood amino

acids that are taken up by tissues for protein synthesis and used by the

liver as precursors for gluconeogenesis to support euglycemia.[1] Con-

sequently, maintenance of the SMM provides the necessary structural
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and metabolic support for the optimal functioning of the organism. At

the tissue level, SMM is the product of simultaneous muscle protein

synthesis (MPS) and muscle protein breakdown (MPB). If MPS out-

weighs MPB, positive protein balance is achieved and SMM increases

usually as a result of muscle hypertrophy.

The SMM increases during periods of somatic growth, reachesmax-

imal values in the 3rd decade, and starts to decline naturally around

the 4th decade of life.[3] Sarcopenia—the process of a progressive

and generalized loss of SMM and strength, primarily associated with

aging––has been recognized as a serious global health issue substan-

tially contributing to frailty and the increased risk of falls, the inability

to perform tasks of daily living, physical inactivity, increased risk of

chronic diseases, and increased all-cause mortality.[4–6] Consequently,

the pursuit of effective, safe, and broadly applicable preventive and

therapeutic strategies for sarcopenia have been proclaimed a vital

medical and societal challenge.[7]

Among many strategies that have been proposed for the preven-

tion of sarcopenia, the combination of nutritional and exercise-related

interventions seems to be the best in terms of effectiveness, safety,

and broad applicability. Resistance exercise has been shown to stimu-

late MPS to a greater extent than MPB resulting in periods of positive

net protein balance that favor skeletal muscle hypertrophy.[8] Nutri-

tional interventions, especially the ingestion of high protein-containing

meals can stimulate the development and maintenance of SMM and

potentiate the effects of resistance exercise by (i) further stimulat-

ing MPS via inducing transient hyperaminoacidemia, and (ii) inhibiting

MPB through anabolic signaling (e.g., insulin signaling).[9]

DAIRY PRODUCTS AND MUCLE HYPERTROPHY

Among different nutritional interventions for the maintenance of

the optimal SMM, dairy products (e.g., dairy proteins and milk) have

been extensively studied for their substantial efficacy in achieving

positive net protein balance during[10] or after[11] resistance exer-

cise, in the periods of caloric restriction,[12] and during aging[13–16]

in humans. Ingestion of high-protein dairy milk during 6 weeks of

resistance training has been shown to increase lean mass, strength,

and power in resistance-trained young males in comparison with the

ingestion of the isoenergetic carbohydrate drink.[17] Furthermore,

in the same study, high-protein dairy milk ingestion was associated

with increased insulin-like growth factor-1 (IGF-1), growth hormone,

testosterone, follistatin, and follistatin-myostatin ratio, and decreased

myostatin and cortisol.[17] In a double-blind isoenergetic carbohydrate

placebo-controlled study, the ingestion of a formulated milk product

containing 9 g of milk protein was able to potentiate the anabolic sig-

naling response to a single bout of resistance exercise in healthy male

subjects.[18] Hartman et al. compared the effects of fat-free milk, fat-

free soy protein (isoenergetic, isonitrogenous, andmacronutrient ratio

matched), and isoenergeticmaltodextrin on training-induced leanmass

accretion in healthy young men on a 12-week split-body resistance

exercise program and found that the ingestion of milk was associ-

ated with the greatest increase in fat- and bone-free mass, and type I

and type II muscle fiber area.[10] Importantly, dairy products increase

SMM and promote physical performance in older subjects at risk of

sarcopenia.[19] In a single-blind randomized clinical trial, the inges-

tion of 210 g of ricotta cheese (protein-rich dairy product) per day

for 3 months increased appendicular SMM and attenuated the loss

of muscle strength in men and women above the age of 60.[16] The

results froma12-year-long prospective cohort inKorea suggested that

a high intake of dairy protein was associated with a decreased risk of

developing lowweight-adjusted SMM inmen (although the association

was absent in women).[20] A meta-analysis by Hanach et al. analyzed

1424 (61-81 years old) participants from 14 studies and confirmed

the potential of dairy protein to increase the appendicular SMM in the

elderly.[15]

A number of human studies have shown that milk is superior to

other protein sources when it comes to stimulating MPS,[9–11,21–24]

even in comparison to other animal protein sources that generally

outperform plant protein (possibly due to the amino acid content,

digestion, and absorption kinetics[9,24,25]). The most common expla-

nation for the efficacy of milk and milk proteins when it comes to

stimulating MPS is the presence of fast-digestible whey proteins (β-
lactoglobulins, α-lactalbumins, lactoferrins, and immunoglobulins) that

represent approximately 20% of the total protein content of whole

bovine milk.[26] Whey proteins contain all the essential amino acids,

demonstrate rapid digestion and absorption kinetics, and achieve pro-

nounced post-prandial hyperaminoacidaemia.[9,26] Furthermore, whey

proteins have a high proportion of the branched-chain amino acid

leucine proposed as a key regulator of amino acid-induced MPS and

anabolic response through themammalian target of rapamycin (mTOR)

