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Abstract 

 

 Over the last 20 years, numerous studies have demonstrated the existence of 

nuclear phosphoinositide signaling distinct from the one at the plasma membrane. The 

activation of phosphatidylinositol-specific phospholipase C (PI-PLC) and phosphoinositide 3-

kinase (PI3K), the generation of diacylglycerol (DAG) and the accumulation of the 3-

phosphorylated phosphoinositides have been documented in the nuclei of different cell types. 

In this review, we summarize some recent studies of the subnuclear localization, mechanisms 

of activation and the possible physiological roles of the nuclear PI-PLC and PI-3 kinases in 

the regulation of cell cycle, survival and differentiation. 
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1. Introduction and historical overview 

 

Over the last 50 years, since Hokin and Hokin (30) first showed an increased 

phospholipid turnover in the cholinergically stimulated pancreatic tissue, inositol 

phospholipid cycle has been one of the most thoroughly investigated signaling mechanisms 

operating at the cell membrane. Phosphatidylinositol (PtdIns), precursor of phosphorylated 

derivatives or phosphoinositides, accounts for less than 15% of the total cell phospholipids. 

Phosphoinositides are formed by reversible phosphorylation of PtdIns at one or a combination 

of positions at the inositol ring (3', 4' or 5') by the action of several different kinases and 

phosphatases. Among seven phosphorylated products, phosphoinositide PtdIns(4,5)P2 is the 

best known as it serves as a substrate for the classical receptor-activated signaling enzymes. 

Activated phosphatidylinositol - specific phospholipase C (PI-PLC) is responsible for the 

hydrolysis of PtdIns(4,5)P2 into Ins(1,4,5)P3 and DAG; Ins(1,4,5)P3 is released to mobilize 

calcium from intracellular stores, and DAG activates protein kinase C (PKC). The receptor-

mediated activation of phosphoinositide 3-kinase (PI3K) phosphorylates PtdIns(4,5)P2 on 3' 

position of the inositol ring and generates PtdIns(3,4,5)P3 that further activates several 

downstream signaling molecules. Receptor-mediated hydrolysis and phosphorylation of 

PtdIns(4,5)P2 at the cell membrane regulates diverse cellular functions, such as cell 

proliferation, survival, vesicle trafficking and gene transcription. In addition, PtdIns(4,5)P2 

transduces signals directly, and regulates membrane traffic and cytoskeleton by binding to 

specific proteins containing phosphoinositide-binding modules and recruiting cytoskeletal and 

signaling proteins to the membrane (19, 24, 72). 

In 1965, Rose and Frenster first pointed to the possible role that phosholipids may 

play in the nuclei as they detected that both the quantity and the intensity of phospholipid 

metabolism was much higher in active than repressed chromatin (62). In 1983, Smith and 
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Wells observed increased incorporation of 
32

P into a mixture of phospholipids containing 

PtdIns(4)P and PtdIns(4,5)P2 in nuclear envelopes isolated from rat liver nuclei (65). As the 

major route of PtdIns(4,5)P2 synthesis involves the activation of type I PIP kinase that 

phosphorylates PtdIns(4)P on 5' position, these results suggested the existence of both PtdIns 

4-kinase and type I PIP kinase in rat liver nuclei. In 1987, Cocco et al., showed that highly 

purified nuclei from Friend cells, washed free of nuclear membrane by detergent, can 

incorporate radiolabeled phosphate into phospholipids, depending on the differentiative state 

of the cells (14). The further evidences that the nuclear event occurs autonomously were 

provided by experiments performed on starved Swiss 3T3 cells stimulated with two different 

agonists; while bombesin induced a PtdIns(4,5)P2 hydrolysis and DAG generation at the cell 

membrane with no changes in the nuclear compartment, IGF-I had no effects on the cell 

membrane but decreased the level of nuclear PtdIns(4,5)P2, increased the level of nuclear 

DAG and stimulated the translocation of PKC to the nuclei (20). These were the initial studies 

in the field that has expanded over the last 20 years, involving various signaling enzymes, 

substrates and signaling molecules operating in the nuclei. Although still much less explored 

and defined than the classical phospholipid signaling, the existence of a separate nuclear 

phospholipid cycle that occurs independently from the one at the plasma membrane is now 

universally recognized (reviewed in 15, 28, 33). In this review, we will try to summarize some 

recent studies of the potential location, the mechanism of activation and the possible 

physiological roles of PtdIns(4,5)P2 hydrolysis and phosphorylation mediated by nuclear PI-

PLC and PI-3 kinases. 

