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Abstract  
A commercial optically stimulated luminescence (OSL) dosimetry system was investigated for in-

vivo dosimetry in radiation therapy. Dosimetric characteristics of InLight dot dosimeters and a 

microStar reader (Landauer Inc.) were tested in 
60
Co beams.  

Reading uncertainty of a single dosimeter was 0.6%. The reproducibility of a set of dosimeters 

after a single irradiation was 1.6%, while in repeated irradiations of the same dosimeters it was 

found to be 3.5%. When OSL dosimeters were optically bleached between exposures, the 

reproducibility of repeated measurements improved to 1.0%. Dosimeters were calibrated for the 

entrance dose measurements and a full set of correction factors was determined. A pilot patient 

study that followed the phantom validation testing included more than 100 measured fields with a 

mean relative difference of the measured entrance dose from the expected dose of 0.8% and the 

standard deviation of 2.5%. In conclusion, these results demonstrate that OSL dot dosimeters 

represent a valid alternative to already established in-vivo dosimetry systems.  

 

 

1. Introduction 
In-vivo dosimetry in radiation therapy is a well established and recommended procedure (AAPM 1994, 

Essers and Mijnheer 1999, IAEA 2008) for the estimation of the dose delivered to a patient during the 

radiation treatment. It provides an independent check of the treatment procedure that aims at detection of 

possible errors in calculation, patient setup and data transfer. In vivo dosimetry is recognized as a part of 

the quality assurance programme in radiotherapy. It became even more important with the emerging use 

of new and more complex radiotherapy techniques such as intensity modulated (IMRT) or image guided 

radiation therapy (IGRT). Today, the most common dosimeters for patients’ dose verification through in-

vivo measurements are semiconductor diodes, thermoluminescent dosimeters (TLDs), or electronic portal 

imaging devices (EPID). There is also an increased application of metal-oxide-semiconductor field effect 

transistors (MOSFET) for clinical radiotherapy dosimetry. Diode based in-vivo dosimetry has been widely 

explored and reported in literature (Millwater et al 1998, Alecu et al 1999, Jornet et al 2000, Fiorino et al 

2000, Jursinic 2001). Similar investigations have been reported with TLDs (Loncol et al 1996, Swinnen et 

al 2004) and with MOSFET dosimeters (Ramaseshan et al 2004, Scarantino et al 2005, Cherpak et al 

2009). Comprehensive guidelines for the implementation of in-vivo dosimetry with diodes are published 

by ESTRO (2001) and AAPM (2005). Generally, in vivo dosimeters are available as passive detectors 

with delayed readout or as real time detectors with immediate readout. Although real time techniques have 

obvious advantage over passive dosimeters, latter are still widely used in routine work for several reasons. 

Usually there is larger number of dosimeters provided for in-vivo measurements which allows for 
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simultaneous dose determination at several positions on the patient. No cable connection between 

dosimeters and the reader, allows their usage on different treatment machines in the department. 

Moreover, it is not necessary for the hospital to be equipped with the reading unit; instead readout can be 

arranged in an outside institution.  

 Optically stimulated luminescence dosimeters (OSLDs) are well known as suitable dosimeters for 

various dosimetric applications from retrospective dosimetry i.e. luminescence dating, to personal, 

environmental and space dosimetry (McKeever 2001). Until recently, TLDs were the most common 

choice of passive dosimeters for medical purposes. However, OSLDs have an advantage compared with 

TLDs (McKeever and Moscovitch 2003), since no heating is required for the dose measurement, which 

makes the reading equipment cheaper, and easier to handle and maintain. 

 OSLDs potential in medical dosimetry (Akselrod et al 2006) was recognized due to their small size 

suitable for point measurements, high sensitivity, non-destructive readout and reanalysis and the use of 

relatively simple readers with high degree of automation. Technical advances in production of OSL 

materials and availability of the reading devices make them a very promising dosimetric tool for medical 

purposes. Current developments in this field are given in the review by Yukihara and McKeever (2008) 

and specific applications of OSLDs in diagnostic radiology and radiation therapy are reconsidered in the 

review by Yukihara et al (2010). 