(e.g., see the “leucine trigger” hypothesis).[9,26–28] When compared

to the residual protein fraction of whole milk consisting mainly of

casein (making up approximately 80% of the total protein content of

whole bovine milk), it has been consistently shown that whey proteins

elicit a greater increment in MPS, show faster digestion and absorp-

tion kinetics, and induce greater post-prandial hyperaminoacidaemia

and hyperleucinemia in humans.[21,29–31] Nevertheless, beyond pro-

tein, milk contains a range of nutrients and bioactive compounds that

mayhavebeneficial health effects,[26,32,33] and thatmaybe responsible

for at least someof the unique properties ofmilk in the context of SMM

optimization. More specifically, milk contains vitamins (e.g., B, A, E),

minerals (e.g., calcium, magnesium, phosphorus, iodine, selenium, zinc),

saturated (70%), and mono- and polyunsaturated (30%) fatty acids,

and carbohydrates (oligosaccharides and lactose).[26,32,33] Further-

more, milk contains bioactive peptides with awide variety of biological

effects; for example, antihypertensive, antithrombotic, opioid, antimi-

crobial, and cyto- and immunomodulatory peptides, and even peptides

that “improve athletic performance andmuscle recovery”.[34]

At least some of the well-documented favorable effects of milk

and milk-derived protein supplements (which cannot be completely

purified) on the skeletal muscle may be mediated by nonprotein

milk constituents and/or their synergistic effects with milk protein.

For example, whole milk has been shown to stimulate net MPS

(assessed indirectly by amino acid uptake) following resistance exer-

cise more potently than fat-free milk, or isocaloric fat-free milk in
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F IGURE 1 Structural difference between glucose and galactose.

human subjects[35] indicating possible synergistic effects of milk pro-

teins and fats. Consequently, recognition of the potential of milk as

a complex food (rather than its protein derivatives) in the context of

sports performance and recovery,[36–38] maintenance of SMM, and

the prevention of sarcopenia,[15,26,39–41] as well as exploration of the

effects of nonprotein milk constituents on SMMmay result in exciting

new developments in the field. Considering the increasing interest in

bioactive substances derived from milk, it is reasonable to anticipate

that forthcoming researchwill clarify the specific bioactive elements in

milk, whether individual or in combinations, responsible for the diverse

biological effects of dairy products. A pivotal step in this endeavor

involves designing experiments that discern between the impacts of

whole milk and purified, isolated milk components, all while main-

taining impartiality by incorporating appropriate control conditions. A

pertinent illustration of this approach entails conducting experiments

that investigate the effects of a single isolated bioactive compound

(e.g., comparison of the effects of lactose with a control condition such

as sucrose) and supplementing them with experiments in which only

that particular molecule is removed from the complexmilk matrix (e.g.,

milk vs. lactose-free milk). By adopting this methodology, researchers

can refrain fromprematurely drawing conclusions regarding the bioac-

tive potential of the substances under scrutiny, in the broader context

of their significance inmediating the biological consequences of milk.

HYPOTHESIS: D-GALACTOSE PLAYS A ROLE IN
SKELETAL MUSCLE HYPERTROPHY-PROMOTING
EFFECTS OF MILK

This manuscript aims to draw attention to D-galactose, a monosaccha-

ride present in large quantities in milk in the form of the disaccharide

lactose (milk sugar), and propose its potential biological role in the

well-documented skeletal muscle hypertrophy-promoting effects of

milk.

D-galactose is a hexose monosaccharide different from glucose

only concerning the position of the hydroxyl group on the C4 car-

bon (Figure 1). This slight structural modification seems to have been

encouraged by evolution as galactose is found throughout the living

world both in its free form and bound to macromolecules forming

glycoconjugates.[42–45] Galactose seems to be particularly important

for mammals as the principal carbohydrate in milk (lactose) is com-

prised of one molecule of galactose bound to one molecule of glucose

via the β−1→4 glycosidic bond. Interestingly, in exceptional cases

where lactose is not the main milk carbohydrate (e.g., in sea lions and

marsupials), the principal milk sugar is still comprised of galactose

suggesting that it is essential for early postnatal development.[42,44,45]