 

 

 

 



 5 

2. The basic structure of nucleus – „nuclear” and “endonuclear“ 

 

As obvious from the preceding short historical introduction, the term „nuclear 

signaling“ has been used to define findings in various nuclear structures including nuclear 

envelopes, total nuclei, and nuclei treated with detergents to remove nuclear membranes. As 

suggested in a recent review article (32), the term „endonuclear“ should be used to specify 

phospholipid that colocalizes with nuclear matrix following demonstrated nuclear envelope 

removal, and a term „nuclear“ or „perinuclear“ where the extent of any nuclear envelope or 

peripherally associated endoplasmic reticulum removal is unknown. To better understand the 

difference between the two, it is useful to recapitulate briefly the basic structure of nucleus 

(Fig. 1). The nucleus is separated from the cytoplasm by the nuclear envelope consisting of 

two concentric membranes; the outer and inner nuclear membrane. Both membranes are 

phospholipid bilayers; the outer nuclear membrane is an extension of the endoplasmic 

reticulum containing ribosomes, and the inner membrane contains specific proteins that bind 

nuclear lamina and chromatin. Nuclear lamina is a protein meshwork that is attached to the 

inner nuclear membrane, providing structural support to the nucleus and interacting directly 

with chromatin. In chromatin, DNA is wrapped around the histone forming the basic unit or 

nucleosome, and the structure of chromatin determines the transcriptional activity, DNA 

replication in replication factories and DNA repair. While the transcription of genes occurs 

throughout the nucleus, the splicing is restricted to several morphologically distinct structures 

called nuclear speckles. What is left when membrane-depleted nuclei are treated with DNase, 

RNase and high salt buffers to remove DNA, RNA, histones and other proteins is a residual 

network of fibers that is called nuclear matrix and which is supposed to perform the same 

function as cytoskeleleton in the cytoplasm (32, 35). Therefore, it is not unexpected that some 

inositol lipids or enzymes can be found in nuclei containing envelopes as it is known that 
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inositol lipids are usual components of phospholipid bilayers of various cellular membranes. 

However, it is still less clear what is the form and structure of the inositol lipids that are still 

present in nuclei even after complete removal of all membranes by the use of strong 

detergents and several possibilities, including the formation of a crystalline array type of 

structure provided by highly-saturated and more abundant phosphatidylcholine, have 

been proposed (34). The metabolism of these lipids is what is usually meant by term 

„endonuclear“ signaling (32). As shown in Fig. 1, “endonuclear” PtdIns(4,5)P2 has been 

reported to localize to nuclear speckles (60, 76). 

 

3. Nuclear phospholipase C  

  

 Several different isoforms of phospholipase C are grouped into 6 families (-β,-δ,-γ,-ε,-

ζ and -η) based on their structure and mechanisms of activation (61). Domain organization of 

PLC isoforms that are most frequently described in nuclei is shown in Fig. 2. 

 

 3.1. Nuclear phospholipase C-β1 

 

IGF-mediated PtdIns(4,5)P2 hydrolysis and DAG generation in membrane-depleted 

nuclei of Swiss 3T3 cells pointed to the possible involvement of phospholipase C (20), and 

the activation of the nuclear PI-PLC-β1 in response to IGF-I was later confirmed (46, 47). In 

vivo model of regenerating rat liver showed the similar increase in the level of the nuclear 

DAG 20 hours after partial hepatectomy (5). The early immunoanalysis of isolated rat liver 

nuclei for the presence of various PI-PLC isoforms demonstrated the nuclear presence of PI-

PLC-β1 (21). Therefore, among several different PI-PLC isoforms, PLC-β1 became the most 

intensively investigated as a major PLC isoform involved in nuclear signaling. 
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PI-PLC-β is actually a whole family of enzymes consisting of four principal members 

(-β1, -β2, -β3, and -β4) that all contain a region at their C-terminal domain responsible for the 

nuclear localization (61). In addition, there are two splice variants of the PI-PLC-β1 isoform, 

PI-PLC-β1a and PI-PLC-β1b, and several studies demonstrate that b splicing variant is the one 

that is predominantly nuclear (4, 25, 40, 47). The „classical“ PI-PLC-β, i.e. the one operating 

at the cell membrane is G-protein-regulated but there are no data confirming any role of the 

nuclear G protein in the activation of the nuclear enzyme. However, several studies suggested 

the involvement and nuclear translocation of p42/p44 mitogen-activated protein kinase 

(MAPK) in agonist-mediated activation of the nuclear PI-PLC-β (47, 48). In a detailed study, 

Xu et al. demonstrated MAPK-mediated phosphorylation of the nuclear PI-PLC-β1 at Ser 982 

residue in IGF-treated Swiss 3T3 cells; the phosphorylation was inhibited by MEK inhibitor, 

PD98059, and mimicked by recombinant PI-PLC-β1 and activated MAPK in vitro (77). 

Although the Ser982 phosphorylation was prerequisite for the PI-PLC activation, as shown in 

mutants carrying Ser982Gly, it was not sufficient alone, and several other components of 

mechanism involved in the activation of the nuclear PI-PLC still remain to be determined 

(Fig. 3). However, PD98059-sensitive activation and serine phosphorylation of the nuclear PI-

PLC-β1, including the b splicing variant, have been documented in response to several 

agonists in various cell systems (16, 40, 42, 75). 