 The physical principle of OSL is analogous to TL, making use of light instead of heat as a source of 

stimulation energy (Bøtter Jensen et al 2003).  When exposed to ionizing radiation, the energy is stored in 

the crystal lattice of the detector material in a form of the trapped charge. In a stimulated relaxation 

process, electrons and holes recombine and the luminescence light is emitted. The rate of relaxation is 

related to the amount of trapped charge and consequently to the luminescence intensity. Thus, an integral 

of the luminescence intensity over the stimulation period is a function of the initial absorbed dose. Many 

materials, like carbon doped aluminium oxide Al2O3:C, exhibit both TL and OSL, depending on the  

stimulation. The dosimetric properties of Al2O3:C as OSLD in a single crystal or powder form, have been 

extensively investigated over past years for different applications and types of radiation (Yukihara et al 

2004, McKeever et al 2004, ). Preferable characteristics, such as very high sensitivity, all-optical nature of 

measurement and a possibility of optical bleaching make it now a common material for OSLD. Still, 

Al2O3:C has a relatively high effective atomic number (Z=11.2) compared to water that is responsible for 

the energy dependence especially in the low energy region (Reft 2009). Andersen et al (2008) have shown 

that OSL response from Al2O3:C is dependent on the temperature during both irradiation and stimulation 

process. Sensitivity changes with accumulated dose were also reported by several authors (Yukihara et al 

2004, Yukihara and McKeever 2008, Jursinic 2009). 

 Although several studies have investigated different types of Al2O3:C based OSLDs for radiotherapy 

dosimetry (Gaza et al 2004, Yukihara et al 2005, Schembri and Heijmen 2007, Miller and Murphy 2007, 

Jursinic 2007, Viamonte et al 2008, Yukihara et al 2008, Reft 2009) there are only few published results 

on actual clinical in-vivo measurements with OSL dosimeters. Aznar et al (2004) tested a real time OSL 

fiber dosimeter for direct measurement of the dose delivered to one patient in IMRT treatment of head and 

neck. Luxel (Landauer) OSL dosimeters were used by Meeks et al (2002) for in-vivo measurements of 

extra target doses in tomotherapy for nine patients.  

 In this work we have investigated the performance of a commercial OSLD system based on Al2O3:C 

for entrance dose measurements in external 
60
Co photon beam radiotherapy and performed in-vivo studies 

that involved extensive measurements on patients. After physical characterization and validation of the 

entire procedure on an anthropomorphic phantom, about 100 in-vivo patient measurements were made. 

Investigation of OSLDs, as possible in-vivo dosimeters in radiotherapy, was a part of the research project 

supported by the International Atomic Energy Agency (IAEA). The same generic protocol was proposed 

for the implementation of in-vivo dosimetry in clinical practice with the recently introduced MOSFET 

dosimeters and OSLDs, as for the already established in-vivo dosimeters such as diodes and TLDs. 

Characterization and comparison of these solid-state dosimeters are presented in an IAEA report (IAEA 

2011).  
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2. Materials and methods 
 

2.1 Equipment 

All irradiations in this study were done with a 
60
Co unit (Cirus, Cis BioInternational, France). The 

ionisation chamber used was a Farmer type 0.6 cm
3
, model 30002, connected to the Unidos electrometer, 

both PTW, Freiburg, Germany. Measurements were performed in a white polystyrene phantom (RW3, 

PTW) with a special adapter for the chamber. Computer treatment planning system (TPS) was Theraplan 

Plus 1000 (MDS Nordion, Canada).  

 The OSL system was a commercial InLight
TM

 OSL system (Landauer, Inc. Glenwood, Illinois, USA) 

that included OSL dot dosimeters, a microStar reader and an external PC with dosimetry software. The dot 

dosimeter consists of an OSL active element ( Al2O3:C), 7 mm in diameter and 0.3 mm thick, placed in a 2 

mm x 12 mm x 24 mm lightproof plastic housing. The housing opens automatically during the reading 

process, and it could be opened manually for optical bleaching purposes, i.e. for exposing the OSL 

element to light (figure 1). Specially made, 2 mm thick, aluminium build-up caps of 9 mm diameter, 

which fit to the active OSL element, were taped on dots in all irradiations. The microStar reader uses a 

green light emitting diode (LED) array, with the wavelength centered at 530 nm, for the optical 

stimulation. The reader operates in a so-called continuous wave (CW) stimulation mode with a reading 

time of approximately one second.  During the stimulation, only a small fraction of the trapped charge is 

released so that dosimeters can be re-read multiple times. 

 

 

    
 Figure 1. a) Landauer’s OSL dot dosimeters with build-up caps and a plastic adapter for the reader, 

b) microStar reader. 
 