In humans, diet is amajor source of galactose, although it is also pro-

duced endogenously in gram quantities each day.[46,47] Themajority of

exogenous galactose is provided by the consumption of dairy products

and milk, although it can also be found in cereals, fruits, vegetables,

or honey.[43,47] Milk and dairy products contain galactose in the form

of disaccharide lactose, which is hydrolyzed by β-D-galactosidases on
the apical surface of microvilli in the intestine following oral inges-

tion. Free galactose, liberated by lactose hydrolysis, is then absorbed

via the apical sodium-glucose linked transporter type I (SGLT1) and

released into the portal circulation through the glucose transporter

type 2 (GLUT-2).[42,43] A substantial amount (88%[42]) of the galac-

tose absorbed from the intestinal tract is internalized by GLUT-2 and

metabolized in the liver, while the rest reaches other organs such as the

brain and skeletal muscles. In target organs, galactose is metabolized

by threemainmetabolic pathways: (i) the Leloir pathway which directs

galactose towards biochemical pathways responsible for glycosylation,

glycogen synthesis, and glycolysis; (ii) conversion to galactonate and

replenishment of the pentose phosphate pathway (PPP); (iii) reduc-

tion to the alcohol galactitol (for a detailed overview of galactose

metabolism please see Conte et al.[43]). The “alternative” pathways

(conversion to galactonate and galactitol) are usually only activated

in the presence of an excessive amount of galactose, which cannot be

taken up by the Leloir pathway.[43] In humans, this is typically caused

by galactosemia, a group of inborn disorders characterized by reduced

galactose metabolic capacity.[43] In experimental animals, overload of

the Leloir pathway (and the activation of alternative metabolic routes)
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F IGURE 2 Leloir pathway. β-D-galactose is first metabolized to α-D-galactose by galactosemutarotase (GALM). α-D-galactose is converted to
α-D-galactose 1-phosphate (Gal-1P) in the only unidirectional reaction of the Leloir pathway catalyzed by galactokinase (GALK). Galactose
1-phosphate uridylyltransferase (GALT) catalyzed the reaction in which Gal-1P and uridine diphosphate glucose (UDP-Glc) give α-D-glucose
1-phosphate (Glc-1P) and uridine diphosphate galactose (UDP-Gal). Finally, UDP-galactose 4-epimerase (GALE) converts UDP-Gal to UDP-Glc.
Both UDP-Glc and UDP-Gal are used as glycosylation substrates. UDP-Glc is utilized for glycogenesis, and Glc-1P is metabolized into glucose
6-phosphate (Glc-6P) in the reaction catalyzed by phosphoglucomutase. Glc-6P is directed toward glycolysis or pentose phosphate pathway (PPP).

is standardly inducedby chronic parenteral administration of galactose

in large quantities––a procedure utilized for modeling oxidative stress

and aging-related pathology.[44,45,48–50]

Considering that (i) the ingestion of dairy products and milk intro-

duces relativelymodest amounts of galactose into the organism (∼2.5 g

of galactose/100 g of milk[51]), and (ii) the liver removes most of

the portal galactose before it reaches other organs (including skeletal

muscles) following administration via the physiological (oral) route–

–potential effects of D-galactose from dairy products on skeletal

muscles most likely depend on its metabolism via the main metabolic

route––the Leloir pathway.

The Leloir pathway is comprised of the four main enzymatic

steps in which (i) β-D-galactose is converted to α-D-galactose in a

reaction catalyzed by galactose mutarotase (GALM; EC 5.1.3.3); (ii)

α-D-galactose is phosphorylated into α-D-galactose 1-phosphate (Gal-
1P) by galactokinase (GALK; EC 2.7.1.6); (iii) Galactose 1-phosphate

uridylyltransferase (GALT; EC 2.7.7.12) catalyzes the reaction in

which Gal-1P and uridine diphosphate glucose (UDP-Glc) give α-
D-glucose 1-phosphate (Glc-1P) and uridine diphosphate galactose

(UDP-Gal); (iv) UDP-galactose 4-epimerase (GALE; EC 5.1.3.2) con-

verts UDP-Gal to UDP-Glc (and vice versa).[43] Both UDP-Gal and

UDP-Glc can be used as precursors for glycosylation. Addition-

ally, UDP-Glc can be utilized for glycogen synthesis or glycolysis[43]

(Figure 2).

We propose that galactose (in quantities metabolized primar-

ily via the Leloir pathway) has the potential to promote muscle

homeostasis and hypertrophy by (i) promoting anabolic signaling via

restoration/maintenance of mature protein glycosylation patterns;

(ii) providing energy substrates for short (glycolysis) and long-term

(restoration of glycogen, increased muscle lipid content) energy pro-

duction and optimizing metabolic function (promoting glucose and

fatty acid utilization, increasingmitochondrial content/activity).