 

 3.2. Other nuclear phospholipase C isoforms 

 

In addition to PI-PLC-β1, the nuclear localization of both PI-PLC-β2 and -β3 was 

confirmed in nuclei of HL-60 cells, and the level of the enzymes was found to increase during 

the differentiation in the presence of ATRA and vitamin D3 (7, 54). In a model of ATRA-

differentiated HL-60 cells, the level of another PI-PLC isoform, PI-PLC-γ1, was found to 
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progressively increase in nuclei during the differentiation (7). At the cell membrane, PI-PLC-

γ1 is activated by receptor or nonreceptor tyrosine kinases. In the nuclei, the similar 

mechanism was found to operate as the increase in the PI-PLC-γ1 activity measured in nuclei 

at 6 and 20 h after partial hepatectomy was associated with tyrosine phosphorylation of the 

enzyme (16). As PI-PLC-γ1 contains no functional nuclear localization signal (NLS), the 

mechanism of the nuclear localization is supposed to depend on the association with other 

NLS-containing proteins; the protein Vav is one of the possible candidates as it was shown to 

associate with both PI-PLC-γ1 and PI3K in immunoprecipitates of ATRA-treated HL-60 cells 

(8). 

Among all known PI-PLC isoforms, nucleocytoplasmic shuttling is the best 

documented for PI-PLC-δ1 – a member of PI-PLC subfamily delta that is the only one present 

in all eukaryotes (including Plc1p encoded by PLC1 in yeasts) (79). The accumulation of both 

endogenous enzyme and GFP-PLC-δ1 construct was observed in leptomycin B-treated 

MDCK cells and further sequence analysis revealed a nuclear export signal (NES) and a 

putative NLS-like signal (58, 80). Again, the mechanism of the nuclear PI-PLC-δ1 activation 

is not well understood, but the activation of PI-PLC-δ1 is not completely elucidated even at 

the cell membrane (61). At both locations, the mechanism seems to depend on binding to 

PtdIns(4,5)P2 by PH domain (a property that has been extensively used to track the cellular 

PtdIns(4,5)P2 by GST or GFP-constructs fused to PH-domain of PI-PLC-δ1) and an increase 

in the level of Ca
++ 

(59, 61, 76). 

 

 3.3. The subnuclear localization of nuclear phospholipase C 

 

The sublocalization of different PI-PLC isoforms in nuclei has been investigated by 

using immunocytochemistry, biochemical fractionation of cells, and imaging of cells 
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expressing tagged proteins (6, 26). The majority of PI-PLC-β1 is probably not located in the 

nuclear envelope as the activity of PI-PLC-β1 is present in both whole nuclei (21, 40) and 

nuclei treated with different concentrations of detergents in order to remove the nuclear 

membrane (21, 25, 48, 68, 75, 77). In rat liver nuclei, fractionation experiments indicated that 

both PI-PLC-β1 and PI-PLC-γ1 persisted in nuclear matrix and lamina, obtained after nuclease 

digestion and extraction with high salt and detergent (6). Our recent quantitative analysis of 

nuclear PI-PLC isoforms during compensatory liver growth showed that PI-PLC-β1 and PI-

PLC-γ1 account for 60% and 30% of the PI-PLC activity in membrane-depleted nuclei, 

respectively, and that the rest of the activity was due to the presence of PI-PLC-δ1. 

Furthermore, while PI-PLC-β1 and -γ1 were associated with nuclear matrix, the activity of PI-

PLC-δ1 was immunoprecipitated with chromatin fraction of the nuclei (16). Although all of 

these studies suggest that several different isoforms of PI-PLC are really “endonuclear” as 

they localize in different parts of the nuclei, the functional significance of the colocalization 

findings is presently unknown. However, several studies localized the major substrate for the 

action of PI-PLC, PtdIns(4,5)P2
 
to nuclear speckles suggesting some involvement in the 

splicing reaction (60). Furthermore, colocalization of PI-PLC-δ (i.e. Plc1p) with chromatin 

has been described in yeasts models and suggested to have a role in kinetochore function (37). 

 

 3.4. The role of the nuclear PI-PLC in differentiation, mitogenesis and cell 

cycle progression 

 

The possible effects of the nuclear PI-PLC activation on differentiation were first 

indicated by studies showing an increase in the level of the nuclear enzymes in C2C12 

myoblasts (26). A functional role for the nuclear enzyme was demonstrated in studies using 

the PI-PLC-β1 mutant that is confined to the cytoplasm by destroying NLS; the nuclear 
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enzyme was found to be necessary for both the expression of CD24 marker during erythroid 

differentiation of Friend cells (27) and myoblastic differentiation of C2C12 cells (26). 

 IGF-mediated increase in the level of nuclear DAG and the activity of PI-PLC that 

was described 15 years ago (20, 46) has been later proved to have an important role in the 

onset of DNA synthesis and proliferation of Swiss 3T3 cells. The mitogenic response of the 

cells to IGF was abolished by the ablation of the isoform through antisense RNA (44), and 

cells overexpressing PI-PLC-β1 showed mostly nuclear localization of the enzyme and an 

increased percentage of cells incorporating BrdU (11). Friend erythroleukemia cells 

overexpressing a or b splice variants of PI-PLC-β1 showed an increase in the level of 

cyclinD/cdk4, phosphorylation of retinoblastoma protein (Rb) on Ser-795, activation of E2F 

and growth in the absence of serum, and none of these effects were observed in cells 

transfected with a mutant lacking the NLS (25). In conclusion, these studies confirmed the 

role of the nuclear PI-PLC-β1 in mitogen-driven proliferation. 

 An early increase in the PI-PLC activity in mitogen-stimulated cells that were 

previously serum-starved probably corresponds to G0/G1-transition phase of the cell cycle. A 

series of experiments performed in aphidicolin-synchronized HL-60 cells demonstrated an 

additional point of the cell cycle characterized by an increase in the nuclear PI-PLC activity. 