2.2 OSL reading process 

The microStar reader can operate in two modes with different light power stimulation depending on the 

dose received by the dosimeter. Every dosimeter is first stimulated with a low power light beam and the 

initial response is monitored. If the response is large enough (high doses) the reading process continues 

with a low power light beam, otherwise a high power beam is employed to get a signal large enough to 

measure small doses. These modes of operation are activated automatically. In a typical radiotherapy dose 

range, used in this study, the reader operates in a low power LED stimulation mode.  

 During the readout process, the dots are placed in a plastic adapter and then inserted into the reader’s 

loader. The reader is equipped with a rotary knob that is turned into the reading position for opening the 

housing and exposing the dot to light. Turning back to home position closes the housing and allows 

withdrawing the loader. This operation needs to be done slowly and gently. Otherwise, dosimeters were 

often only partially pulled from the adapter or the housing was not fully closed after the reading, which 

caused inconsistent readouts, and consequently poor reproducibility.  

The stability of the reader was tested daily, by the intrinsic system check: the measurement of the dark 

current values, the readout from the irradiation with a built-in small 
14
C source, and the readout with the 
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light beam on, to indicate the stability of the beam intensity. The dark current values were always well 

below the manufacturer’s recommended value of 30 counts. The variation between the results of the other 

two daily system checks were around 3%, which is inside the tolerance levels stated at ±10%, indicating 

therefore an acceptable stability of the reader. 

For all measurements, dosimeters were read five times, every time opening the loader and repositioning 

the dot. The average of five repeated readings was taken as a dosimeter signal. 

 

2.3. Basic characterization of the OSL system  

Initially, OSLDs were tested for a perturbation of the radiation field beneath the dosimeter, multiple 

reading depletion correction, optical bleaching techniques, the system stability and reproducibility, and the 

fading of OSL signal with time. Attenuation of the radiation field beneath the OSLD equipped with a 

build-up cap was measured by placing a radiographic film between the plastic phantom plates at 5 and 10 

cm depths. The optical density of a developed film was determined by a point densitometer (DensiX, 

PTW, Freiburg) and compared to the profiles measured in a water phantom with the ionization chamber.  

 When performing multiple readings of the same dosimeter, each stimulation process empties only a 

fraction of a trapped charge. To estimate the depletion fraction and its possible dependence on the 

absorbed dose, two dot dosimeters were exposed to two different doses, i.e. one dot to 100 cGy and the 

other to 400 cGy. Both were read a hundred times in a sequence. 
 Two approaches for reusing the dots were examined; accumulation of the dose in repeated 

irradiations and optical bleaching before another exposure. In the first case, the dose was estimated by 

subtracting a previously measured dose from the current one. Two sets of three dosimeters were taken to 

compare the reproducibility of the system for these two techniques. All dosimeters were irradiated eight 

times with 100 cGy.  

 As mentioned above, OSLDs can be easily bleached by exposing them to the light. Several light 

sources and different illumination times were used to investigate the bleaching process. Optical bleaching 

at room temperature with a standard tungsten 100 W light bulb was compared to a 75 W reflector halogen 

lamp with UV filter (OSRAM, Halopar 30, model 64841 FL). According to the manufacturer the filtering 

is provided with doped quartz glass that entirely blocks high energy UV radiation and reduces low energy 

UV to a half of its initial value. Luminous intensity of this lamp was 2200 cd with colour temperature of 

2900 K. The illumination distance was about 50 cm to avoid overheating of dosimeters, which could 

damage the plastic housing. At this distance the maximal temperature at dosimeters level was around 

35
o
C. In further characterization, OSLDs were bleached with a halogen lamp, when needed.  

 The reproducibility of the OSL system, including both the reader and dosimeters, was evaluated by 

irradiating a large number (N=206) of dosimeters under identical conditions. Each dosimeter was read five 

times following a single exposure with 50 cGy. The mean reading Ri and the experimental standard 

deviation SD(Ri) were calculated. The standard deviation (SD) reported throughout this work is an 

experimental SD and not the SD of the mean (GUM 2008). The mean value of relative SDs for all dots 

was stated as the overall reading uncertainty: 
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Here the number of dosimeters in a set is denoted with n. The reproducibility of a system was determined 

as a relative SD of all mean readings:  
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To investigate a potential change of the system reproducibility with the dose, a different set of 20 dots was 

irradiated with 100 cGy.  