Galactose maintains mature glycosylation of growth
factor receptors and promotes anabolic signaling

Accumulating evidence supports the hypothesis that evolutionary

forces selected galactose as a monosaccharide, which helps cells main-

tain growth factor-related signaling during fluctuations in the avail-

ability of energy substrates.[44,52] As emphasized in Homolak et al.,[44]

the ability of galactose to antagonize potentially detrimental effects

of energy fluctuations might be particularly important in vulnera-

ble and highly energy-dependent periods of life (e.g., in the suckling

period, but also old age) and in vulnerable and energy-dependent

cells (e.g., neurons) although this remains to be confirmed experimen-

tally. Sasaoka et al. have elegantly demonstrated that galactose is the

preferred monosaccharide substrate (10 times more effective than

glucose or mannose) for the maintenance of mature glycosylation pat-

terns during sugar deprivation in different mammalian cell lines (e.g.,

HEK293, HepG2, PC12).[52] Importantly, the maintenance of mature

glycosylation patterns with trace amounts of galactose was associ-

ated with reduced endoplasmic reticulum stress and diminished cell

death.[52] The function of growth factor receptors heavily depends on

their glycosylation patterns due to their effects on receptor sorting,

ligand binding, oligomerization, downstream signaling, galectin bind-

ing, intramicrodomain interactions, and so forth.[53–55] Sasaoka et al.

demonstrated that even trace amounts of galactose (0.3 mM) can res-

cue the maturation of growth factor receptors (e.g., IGF-1 receptors

[IGF-1R]) and promote growth signal transduction in sugar starvation

conditions in vitro.[52]

Growth factors play an essential role in skeletal muscle regenera-

tion and growth and in skeletal muscle stem (satellite) cell proliferation

and differentiation.[56, 57] IGFs (notably IGF-1) are particularly impor-

tant and their potential to induce and sustain muscle growth has

been repeatedly demonstrated in a number of studies.[56–63] The
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major role of IGF-1 signaling in muscle hypertrophy is beyond the

scope and has been reviewed elsewhere (e.g., Refs.[57, 63–65]); how-

ever, several key points will be emphasized for clarity. In a simplified

view, IGF-1 facilitates muscle development by tilting the equilibrium

in favor of MPS over MPB upon binding to IGF-1 receptors (IGF-

1Rs), provided that there are ample nutrients and essential molecular

constituents like amino acids. IGF-1R is a receptor with tyrosine

kinase activity, composed of two external alpha subunits containing

ligand-binding domains and two transmembrane beta subunits respon-

sible for transmitting intracellular signaling following alpha subunit-

mediated beta subunit phosphorylation. It is important to highlight

that IGF-1Rs exhibit substantial glycosylation, featuring 11 potential

N-glycosylation sites and at least 6mucin-typeO-glycosylation sites on

theα and insulin receptor ectodomain, respectively.[66] The proper gly-

cosylation patterns play a critical role in governing the correct folding,

activity, and functionality of these receptors, which, in turn, underlie

their physiological signaling. Upon ligand binding, IGF-1Rs activate the

phosphoinositide 3-kinase (PI3K)/Akt/mTOR and PI3K/Akt/glycogen

synthase kinase-3 β (GSK-3β) pathways.[64] The aforementioned path-

ways stimulate MPS (by promoting mTOR), but also inhibit MPB (by

antagonizing proteasomal degradation, autophagy, and nuclear fac-

tor kappa-light-chain-enhancer of activated B cells (NFκB) and Smad

catabolic pathways).[64] The result of IGF-1-induced activation of

MPS and inhibition of MPB is an increment in SMM proportional to

time spent in anabolic conditions. Several stimuli can promote IGF-1

anabolic signaling pathways. For example, exercise causes a large tran-

sient increase in circulating IGF-1, but also promotes its secretion and

paracrine action in the human skeletal muscle extracellular matrix.[65]

Conditions that result in low general and/or temporal availability

and responsiveness of IGF-1Rs (including inadequate IGF-1R glycosy-

lation patterns), and/or nutrients (e.g., malnutrition, caloric deficit) all

have the potential to abolish the effects of IGF-1 and impair hyper-

trophy or promote muscle wasting. Inversely, potentiating the actions

of IGF-1 in the old age has the potential to prevent and/or alleviate

sarcopenia in experimental animals.[67,68] In this context, glycosyla-

tion patterns hold particular significance. Research has demonstrated

that branched N-glycans located on the extracellular domain of IGF-

1Rs enhance their interaction with galectins, leading to the formation

of a molecular lattice. This lattice effectively hinders the endocyto-

sis of glycoprotein receptors, thereby extending anabolic signaling and

promoting increased cell proliferation.[69]