When aphidicolin-synchronized HL-60 cells were released from the block and allowed to 

progress synchronously through the cell cycle, a PI-PLC inhibitor-sensitive increase in the 

level of DAG was observed in nuclei 8 h after release from the block that corresponded to 

G2/M phase of the cell cycle (68). In addition, the presence of the PI-PLC inhibitor delayed 

the progression of the cells through G2/M phase and correlated with translocation of PKC-βΙΙ 

that was previously shown to phosphorylate lamins (29, 68, 71). Therefore, a certain 

physiological role of G2/M-associated nuclear PI-PLC activation was suggested as the 

phosphorylation of lamins is known to precede nuclear envelope breakdown at the beginning 



 11 

of the mitosis. A similar increase in the level of DAG and translocation of PKC-βΙΙ were 

detected during G2/M phase in U937 cells separated into distinct phases of the cell cycle by 

centrifugal elutriation (17). 

 Ever since an increase in the level of nuclear DAG was observed in rat liver nuclei 

during proliferation, a model of compensatory liver growth after partial hepatectomy has been 

used as a useful in vivo model to study the activation of nuclear PI-PLC at different phases of 

the cell cycle. Early studies pointed to the possible activation somewhere at the beginning of 

the S-phase (5), although a more detailed analysis proved that the increase actually precedes 

the increase in the incorporation of radioactive thymidine (16). Our recent analysis of PI-PLC 

activity in membrane-depleted nuclei of regenerating rat liver demonstrated two separate 

peaks of the nuclear PI-PLC activity; the early peak that was associated with an increase in 

serine-phosphorylation of PI-PLC-β1 occurred 6 h after partial hepatectomy, and the later 

increase occurring at 20 h was characterized by an increase in the level of both PI-PLC-β1 and 

tyrosine-phosphorylated PI-PLC-γ1 (16). 

 These studies prompted us to check for the possible two waves of the nuclear 

PI-PLC activity during G1 phase in a model of HL-60 cells blocked in G2/M phase by 

nocodazole and released to progress through G1 phase of the cycle. Two peaks of the nuclear 

PI-PLC activity were detected at 1 and 8.5 h after nocodazole release and both peaks 

correlated with an increase in the serine-phosphorylation of the nuclear PI-PLC-β1 splice 

variant b (40). In addition, two waves of nuclear PI-PLC-β1b activity were observed in serum-

starved and re-feed HL-60 cells confirming that cyclic increases in nuclear PI-PLC activity 

were not the consequence of the nocodazole-synchronization procedures but genuine cell-

cycle-related events (42). Both peaks of PI-PLC-β1b activity were inhibited by PI-PLC and 

MEK inhibitors, and the later increase in the nuclear activity was found to be equally 

important for the progression into the S phase (42). In summary, combining data obtained in 
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HL-60 cells synchronized by different procedures, we can conclude that there are at least 

three distinct peaks of MAPK-mediated PI-PLC-β1b activation in nuclei of cells progressing 

through the cell cycle, as summarized in Fig. 4 (and reviewed in 41). 

The nuclear translocation of other PI-PLC isoforms has been described to be 

linked to the cell cycle. PI-PLC-δδδδ1, the same isoform that was found to participate in the 

increase in the PLC-activity in rat liver nuclei at 20h after hepatectomy (16), 

accumulates in the nuclei of both quiescent and thymidine-treated NIH 3T3 cells 

arrested at G1/S boundary (67). PI-PLC-ζζζζ is transported into the nucleoplasm of the 

newly formed pronucleus in the fertilized egg and remains nuclear during the first 

interphase. As the zygote enters first mitosis, the pronuclear envelopes breakdown 

occurs and PLC-ζζζζ is released back to the cytoplasm (36). 

It is not clear how the nuclear activation of any PI-PLC isoform might interact with 

the cell cycle machinery to regulate progression through different phases of the cell cycle. At 

the cell membrane, the products of PLC-mediated PtdIns(4,5)P2 hydrolysis activate PKC and 

mobilize calcium from intracellular stores. Although there are numerous reports showing the 

presence of different PKC isoforms in nuclei in parallel with an increase in the level of the 

nuclear DAG and the phosphorylation of several nuclear proteins, there are few data 

confirming physiological role of PKC that is specifically attracted to the nuclei because of the 

activation of the nuclear PI-PLC (17, 20, 29, 41, 50, 56, 71, 78). Some of the functionally 

important nuclear PKC-mediated phosphorylation events include phosphorylation of lamins 

during G2/M phase of the cell cycle (17, 29, 71), and PKC-α-mediated phosphorylation and 

down-regulation of PI-PLC-β1 in IGF-stimulated Swiss 3T3 cells (78). There are even less 

studies that may confirm the hypothesis that Ins(1,4,5)P3, generated by the activation of the 

nuclear PI-PLC, plays exactly the same role in the regulation of the nuclear calcium 

homeostasis as the Ins(1,4,5)P3 generated at the cell membrane plays  in the regulation of the 
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cytosolic calcium (12). However, Ins(1,4,5)P3 may serve as a precursor for the 

phosphorylation and generation of inositol phosphates that have been convincingly proved to 

regulate such as important nuclear events like mRNA export (83), transcription (57), telomere 

length (85) and RNA editing (43). In addition, the signaling role of the nuclear PI-PLC might 

rely not only on the production of new lipid second messengers but on the regulation of the 

level of the nuclear substrate, as it is known that PtdIns(4,5)P2 itself influences many nuclear 

processes directly (35). In murine erythroleukemia cells, the activity of enzymes responsible 

for the synthesis of PtdIns(4,5)P2 increases during the progression through G1 into S phase 