 The decrease of the OSL signal with the time after the irradiation was measured with four 

dosimeters. Readings started as early as 40 s after the irradiation, then after 2, 3, 5 and 6 min, later every 

10 minutes for the first hour, and finally every 30 min during three hours. For the evaluation of a long-

term fading, the readings were taken every day for the first week and then less frequently. The last 

measurement was taken 2 months after the irradiation.  
 The change of the temperature after the detector contact with patient skin was measured using Fluke 

561 IR thermometer.  

 

2.4. Dose response and calibration 

The dose response of the OSL system was tested in a range of doses from 20 cGy to 1000 cGy. OSL 

signal was compared to the ionization chamber measurements. A nonlinear response at higher doses 

(Yukihara et al 2004, Edmund et al 2006, Jursinic 2009) was the reason to study the dose dependence and 

the system sensitivity in more detail. Supralinearity effect can be corrected by the dose response non-

linearity correction factors (IAEA 2011), or it can be incorporated in the calibration itself, which is an 

option employed here. Individual dots sensitivity factors along with a dose dependent calibration curve for 

the set of dosimeters were used to convert the OSLDs readings into the dose.  

 For the determination of the sensitivity factors, OSLDs were irradiated on the top of the phantom 

with the same 50 cGy dose. The source to surface distance (SSD) of 80 cm and the square field size of 10 

x 10 cm
2
 were arranged. Sensitivity factors are defined as: 

 

i
i n

i

i

nR
s

R

=

∑
                                                                        (3) 

 

 A set of 20 dosimeters was used for the dose response study using the same field arrangement. 

OSLDs were optically bleached as described above and then irradiated with different doses ranging from 

20 to 1000 cGy, defined at the depth of the maximum dose (dmax = 0.5 cm). Two OSLDs with build-up 

caps were placed at the same time on the phantom surface as illustrated in figure 2. The ionization 

chamber was placed inside the plastic phantom at a reference depth of 5 cm. The chamber readings were 

later converted to the dose in water at dmax employing the percent depth doses (PDDs). As PDDs were 

previously measured in water and employed in TPS calculations, a plastic to water conversion factor 

defined as a ratio of ionisation chamber readings in water and in phantom (IAEA 2011) under same 

irradiation conditions at dmax, was determined. 

 

 

RW3 phantom RW3 phantom 

ionisation  

chamber 

 OSLD with 

 build-up cap 

5 cm 

 
Figure 2. The calibration setup. 
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The dose response curve that relates the ratio M of OSL reading R and respective sensitivity factor s, to 

the dose D delivered to the dosimeter set, was determined as a second degree polynomial fit to the 

measured data:  

 
2

0 1 2M a a D a D= + +                                                               (4) 

 

The dose D was determined from the ionisation chamber readings and represents the dose in water at dmax. 

An unknown OSL dose DOSL can then be calculated as a positive solution of the quadratic equation (4).  

 

( )( )2

1 1 2 0 24 / 2OSLD a a a a M a= − + − −                                             (5) 

 

2.5. Correction factors for clinical conditions 

All correction factors were measured according to the IAEA guidelines (IAEA 2011) with OSLDs that 

were previously irradiated with 50 cGy. They are generally defined as a ratio of dosimeter response in 

clinical and reference conditions. The dose of 50 cGy was delivered in all measurements except for wedge 

factors measurements where 100 cGy was used. For angular correction test a single dosimeter with a build 

up cap was placed on the phantom surface with an active element at the isocentre. The gantry was rotated 

by 15
o
 from 0

o
 to 75

o
, in both directions. The purpose was to simulate clinical setups where, due to the 

patient anatomy irregularities, is not possible to place the dosimeter perpendicularly to the beam axis. The 

field size corrections were investigated by varying the square field size from 5 cm × 5 cm to 25 cm × 25 

cm. SSD correction factors were measured in the range of 70 cm to 100 cm. Wedge correction factors 

were determined for a set of nine physical wedges. OSLDs were carefully placed with an active element at 

the field centre and with a longer axis of the OSLD housing oriented along the unwedged direction. Block 

and tray factors were measured by placing triangularly shaped blocks on a tray at the field corners. Two 

square field sizes, 10 cm and 15 cm, with varying block dimensions were considered. The entrance dose 

DE for a given treatment arrangement is then determined according to IAEA (2011):  

 
2

max

s
E OSL i

i

SSD d
D D k

SSD d

 −
= ⋅  

+ 
∏                                                      (6) 

 

where the term in the brackets is the distance correction with ds representing the distance between the 

patient skin and the active OSL element (ds = 0.1 cm) and ki are correction factors relevant to the particular 

beam arrangement. The uncertainty related to the DE, was expressed as a combined standard uncertainty 

uc(DE) (GUM 2008). The formula includes variance terms for the OSL reading R, sensitivity factor s, 

correction factor kangle, fit parameters a0,1,2 defined in equations (3-5) and covariance terms between fit 

parameters.  