Considering that aging is associated with a reduction in avail-

ability and responsiveness of growth factor receptors,[70] altered

N-glycosylation patterns,[71] and progressive reduction in food intake

resulting in energy-protein malnutrition,[72,73] the ability of galac-

tose to prevent nutrient-sensitive reduction in IGF-1R availability and

IGF-1 signaling[52] might be an important mechanism by which the

exposure to trace amounts of galactose (e.g., provided by the con-

sumption of dairy products and milk) might prolong the time spent

in anabolic conditions to increase SMM. While Sasaoka et al. pro-

vided evidence that, in an in vitro setting, galactose can enhance

anabolic signaling and cell survival by increasing the presence of

growth factor receptors on the cell surface during periods of starva-

tion, it remains unexplored whether galactose can support anabolic

signaling through this mechanism in vivo. Furthermore, the impact of

age-related changes in glycosylation patterns of growth factor recep-

tors in relation to factors such as sex, comorbidities, and nutritional

status has yet to be investigated. Future studies are needed to compre-

hensively unravel thepotential of galactose in this context. Considering

that D-galactose plays a major role in glycosylation and that ∼50% of

all human proteins are glycosylated,[43] it is reasonable to assume that

glycosylation of growth factor receptors is not the only mechanism

by which the replenishment of glycosylation substrates can promote

muscle homeostasis and hypertrophy. For example, structural support,

tensile strength, and elasticity of skeletal muscles depend on collagens

which, in turn, depend on glycosylation for the correct folding of col-

lagen fibers.[43] The indirect regulation of muscle homeostasis in vivo

may also involve the modulation of glycosylation in various other cell

types. For instance, inadequate galactosylation of the Fc fragment of

immunoglobulin G has been linked to ageing and inflammatory condi-

tions that impact muscle function, such as myositis.[74] Unfortunately,

it is still not understood whether the absence of galactose is causally

related to age-related and inflammatory processes or how endoge-

nous and exogenous galactose might play a role in this context. Future

mechanistic studies might elucidate the biological importance of the

observed associations and provide the foundations for understanding

the indirect effects of orally administered galactose onmuscle function

in humans.

Galactose can promote long-term anabolic signaling
by providing short- and long-term extracellular and
intracellular energy substrates

Anabolic signaling, responsible for the maintenance of MPS and SMM,

relies on the availability of extracellular and intracellular energy sub-

strates. Long-term nutrient availability (critical for the maintenance of

skeletal muscles in the anabolic state) is to a large extent controlled

by the liver via glycogenolysis, glyconeogenesis, and gluconeogenesis.

In fact, although the role of liver glycogen stores received much less

attention thanmuscle glycogen in the context of exercise performance

and recovery,[75] recent evidence suggests that it plays a substantial

role in regulating exercise capacity inmice.[76] Interestingly, in humans,

liver glycogen was replenished two times faster when 1/3 of glucose

was substituted with galactose in a post-exercise drink.[77] In the 6-h

post-exercise period, 56 ± 6 g of liver glycogen was synthesized in the

group treatedwith a galactose-supplementeddrink,while only 23±3g

of liver glycogen was present in individuals treated with a drink con-

taining glucose.[77] The aforementioned results might be particularly

important for milk (lactose)-derived galactose as galactose alone does

not seem to be able to reproduce the effects of the drink containing

bothglucoseandgalactoseas shownboth inhumansand rodents.[77,78]

The synergistic effects of glucose and galactose are still not fully

understood; however, glucosemight promote galactose-induced glyco-

genesis by stimulating insulin secretion (because galactose provides

a weaker stimulus for insulin secretion in rodents and humans).[77,78]

Furthermore, in vitro experiments with human skeletal muscle cells

have shown that D-galactose can promote the uptake and oxidation
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of glucose,[79] suggesting that sufficient glucose availability might be

required for some of its effects. Preferential utilization of galactose

for liver glycogen synthesis in rats[80] suggests that galactose ingestion

might promote the capacity for systemic nutrient availability between

meals, and, thus, prolong muscle anabolic signaling. The latter is fur-

ther supported by studies in trained male cyclists demonstrating that

galactose ingestion is associated with increased total carbohydrate

oxidation rates during prolonged exercise.[81]

In addition to indirect effects, galactose can also act directly

on skeletal muscles by providing short- and long-term energy sub-

strates and altering metabolism. Primary human muscle cells grown

in a D-galactose medium demonstrate an increased number of

mitochondria,[79] basal mitochondrial oxygen consumption rate

(∼40%) and cytochrome c oxidase activity (∼+85%), and decreased

lactate production (>5-fold).[82] Furthermore, proliferation and differ-

entiation in the D-galactosemedium increased fatty acid oxidation.[79]

D-galactose also increased metabolic switching in human skeletal

muscle cells (transition from fatty acid to glucose oxidation upon

acute glucose exposure).[79] Importantly, D-galactose pretreatment

increased glucose uptake (1.8-fold), oxidation (2.6-fold), and oxidative

reserve (3-fold) [79] suggesting that D-galactose has the potential

to promote utilization of glucose. Overall, the results suggest that

D-galactose does not only act as a substrate for glycolysis and glycoge-

nesis to provide short- and long-term intracellular energy supply but

also promotes metabolism by potentiating glucose utilization.