(13). Recent studies performed by Divecha and coworkers (23, 38) suggest that Rb protein, a 

key regulator of G1/S phase transition, may provide a link between nuclear phospholipid 

signaling and cell cycle regulation as they demonstrate that pRb interacts with PtdIns(4)P 5-

kinase, regulates the levels of the nuclear PtdIns(4,5)P2 (23), and decreases the level of the 

nuclear DAG by activating the nuclear DAG kinase (38). Data obtained in synchronized 

NIH 3T3 cells suggest that relative level of nuclear phosphoinositides can influence 

compartmentalization of PLC enzymes and stimulate their nuclear translocation as it 

was demonstrated that PI-PLC-δδδδ1 translocation correlated with the increase in the level 

of the nuclear PtdIns(4,5)P2 and depended on high affinity PtdIns(4,5)P2 binding 

through PH domain (67). 

Another possible role for the nuclear accumulation of the PLC enzyme can be 

simply to prevent the effects of the cytoplasmic activation as it was suggested in a model 

of fertilized mouse eggs during their first cell cycle. PLC-ζζζζ-induced Ca
2+

 oscillations are 

absent during the interphase and occur exclusively during mitosis which is probably due 

to the NLS-dependent sequestration of the enzyme in the nuclei during interphase thus 

preventing the generation of cytoplasmic Ins(1,4,5)P3 and subsequent Ca
2+

 release (36). 
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Table 1 summarizes findings on accumulation, activity and possible roles of different PI-

PLC isoforms detected in nuclei. 

 

4. Nuclear phosphoinositide 3-kinases 

 

Phosphatidyilinositol 3-kinases phosphorylate phosphoinositides at the 3' position of 

the inositol ring to generate PtdIns(3)P, PtdIns(3,4)P2, PtdIns(3,5)P2 and PtdIns(3,4,5)P3 in 

response to various stimuli. Several different members of PI3K family are divided into three 

classes based on their sequence homology, substrate preference and mechanism of activation. 

Phosphorylation of PtdIns(4,5)P2 is mediated by class I enzymes that are further subdivided 

into group A and B; class IA enzymes consist of a 110-kDa catalytic subunit and an adaptor 

protein which links the enzyme to tyrosine kinases, and class IB enzymes are composed of 

p110γ catalytic subunit and a subunit regulated by G proteins. The principal second 

messenger generated upon the activation of class I PI3Ks is PtdIns(3,4,5)P3, that is known to 

mediate such important cellular responses as mitogenesis, cell growth and insulin-regulated 

glucose homeostasis. Much less is known about physiological role and mode of regulation of 

class II enzymes which include three isoforms in mammals (PI3K-C2α , -β and -γ). All class 

II enzymes show preference for PtdIns and PtdIns(4)P as substrate in vitro and their 

sequences contain Phox homology (PX) and C2 domains at their C-termini. The mammalian 

class III enzyme phosphorylates only PtdIns to produce PtdIns(3)P and the enzyme is 

homologous to yeast Vps34 which regulates vesicle trafficking (reviewed in 24). 

 

4.1. Nuclear class I phosphoinositide 3-kinases 
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Biochemical, immunoblotting and immunofluorescence data confirmed the presence 

of p85/p110 or class IA PI3K in nuclei of various cell types and point to the possible role of 

the nuclear PI3K in mitogenesis (reviewed in 49). Again, the mechanism of the activation of 

the nuclear PI3K seems to differ from the classical one at the cell membrane. The best 

characterized are models of the nuclear class I PI3K regulation in PC12 rat 

pheochromocitoma cells stimulated by nerve growth factor (NGF) (Fig. 5) and ATRA-

differentiated HL-60 cells. 

 

4.1.1. NGF-stimulated nuclear PI 3-kinase in PC 12 cells 

 

In PC12 cells, NGF treatment led to an increase in the level of the nuclear 

PtdIns(3,4,5)P3 that was temporally distinct from the one occurring at the cell membrane and 

that was associated with an increase in both the amount and the enzyme activity of PI3K 

immunoprecipitated from the nuclei (55, 70). In the yeast two-hybrid analysis using a domain 

of cytoskeleton protein 4.1N as bait, a brain-specific nuclear GTPase that activates PI3K was 

identified and named phospho inositide kinase enchancer (PIKE). Experiments performed on 

dominant-negative PIKE (K413AS414N) retrovirus–infected PC12 cells confirmed that both 

NGF-induced nuclear PI3K activation and cyclin D1 expression were mediated by PIKE (81). 