 

2.6. Phantom and patient measurements 

First dosimeter irradiations aiming at a quick check of a whole measurement chain were performed on the 

plastic RW3 phantom with a set of relevant setup parameters. Final validation of the procedure was done 

using an anthropomorphic Rando Alderson phantom. Simulation of usual radiotherapy treatments were 

made in a pelvic, head and neck and breast region. A percentage difference of the measured entrance dose 

DE from the expected dose DTPS, calculated with the TPS, was obtained as:  

 

100%E TPS

TPS

D D

D

−
∆ = ⋅                                                             (7) 
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 Patient measurements were taken within the first three fractions of the radiation treatment. All 

patients received their treatment at the 60Co unit. OSLDs were taped to the patient skin and precisely 

positioned at a treatment field centre. Dosimeters were read one day after the irradiation. More than a 

hundred entrance dose measurements for different treatment set-ups were done. Expected doses varied in a 

range from 37 cGy to 270 cGy. In this final part of the study, we used dosimeters that were bleached 

before patient measurements because all available OSLDs had already been irradiated for previous 

investigations.  

 

3. Results and discussion 
 

3.1 Basic OSLDs characteristics 

Attenuation of the radiation field beneath the OSL dot with a build up cap, at 5 cm and 10 cm depth in the 

RW3 phantom, was found to be 3%. These values are similar to the results reported with diode detectors 

and suggest that in-vivo measurements do not significantly affect the dose delivered to the patient if 

performed in a few treatment fractions only (Essers and Mijnheer 1999). 

 The depletion rate of the dosimeter signal due to repeated readings for dosimeters exposed to 100 

cGy and 400 cGy was nearly the same (figure 3). Our results showed that each reading decreases the OSL 

signal by approximately 0.04% which is much smaller than 0.2% given by the manufacturer. Similar 

result was reported by Jursinic (2007), who found 0.05% signal depletion per readout. The OSL signal is 

proportional to the concentration of the filled traps at the time of stimulation and to the light beam power. 

Since the microStar reader uses a low beam power in the high dose region, this might be a reason why the 

measured depletion rate was much smaller then that by the manufacturer. The depletion correction can be 

neglected when making repeated readings of the same dot, in dosimetric conditions typical for 

radiotherapy.  

 Optical bleaching at the room temperature with an ordinary halogen lamp is a convenient way to 

erase previous doses given to OSLD. It turned out that illumination of about four hours was sufficient to 

decrease the signal to the level below 0.1% of the initial reading. Although it is known (Yukihara et al 

2004) that OSL materials cannot be entirely cleared of the radiation-induced effects without heating, due 

to the filled deep traps, the residual dose can be neglected or subtracted when measuring relatively high 

doses as in radiotherapy applications.  
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Figure 3. Depletion of an OSL signal in repeated readings for two dosimeters exposed to 100 cGy 

and 400 cGy. Data are normalized to the first reading. The solid lines represent a linear fit to the 

measured data.  

 

 Single irradiation of a large number of OSLDs, followed by multiple readings, gave the information 

on the system reproducibility. The uncertainty of the dosimeter reading was (0.6 ± 0.3)%. This value is 
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comparable to other published results. For a similar dosimetry system, Jursinic (2007) also reported 0.6% 

reading uncertainty while Viamonte et al (2008) had 1%. Miller and Murphy (2007) obtained 0.5% 

uncertainty when studying the same OSL material but with the different reading equipment. Our first 

measurements with the OSL system were far from promising with the reading uncertainty (2.9 ± 0.9)% 

measured on the set of 70 dosimeters, due to the faster rotation of the microStar reading knob. 