Intramyocellular lipids serve as another important intracellular

source of energy, which is, analogously to muscle glycogen, uti-

lized during prolonged exercise and increased by repeated muscle

contractions.[83] D-galactose treatment of primary human muscle

cells increases intramyocellular stores of neutral lipids[79] possibly in

parallel with promoting fatty acid oxidative capacity (Figure 3).

Regrettably, comprehensively grasping all the implications of the

aforementioned discoveries within the realm of human health poses

a challenge. The primary reason for this lies in the observation that

the effects of galactose appear to vary contingent upon the concurrent

presence of other endogenous or exogenously administered nutrients.

Upcoming research endeavors could shed light on the role of galactose

by extending experiments comparing galactose to appropriate control

conditions (e.g., equimolar glucose) to include additional experiments

conducted within a more intricate biochemical milieu. For instance,

in the context of milk, investigating the effects of galactose-free milk

preparations, in which galactose is substituted with glucose, may

yield valuable insights into the physiological impacts of milk-derived

galactose.

IMPLICATIONS OF THE HYPOTHESIS

The potential of D-galactose muscle
hypertrophy-promoting effects in sarcopenia

The ability of D-galactose to promote MPS by counteracting catabolic

signaling via several complementary mechanisms (Figure 3) might be

particularly important in the context of sarcopenia. In fact, some of the

beneficial effects ofmilk and dairy products in sarcopenia[20,34–36] may

be at least partially mediated by D-galactose. Sarcopenia is character-

ized by a chronic catabolic state in which the intracellular and extra-

cellular environment promotes long-lasting activation of MPB-related

processes.[84–87] There are two mutually interdependent etiopatho-

genetic clusters (EPCs)[88] driving sarcopenia: (i) inflammation-related

processes, which trigger muscle catabolism (direct catabolic effects)

and inhibit growth factor signaling (indirect catabolic effects)[86]; and

(ii) pathophysiological processes, which reduce nutrient availability

(e.g., reduced intake and absorption of micro- and macronutrients).[89]

D-galactose has the potential to counteract both EPCs. Orally adminis-

tered D-galactose can alleviate inflammation[90] and reduce oxidative

stress[45,91] in rodents. Additionally, even trace amounts of galac-

tose can rescue growth factor (IGF-1) signaling in vitro.[52] The latter

might be exceptionally important in the context of sarcopenia as accu-

mulating evidence shows that muscle atrophy in the elderly (and in

many chronic diseases) might be mediated by reduced IGF-1 and

IGF-1R availability and signaling.[64,65] Furthermore, D-galactose can

also counteract mechanisms responsible for low nutrient availability.

At the organismic level, D-galactose might promote gastrointesti-

nal homeostasis[45,90–93] and improve the malabsorption of nutrients

recognized as some of the causes of malnutrition in old age.[94,95]

Additionally, galactose can replenish liver glycogen stores and pro-

vide a reserve for themaintenance of constant energy supply between

meals, which are less frequent and provide fewer nutrients in the

elderly.[95,96] The ability of galactose to replenishmuscle energy stores

(muscle glycogen and intramyocellular lipids) might provide an addi-

tional intracellular energy reserve andpostpone catabolic signaling.[79]

There is some preclinical evidence suggesting that galactose might

also provide additional benefits in the elderly at high risk of sarcopenia

and malnutrition. For example, oral galactose treatment can prevent

and alleviate cognitive decline in a rat model of sporadic Alzheimer’s

disease[97–99] suggesting that it might be able to promote homeostasis

of multiple tissues simultaneously.

D-galactose and skeletal muscle fiber types?

One interesting question that remains to be resolved is related to

the potential muscle fiber type-specific effects of D-galactose. In gen-

eral, individual muscle fibers contain different isoforms of myosin

heavy chain (MHC) proteins based on which they can be classified

as (i) type I (slow-twitch/small force fibers with predominant oxida-

tive metabolism); type IIA (fast-twitch/medium force fibers with a

combined oxidative and glycolyticmetabolic profile); and type IIB (fast-

twitch/large force fibers with predominant glycolytic metabolism)

(please note that this simplified classification does not fully reflect real-

ity as there seems to be a spectrum of muscle fiber types and some

muscle fibers can coexpress multiple MHCs (e.g., see a comprehensive

review by Schiaffino and Reggiani[100])).