PIKE, as other GTPases, cycles between an active GTP-bound and an inactive GDP-

complexed state. Therefore, proteins that promote release of GDP (guanine nucleotide 

exchange factors, GEF) act as positive regulators of GTPases. Subsequent in vitro binding 

assays identified PI-PLC-γ1 as an upstream regulator of PIKE; SH3 domain of PI-PLC-γ1 was 

found to interact with proline rich domains (PRD) in PIKE (82). As GEF activity of PI-PLC-

γ1 depended only on that PRD-SH3 interaction and did not require the phospholipase catalytic 

activity, the model of PI-PLC-γ1/PIKE/nuclear PI3K activity provided one explanation for the 
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previous findings showing that mitogenic activity of PI-PLC-γ1 was not dependent on its 

phospholipase activity, but requires only its SH3 domain (66). 

Further experiments in the same model of NGF-treated PC12 cells identified some 

downstream targets of the nuclear PIKE/PI3K/PtdIns(3,4,5)P3. The one of these nuclear 

binding targets for PtdIns(3,4,5)P3 is nucleophosmin/B23, a major nuclear phosphoprotein 

that plays an important role in ribosome biogenesis; immunodepletion of B23 from nuclear 

extracts in PC12 cells promotes DNA fragmentation and abolishes NGF-mediated 

antiapoptotic effect (2). Another important nuclear target is protein kinase B/Akt that is 

known to translocate into the nucleus in response to various agonists (reviewed in 51) and that 

was shown to prevent apoptosis in PC12 cells (1). In PC12 cells, acinus and Ebp1 are some 

recently identified direct nuclear Akt targets that participate in prevention of DNA 

fragmentation and chromatin condensation during apoptosis (3, 31). 

 

4.1.2. Nuclear PI 3-kinase in myeloid differentiation 

 

In addition to providing the survival signal in PC12 cells, the nuclear PI3K class I 

activation and PtdIns(3,4,5)P3 has an important role in myeloid differentiation. In the model 

of ATRA and vitamin D3-differentiated HL-60 cells, the increase in the level of 

immunoreactive p85, enzyme activity and endogenous PtdIns(3,4,5)P3 was detected in nuclei 

of cells differentiated towards granulocytes or monocytes, respectively (8, 54). The inhibition 

of PI3K activity by wortmanin and a decrease of p85 expression obtained by antisense 

transfection inhibited ATRA-mediated granulocytic differentiation (9). Similar to NGF-

treated PC 12 cells, the activation of class I PI3K in the nuclei of ATRA-differentiated cells 

was found to be associated with a nuclear accumulation of PI-PLC-γ1, but the mechanism of 

nuclear activation, as previously described for the nuclear PI-PLC-γ1, involves an adapter 
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protein Vav (8). An increase in the nuclear PI3K activity in ATRA-differentiated cells 

depends on the association of SH2 domain of p85 with tyrosine phosphorylated Vav and 

occurs independently from GEF activity of adapter protein (10). In ATRA-differentiated HL-

60 cells, possible downstream targets of the nuclear PI3K class I activation so far include 

PKC-ζ (55) and Akt (52). 

 

4.2. Nuclear class II phosphoinositide 3-kinases 

 

Immunochemical and biochemical studies localized p85 in ATRA-differentiated cells 

to nuclear matrices (45, 54). In vivo model of rat liver nuclei showed the presence of class I 

PI3K in nuclei (39) and the absence of PtdIns(3,4,5)P3 in nuclei depleted of their membranes 

suggesting that a majority of the class I PI3K activity in rat liver nuclei is not present in the 

endonuclear compartment (63). However, the activation of class II PI 3-kinases and an 

increase in the level of the nuclear PtdIns(3)P were observed in membrane-depleted rat liver 

nuclei at 20 h after partial hepatectomy. The increase in kinase activity was measured in 

nuclear extracts after immunoprecipitation using antibody raised against PI3K-

C2β (63). Class II PI3Ks are good candidates for compartmentalization within the cell 

nucleus as they have been reported to associate predominantly with membrane fractions of the 

whole cells. PI3K-C2α, another member of class II PI 3-kinases, was found to be associated 

with nuclear speckles and a putative NLS was identified within C2-like
 
domain of the kinase 

(18). Further studies in rat liver nuclei confirmed that PI3K-C2β was mostly associated with 

nuclear matrices of hepatocytes during compensatory liver growth (64). Again, the subnuclear 

localization of PI3K-C2β depends on the cell type. In models of ATRA-differentiated and 

aphidicolin-synchronized HL-60 cells, the majority of PI3K-C2β activity was detected in the 

nuclear envelopes (73, 74). In contrast to the subnuclear localization, the mechanism of the 
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nuclear PI3K-C2β activation does seem to depend more on the physiological function of the 

enzyme. The same mechanism of calpain-mediated proteolysis and activation of PI3K-C2β 

has been described in both regenerating rat liver (63) and aphidicolin-synchronized HL-60 

cells during G2/M-phase of the cell cycle (74), and both events seems to be related to the 

progression of cells through the cell cycle. In contrast, the nuclei of HL-60 cells that were 

induced to differentiate in the presence of ATRA show a different mechanism of PI3K-C2β 

activation. Instead of calpain-mediated proteolysis, the activation of PI3K-C2β during 

differentiation process relies on the tyrosine phosphorylation of the enzyme (73). 