The reproducibility of the OSL set consisting of 206 dosimeters was 1.6% for irradiations with 50 cGy 

and 1.3% for 20 dosimeters irradiated with 100 cGy. Raw reading data without sensitivity correction were 

used. The result compares favourably with the results by other authors, i.e. 4.2% found by Viamonte et al 

(2008) in a batch of 165 dots, and even 7% obtained by Miller and Murphy (2007). Schembri and Heijmen 

(2007) who have investigated OSL film dosimeters found an inter film response variation in a range of 1% 

to 3.2%. Better results have been reported by Yukihara et al (2005) in a reproducibility test with ten 

packages, each containing five OSL dosimeters, irradiated in a 6MV photon beam. They found that the 

maximum difference between the mean package readings from the overall mean was 0.7%.  

In-phantom reproducibility for a small group of 8 dosimeters was 1.8%, which implies that attaching and 

positioning a build-up cap to each dot, did not contribute to the uncertainty in measurements significantly.  
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Figure 4. OSLDs reproducibility in repeated measurements. Triangular symbols represent the 

group of dosimeters that accumulated the dose at each exposure, while circles denote the group that 

was bleached before next irradiation. Each data point represents the weighted mean of normalized 

readings (individual sensitivities included) for three dosimeters that were irradiated in one fraction. 

Error bars represent the weighted mean uncertainties. Dashed lines are second degree polynomial 

fits to the measured data.  
 

Table 1. Summary of results from testing the uncertainty and reproducibility of the OSL dosimetry system. 

Test (delivered dose) Description 
Number of 

dosimeters 
Value % 

Reading uncertainty (50 cGy) 

Average value of relative SDs calculated 

from five consecutive readings for each dot 

(one irradiation of each dot) 

206 0.6 

Reproducibility (50 cGy) Relative SD of all averaged readings over 

five consecutive readings for each dot 

206 1.6 

Reproducibility (100 cGy) 20 1.3 

Reproducibility of a single dosimeter 

in multiple irradiations (8 x 100 cGy) 

Relative SD of weighted 

averages for a group in an 

irradiation fraction 

accumulated 3 3.5
 

bleached 3 1.0 

 

The response of two groups of dosimeters to a series of repeated irradiations is shown in figure 4. One 

OSLD group was bleached after each subsequent irradiation and the other one was allowed to accumulate 
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the dose without bleaching. The total delivered dose for both groups was 800 cGy in eight fractions. 

OSLDs that were bleached between exposures showed a small dose response increase about 2.5%, 

whereas the signal from dosimeters that accumulated the dose demonstrated significant over response that 

depended on the previous irradiation history (figure 4). This confirms the results presented by Jursinic 

(2009) who reported increased supralinearity effect with accumulated dose. The effect is small, but still 

noticeable also in bleached dosimeters, which can be explained through complex competing processes 

between the deep hole and electron traps. This test demonstrates that dot dosimeters can be conveniently 

reused a number of times with optical bleaching between the irradiation sessions, but taking care of the 

sensitivity changes with repeated irradiations. Results of OSLD response tests are summarized in table 1.

  

 Fading investigation proved OSLDs strong over-response if read shortly (< 10 minutes) after the 

irradiation (figure 5), which is consistent with the results published by Jursinic (2007). Measured data 

were normalized to the mean of three readings taken one hour after the irradiation. Since the dosimeters 

were read 50 times in total, the depletion correction for repeated measurements was applied. There is an 

obvious transient signal that decays with time and fades out after a few minutes. To extract the parameters 

of this decaying curve, an exponential plus linear function was fitted to the depletion corrected data: 
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Here y(t) stands for the OSLD signal at time t after the irradiation, and A, B, C and T1/2 are fit parameters.  
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Figure 5.  Fading of the OSL signal after the irradiation. Measured data are presented with circles 

and depletion corrected with triangles. Early measurements include results from four different dots, 

while data points after 1h are an average of the four dosimeters. A decay curve (8) fitted to the 

corrected data is denoted as the dashed line.  
 

The half-life time T1/2 was (1.03 ± 0.05) minutes consistent with the published results of Jursinic (2007) of 

0.8 to 1.4 minutes for different sets of detectors. The stated uncertainty here is a standard uncertainty of 

the T1/2 fit parameter. Stability of the OSL signal should be reached after ten half-lives or about 10 

minutes. A small decrease of the signal can also be noticed for data points obtained from readings taken 

with a larger delay. For example, readings performed after 58 days were, on average, 4% lower than 

readings taken one hour after the irradiation. The similar results were found by Yukihara et al (2010). 