On one hand, the ability of galactose to rescue growth factor signal-

ing may stimulate glycolytic metabolism and predominantly promote
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F IGURE 3 The hypertrophy-promoting effects of milk-derived D-galactose on skeletal muscles. D-galactose is liberated from themilk sugar
lactose by β-D-galactosidases on the apical surface of intestinal microvilli (1). A substantial amount of portal D-galactose (∼88%) is internalized by
glucose transporter 2 andmetabolized in the liver, while the rest reaches skeletal muscles and other organs. Hepatic metabolism of D-galactose
replenishes liver glycogen stores ensuring long-term energy supply to other organs via glycogenolysis (2). The remaining D-galactose (∼12%)
reaches skeletal muscles where it is metabolized primarily via the Leloir pathway.Metabolism of D-galactose in skeletal muscles provides
glycosylation substrates that rescuematuration of growth factor receptors (e.g., insulin-like growth factor 1 [IGF-1]) and promote growth signal
transduction in the conditions of suboptimal nutrient supply (3). Remaining D-galactose can replenish cellular stores of glucose (providing
short-term energy substrates) by (i) biochemical conversion via the Leloir pathway; and (ii) increasing glucose uptake. Increased glucose uptake (4)
is accompanied by increasedmetabolic capacity (5). Additionally, D-galactose increasesmuscle glycogen (6) and intramyocellular lipid stores (7)
(providing long-term energy substrates). Rescue of growth factor signaling, the replenishment of extracellular (liver glycogen) and intracellular
stores of energy substrates, and stimulation of themetabolic activity of skeletal muscles together promotemuscle protein synthesis (MPS) and
decreases muscle protein breakdown (MPB) resulting in muscle hypertrophy. GSK-3β, glycogen synthase kinase-3 β; PI3K, phosphoinositide
3-kinase.

the function (and hypertrophy) of fast-twitch glycolytic fibers. For

example, Christoffolete et al. reported that genetic induction of skele-

tal muscle IGF-1 signaling results in muscle hypertrophy accompanied

by a metabolic shift towards increased insulin sensitivity, utilization of

glucose, and expression of glucose transporter 4 in mice.[101] Interest-

ingly, at the same time, muscle IGF-1 reduced the expression of per-

oxisome proliferator-activated receptor gamma coactivator 1-alpha

(PGC-1α) suggesting reduced reliance on mitochondrial oxidative

metabolism (i.e., predominant hypertrophy of glycolytic fibers).[101] In

the context of the effects ofD-galactose on the glycosylation of growth

factor receptors and growth factor signaling,[52] the administration of

D-galactose might preferentially promote the growth of fast-twitch

glycolytic fibers.

On the other hand, D-galactose has the potential to stimulate

oxidative metabolism. Current evidence indicates that interventions

promotingmetabolic transition (e.g. genetic ablationof carnitine palmi-

toyltransferase 2 inmice[102]) can alter themetabolic profile of muscle

fibers, but does not change the composition of MHC isoforms and it

is, therefore, reasonable to assume that galactose will not alter muscle

fiber type regardless of its effects on muscle fiber metabolism. Most

studies on skeletal muscle hypertrophy focus on heavier loads and

hypertrophy of type II fibers; however, increasing evidence indicates

that type I muscle fibers also demonstrate a substantial hypertrophic

potential under appropriate conditions (e.g., aerobic training[103,104]

or training to achieve momentary muscular failure with low loads

(e.g., 30%of 1 repetitionmaximum)[105,106]). Physiologicalmechanisms

responsible for the hypertrophy of type I muscle fibers are not com-

pletely understood[105]; however, at least during aerobic exercise in

humans, hypertrophy of type I muscle fibers was associated with an

increasedoxidative (aerobic) capacity,[103,104] suggesting that contrary

to the muscle fiber type-fiber size paradox,[107] hypertrophy of type I

muscle fibers canoccur simultaneouslywith increasedoxidative capac-

ity (as also confirmed experimentally by Scheffler et al. in pigs[108]).

In this context, it is possible that galactose might promote hyper-

trophy of type I muscle fibers by promoting their oxidative capacity.

Even if the oxidative capacity-promoting effects of galactose limit the
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hypertrophic potential of some muscle fibers (due to the fiber type–

–fiber size paradox[107]), the overall beneficial effect in sarcopenia

should not be ruled out considering that increased aerobic capacity

has the potential to alleviate sarcopenia-related pathophysiological

processes.[109]

LIMITATIONS

Reports suggesting that galactose can also exert detrimental effects

on skeletal muscles should not be neglected nor overlooked. For

example, Chang et al. reported that chronic parenteral administra-

tion of D-galactose to mice (8 weeks; 125 mg/kg) causes skele-

tal muscle mitochondrial complex I deficiency accompanied by grip

strength impairments.[110] Chronic subcutaneous administration of

D-galactose (600 mg/kg) can reduce the expression of IGF-1 and

antioxidant enzymes catalase and superoxide dismutase, as well as

increase the expression of myoblast determination protein 1 (MyoD)

and tumor necrosis factor α (TNF-α) in skeletal muscles of rats.[111]