 

Concluding remarks 

 

In last 20 years, a considering progress has been made in understanding the 

mechanism of the nuclear PI-PLC and PI3K activation. The imaging of cells expressing 

tagged proteins, the use of mutants lacking NLS, and the overexpression of enzymes in the 

nuclei revealed some precise and specific evidence for the role of PI-PLC-β1b and PIKE/class 

I PI3K/Akt in defined physiological processes. The nuclear enzymes do not seem to 

recapitulate always their roles at the plasma membranes; e.g. the importance of the 

nuclear localization of PI-PLC-ζζζζ in fertilized eggs seems to be simply the sequestration 

of the enzyme from the cytoplasm and the prevention of the effects of Ins(3,4,5)P3 on the 

cytosolic calcium (36). Furthermore, the mitogenic role of the nuclear PI-PLC-γγγγ1111 does 

not depend on the catalytic activity but relies on binding to the nuclear GTPase PIKE 

(82). The activation of the nuclear PKC attracted by an increase in the level of the 

nuclear DAG (17, 71, 78) as well as the activation of the nuclear Akt in response to the 

increase in the nuclear PtdIns(3,4,5)P3 (52, 55) seems to prove the necessity of second 

messenger generating function of the nuclear PLCs and PI3K. However, there are no 
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convincing proofs that the nuclear Ins(3,4,5)P3 plays the same role in the mobilization of 

calcium as the one generated at the plasma membrane, and there are many more proofs 

that, at least in yeast model, the role of the nuclear Ins(3,4,5)P3 is to serve as a precursor 

for the generation of the higher inositol phosphates (84). Yeast provided an ideal model 

system within which to study the possible role of the phosphoinositides and inositol 

phosphates in the regulation of nuclear processes. Several years ago, when a possible role for 

the nuclear PI-PLC in nuclear envelope assembly and cell cycle emerged, one of the 

hypotheses suggested that the nucleus may have been the site at which phosphoinositide 

signaling originally evolved and that the cycle was later duplicated in the plasma membrane 

for the signaling purpose (22). The lack of PtdIns(3,4,5)P3 in rat liver nuclei depleted of 

membranes with a parallel increase in the level of PtdIns(3)P, the association of the PLC1 

analogue PLC-δ1 with chromatin, the lack of Ins(1,4,5)P3 substrates that can be involved in 

nuclear calcium homeostasis suggest that there are many similarities between signaling in 

yeasts and endonuclear phospholipid signaling and that the evolutionary standpoint can be 

informative. The absence of the classical receptor-mediated phospholipid signaling in 

yeasts, including the lack of Ins(1,4,5)P3-receptor gene in yeasts genome, raises the 

possibility that the primordial role for the phospholipase C was production of the 

precursor for the inositol phosphates and the regulation of nuclear processes. The 

nuclear localization of the enzymes necessary for the synthesis of PtdIns(4,5)P2 and the 

nucleocytoplasmic shuttling of the Plc in yeasts have been reported (84). The most 

promising areas of future research in the field of the nuclear phospholipid signaling involve 

the investigation of the metabolism and possible nuclear function of higher inositol 

phosphates in mammalian cells, the elucidation of the physicochemical forms of 

phosphoinositides within the nucleus and the identification of nuclear-specific 

phosphoinositide binding domains that allows the response of nuclear proteins to changes in 



 20 

the nuclear phosphoinositide profile and regulation of chromatin structure, transcription, and 

DNA repair (34, 35). 
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Figure legends: 

 

Figure 1. The basic structure of nucleus – “nuclear” and “endonuclear” PtdIns(4,5)P2. 

PtdIns(4,5)P2 is a component of a classic phospholipid bilayer and the nuclear envelope is 

composed of the outer and inner nuclear membranes. “Endonuclear” PtdIns(4,5)P2, i.e. 

PtdIns(4,5)P2 that is present in nuclei after removal of membranes by the use of detergents, 

was found to be associated with various structures, including interchromatin granule clusters 

or nuclear speckles. The physicochemical structure of “endonuclear” phospholipids is 

unknown. 
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Figure 2. The structure of PI-PLC isoforms that are most frequently found in nuclei. PI-

PLC-ββββ, -γγγγ and -δδδδ isoforms contain catalytic domains X and Y, pleckstrin homology domain 

(PH), EF hands and C2 domain that binds calcium. PI-PLC-ζζζζ lacks PH domain. PI-PLC-γ 

contains additional Src homology (SH) domains that enable the association of the isoform 

with ligand-activated tyrosine kinases. A region at C-terminal domain of PI-PLC-β and a 

sequence between X and Y domain in PI-PLC-ζζζζ were found to provide a nuclear 

localization signal (NLS). 