They address this issue to be a reader related and connected with a very short stimulation time. Over 

response immediately after the irradiation is explained by the charge leakage from shallow dosimetric 
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traps (Jursinic 2007).  

When compared to diodes or MOSFETs (Ciocca et al 2006) with immediate readout or new real-time 

techniques such as fibre optic based OSL dosimeters (Aznar et al 2004, Polf et al 2003), dot dosimeters 

fall short. On the other hand, their advantages are simple handling and a permanent dose record that can 

be re-evaluated if needed, taking care of the decrease in OSL signal caused by the long term fading effect. 

This can be easily overcome by employing the fading correction factor.  

 Measurement of the temperature change for the dot OSLDs taped to the patient skin showed that 

after typical set up and irradiation time of 5-10 minutes the temperature increase was less than 2
o
. When 

dosimeters were placed at the patient table or at the thermoplastic mask used for patient immobilization, 

the temperature change was negligible. According to the work of Andersen et al (2008) temperature 

coefficients for OSL response are around 0.2%/K. Based on these results, temperature correction due to 

the contact of dosimeter with patient skin is not required for the clinical in-vivo dosimetry with this type 

of OSLDs, since it is expected to be well below 1%. 

 

3.2. Calibration and correction factors 

For the system calibration, individual dosimeter sensitivities (figure 6) were determined according to 

equation (3). Sensitivity factors were inside ±5%, with the largest one at 4.1%. Relative standard 

uncertainties of individual factors were in the range from 0.1% to 2.3%, while spread of values among all 

sensitivity factors, stated as a relative standard deviation, was 1.6%. 
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Figure 6. Distribution of sensitivity factors for 206 dosimeters irradiated with 50 cGy. Sensitivity 

factors were expressed as a ratio of the mean dosimeter reading over the average of all dosimeter’s 

readings in a set. Error bars represent standard uncertainties of individual sensitivity factors. 

 

 The OSLD dose response in the range of doses from 20 cGy to 1000 cGy is shown in figure 7. A 

supralinearity at higher doses was observed and a second degree polynomial was used to model the 

experimental results. Supralinear response is in agreement with similar studies reported by Schembri and 

Heijman (2007), Jursinic (2007, 2009) and Reft (2008). They observed a linear response up to around 200 

cGy followed by an increase in sensitivity. Many authors have explored OSL dose response of Al2O3:C 

samples experimentally and with numerical analysis of the theoretical energy level models. Yukihara et al 

(2004) investigated a wider dose range and reported linear behaviour for low doses followed by 

supralinearity and decrease to plateau for very high doses. Quadratic dose dependence was reported by 

Chen and Leung (2000) as a result of numerical simulation for a simple model with a single trapping state 

and only one type of a recombination centre, assuming short stimulation time of 1s. In a later work by 

Chen et al (2006) a more complex model with two trapping centres and two types of recombination 

centres showed that dose response of integral OSL is a nonmonotonic peak shaped curve with plateau at 

high doses similar to the results reported by Yukihara et al 2004. Phenomenological description of the 
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OSL dose dependence for Al2O3 is rather complex but it is generally explained by a competition between 

deep electron and hole traps during the irradiation or stimulation process, which enhances the OSL signal 

at higher doses. It is also known (Yukihara and McKeever 2008) that linearity of the dose response varies 

for different types of OSLDs and readers and also depends on the irradiation history of the detector. 

The quadratic dose response curve in figure 7 was used for calibration according to (4) and (5). 

Parameters were extracted from the fit: a0 = (-3.7 ± 1.9), a1 = (1.150 ± 0.009) cGy
-1
 and a2 = (6.5 ± 

0.8)x10-5 cGy-2. It turned out that this calibration procedure was quite practical because ionisation 

chamber measurements were required only for a small set of OSLDs as opposed to an individual 

calibration where every dot has to be calibrated against the dose determined from the chamber readings. In 

addition, calibration based on the quadratic relation (4) is valid for the whole range of measured doses and 

for the whole set, or a batch of dosimeters. Each dosimeter is related to the set through its sensitivity 

factor. That is particularly useful in the determination of correction factors. They are generally assessed 

with smaller groups of dosimeters, and then assumed to be valid for the whole set. On the other hand, in 

the individual calibration, the relation between single dosimeter and a set is not determined.  