Wu et al. demonstrated that chronic intraperitoneal administration of

D-galactose (200mg/kg) causesmuscle fibrosis, senescence, andoxida-

tive stress in mice.[112] Yanar et al. were able to mimic slow twitch

muscle fiber aging-related redox dyshomeostasis by chronic intraperi-

toneal administration of D-galactose (60 mg/kg) in Sprague–Dawley

rats.[113]

The reported detrimental effects of D-galactose on skeletal mus-

cles in rodent studies can be explained by tissue exposure. Large doses

of D-galactose and/or parenteral administration often result in D-

galactose exposure, which exceeds tissue metabolic capacity (i.e., the

capacity of the Leloir pathway) and leads to the activation of alterna-

tive routes (conversion to galactonate and galactitol), which promote

redox dyshomeostasis in rodents.[44,45,93] In all of the abovementioned

studies, which reported detrimental effects of D-galactose on skele-

tal muscles, relatively large doses (60–600 mg/kg) were repeatedly

administered via the parenteral route (bypassing intestinal absorption

and liver metabolism) likely resulting in concentrations of D-galactose,

which surpass the capacity of the Leloir pathway. In contrast, chronic

administration of D-galactose to rodents does not seem to be asso-

ciated with detrimental health effects when supplied orally (with the

administration spread throughout the day).[44,45,93,97–99] In fact, even

when very large doses of galactose (∼7.5 g/day) were administered for

12 weeks to Sprague–Dawley rats (via the oral route), there were no

changes in inflammatory markers (TNF-α, interleukin-1β, interleukin-
6, zonulin, C-reactive protein) and the treatment was associated with

reduced plasma endotoxin concentration (suggesting improved rather

than diminished function of the gastrointestinal barrier).[45,114] The

latter suggests that the administration of galactose via the physiologi-

cal (oral) routehas limitedpotential to exceed tissuemetabolic capacity

due to buffering effects of the gastrointestinal tract and the liver. The

potential of D-galactose to promote rather than undermine skeletal

muscle function when administered via the oral route is indirectly sup-

ported by studies reporting the beneficial effects of milk. For example,

Liu et al. reported that the consumption of goat milk promotes glucose

metabolism in the skeletal muscles of rats on a high-fat diet, possibly

via the AMP-activated protein kinase (AMPK) pathway.[115]

Consequently, rodent studies reporting detrimental effects of par-

enterally administered D-galactose on skeletal muscle provide poor

foundations for inference about the potential impact of milk-derived

D-galactose on skeletal muscle function. Animal studies focused on

the effects of chronic oral (ad libitum) administration of D-galactose

on skeletal muscle function might provide some evidence to sup-

port or reject the proposed hypothesis. Additionally, studies on the

effects of orally administered milk on skeletal muscles might provide

some insight; however, given the complex biochemical constitution of

milk, it might be challenging to discriminate between the effects of

D-galactose and the effects of other bioactive constituents. A good

approach might be to compare the effects of milk with the effects of

galactose-freemilk as a control condition.

Finally, the proposed hypothesis is in part based on evidence from

in vitro studies (e.g., the effects of trace amounts of galactose on glyco-

sylation of growth factor receptors[52]; the effects of galactose on the

accumulation of intramyocellular lipids[82]).While in vitro experiments

may provide some useful information, the absence of physiological

conditions (e.g., replacing glucose with galactose in differentiation

medium[82]) limits the possibility of fully understanding the results of

in vitro studies in the context of potential effects ofD-galactose in vivo.

In vivo studies demonstrating the ability of D-galactose to promote

IGF-1R signaling during periods of limited nutrient availability (or lack

thereof) might provide the evidence necessary for contextualization of

the muscle hypertrophy-promoting potential of D-galactose. Further-

more, to fully understand the effects of milk-derived galactose, future

studies should focus on the combined effects of galactose and glucose,

as it can be assumed that the galactose-mediated effects of milk take

place in the presence of isomolar concentrations of glucose. The impor-

tance of the latter is reflected in studies that reported the potential

of galactose to promote the restoration of liver glycogen only in the

presence of glucose.[77,78]

CONCLUSION

A unique biochemical fate of D-galactose might be responsible for

some of the skeletal muscle hypertrophy-promoting effects of milk. D-

galactose might increase MPS by (i) promoting anabolic signaling via

maintenance of growth factor receptor mature glycosylation patterns;

and (ii) providing extracellular (liver glycogen) and intracellular sub-

strates for short (muscle glycolysis) and long-term (muscle glycogen,

intramyocellular lipids) energy availability. Additionally, D-galactose

might optimize themetabolic functionof skeletalmuscles by increasing

mitochondrial content andpromoting glucose and fatty acid utilization.

The hypertrophy-promoting potential ofD-galactose should be further

explored in the context of sarcopenia.
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