 



 33 

Figure 3. MAPK-mediated activation of the nuclear PI-PLC-ββββ1b. Several agonists (insulin, 

IGF, IL-2 and FBS) stimulate the activity of the nuclear PI-PLC-β1b that is sensitive to the 

presence of MEK inhibitor PD98059. PI-PLC-β1b-mediated hydrolysis of PtdIns(4,5)P2 

generates DAG and Ins(1,4,5)P3. The nuclear DAG attracts several PKC isoforms to the 

nucleus; PKC-α phosphorylates PI-PLC-β1b and inhibits its activity, PKC-βII mediates 

proliferative signal. The role of the nuclear Ins(1,4,5)P3 may be the regulation of the nuclear 

calcium. In addition, Ins(1,4,5)P3 may be further phosphorylated into higher inositol 

phosphates. 
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Figure 4. The activation of the nuclear PI-PLC during the progression through the cell 

cycle. The arrows indicate the phases of the cell cycle at which the increases in the activity of 

PI-PLC-β1b were detected in nuclei of HL-60 cells. 
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Figure 5. NGF-stimulated nuclear PI 3-kinase in PC 12 cells. Binding of NGF to its 

receptor stimulates translocation of both PI-PLC-γ and PI 3-kinase class I (p85α/p110) into 

the nucleus. A catalytically inactive PI-PLC-γ act as guanine exchange factor (GEF) and 

activates nuclear GTPase called PIKE (phospho inositide kinase enchancer). PIKE stimulates 

the activity of the nuclear PI3K that phosphorylates PtdIns(4,5)P2 into PtdIns(3,4,5)P3. 

PtdIns(3,4,5)P3 attracts PKC-ζ which translocates from cytoplasm to the nucleus and 

phosphorylates nucleolin. The complex of PtdIns(3,4,5)P3 and nucleophosmin/B23 inhibits 

DNA fragmentation activity of caspase activating DNAse (CAD). Acinus is one of the 

recently identified targets of the activated nuclear Akt. 
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Table 1. Overwiew of different nuclear PLC isoform activation during cell cycle progression   
 

Isoform 

 

The phase of 

cell cycle 

Model The enzyme activity The amount of 

enzyme 

The interaction partner in the 

nucleus 

PI-PLC-

β1 

G0/early G1 IGF, Swiss 3T3 cells 
(77, 47)

 Increased (PLC assay)
 (77, 47)*

 

MAPK-mediated phosphorylation at Ser982 
(77)

  

No change
 (77, 47)

 Immunoprecipitated with 

phospho-MAPK 
(77)

 

  IGF, HL-60 
(56)

 Increased (PLC assay)
 (56)

 

Increased DAG 
(56)

 

No change
 (56)

 ND 
(56)

 

        −β1β  Insulin, NIH 3T3 
(48)

 Increased (PLC assay)
 (48)

 

MEK inhibitor-sensitive serine phosphorylation 
(48)

 

No change
 (48)

 ND 
(48)

 

  IL-2, NK cells 
(75)

 Increased (PLC assay)
 (75)

 

Increased DAG 
(75)

 

MEK inhibitor-sensitive serine phosphorylation 
(75)

 

No change
 (75)

 ND 
(75)

 

  FBS, HL-60 
(42)

 Increased (PLC assay)
 (42)

 

MEK inhibitor-sensitive serine phosphorylation 
(42)

 

No change
 (42)

 ND 
(42)

 

  Hepatectomy, liver 
(16)

 Increased (PLC assay)
 (16)

 

Serine phosphorylation 
(16)

 

No change
 (16)

 ND 
(16)

 

 late G1/S FBS, HL-60 
(42) 

Nocodazole, HL-60 
(40) 

Increased (PLC assay)
 (40,42)

 

MEK inhibitor-sensitive serine phosphorylation 
(40,42)

 

No change
 (40,42)

 ND 
(40,42)

 

  Hepatectomy, liver 
(16)

 Increased (PLC assay)
 (16)

 

No phosphorylation 
(16)

 

Increased 
(16)

 ND
 (16)

 

 G2/M Nocodazole, HL-60 
(40) 

Aphidicolin, HL-60 
(68)

 

Increased (PLC assay)
 (40)

 

Increased DAG 
(68)

 

MEK inhibitor-sensitive serine phosphorylation 
(40)

 

No change
 (40)

 ND
 (40,68)

 

PI-PLC-

γ1 

G0/early G1 Hepatectomy, liver 
(16,53)

 Increased (PLC assay)
 (16,53)

 

Tyrosine phosphorylation 
(16,53)

 

No change
 (16,53)

 ND
 (16,53)

 

  NGF, PC12 
(82)

 ND 
(82)

 Increased 
(82)

 PIKE GTPase  

(PLCγ acts as GEF)
 (82)

 

  ATRA, HL-60 
(8)

 ND 
(8)

 Increased 
(8)

 Immunoprecipitated with Vav 
(8)

 

 late G1/S Hepatectomy, liver 
(16,53)

 Increased (PLC assay)
 (16,53)

 

Tyrosine phosphorylation 
(16,53)

 

No change
 (16,53)

 ND
 (16,53)

 

PI-PLC-

δ1 

G0/early G1 Reduced serum, NIH 3T3 
(67)

 ND 
(67)

 Increased 
(67)

 Phosphoinositides 
(67)

 

 Late G1/S  Thymidine block, NIH3T3 
(67, 79)

 ND 
(67, 79)

 Increased 
(67, 79)

 ND 
(67, 79)

 

  Hepatectomy, liver 
(16)

 Increased (PLC assay)
 (16)

 Increased 
(16)

 ND 
(16)

 

PI-PLC-ζ interphase Fertilized eggs 
(36)

 ND
(36)

 Increased
(36)

 ND
(36)

 

 

ND- not determined 

*- reference number 