 

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

 D (cGy)

M
 (
re
ad

in
g
)

M=a
0
+a

1
D+a

2
D2

 
Figure 7. OSLD dose response. The ratio M=R/s was averaged over two dots used per each dose. 

Solid line represents a quadratic polynomial fit and the dashed line represents an ideal linear dose 

response. 

 

 Figure 8 shows angular correction factors averaged for the same angles in both directions of the 

gantry rotation. The response of the dosimeters increased with the gantry angle, resulting in a correction 

factors up to (0,904 ± 0,009) at 75
o
. Although several authors (Aznar et.al. 2004, Jursinic 2007) have 

reported that an in-phantom OSL response for different OSL dosimeters was independent of the beam 

incidence angle, the situation is fairly different in the presence of build-up caps. Aluminium build-up caps 

used in this study were not hemispherical but flattened top, causing different beam path lengths depending 

on the incidence angle. A hemispherical build-up caps needs to be thicker to appropriately cover the whole 

detector area, so although it would provide more uniform angular response, additional attenuation on the 

beam axis would become too large (IAEA 2011). It needs to be pointed out that angular correction is also 

related to the setup which mimics the clinical situation and it is not an intrinsic characteristic of the 

dosimeter itself.  
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Figure 8. Correction factors for angle of beam incidence to OSLDs with build-up caps. 

 

Variation of the field size and the SSD showed no significant change, less than 1%, in the OSL response. 

These results are in agreement with Yukihara et al (2008) and Viamonte et al (2007) who reported no 

change in the OSL response when varying the SSD. However, Schembri and Heijmen (2007) found 

deviations of the overall mean response of OSL films within 2.5% when comparing different field sizes, at 

various depths in the phantom. No dependence of the OSL response with the dose rate was also found by 

other investigators (Jursinic 2007 and Schembri and Heijmen 2007). Accessories correction factors, 

including wedge, and block and tray factors were also within 1%. The only exception was the largest 

wedge (60
o
/10 cm width in a wedged direction) with the factor of (1.022 ± 0.009). It is a common practice 

to apply only correction factors that are larger than 1%, because smaller values fall within the 

measurement uncertainty. Therefore, all correction factors, except the ones for the different angle of 

incidence (kangle), were neglected in later in-vivo entrance dose measurements. Appropriate kangle was 

estimated by linear interpolation. 

 

3.3. Phantom and patient measurements  

Relative combined standard uncertainties in the estimation of the entrance dose DE, defined as uc(DE)/DE 
×100%, were on average 1.7% in phantom, and 1.0% in patient measurements. Possible explanation of a 

considerable difference in uncertainty values lays in the fact that dosimeters used in patient measurements 

were optically bleached, while dots used in the phantom study were not. Uncertainties connected with the 

ionization chamber measurements and treatment planning system calculations were not included in the 

uncertainty budget.  

  
Table 2. Rando Alderson phantom OSL study results. 

Anatomical 

site 

N (number of 

measurements) 
Mean ∆ (%) SD (%) 

All 32 0.1 1.4 

Head & neck 18 0.6 1.3 

Pelvis 10 -0.4 0.9 

Breast 4 -1.6 1.5 

 
 Initial testing of the complete procedure performed on RW3 phantom for eight field arrangements 

with different irradiation parameters gave the mean relative difference ∆ of the measured from the 

expected dose and respective experimental standard deviation of (-0.8 ± 1.2)%. Verification of the 

dosimetric procedure was concluded with Rando Alderson phantom measurements for anatomical sites 

that are typically treated in the department. Results summarized in table 2 confirmed the suitability of this 
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OSL dosimetric system for in-vivo dosimetry. Differences from the expected dose were generally below 

±3%, except for the one case of two opposed fields where it was 3.8%. This could be attributed to the 

rigidity of the dots plastic housing that made it difficult to attach properly the dosimeter to the phantom, 

especially in the neck region.  

 The patient study comprised 103 entrance dose measurements. Data analysis was done according to 

the treatment site (table 3). Head and neck region treatments were arranged with two laterally opposed 

isocentric fields, with or without a thermoplastic mask. A box technique with four fields for gynaecology 

patients and three fields for rectal carcinoma patients were included in the pelvis site group. Conventional 

tangential fields, most often with wedges, were used for breast treatments. The spread of the results was 

the same in these three groups, with SD = 2.4%. In abdomen/thorax group most of the treatments were 

done with only one field in a fixed SSD technique. All other patient measurements were sorted to the 

“rest” group. The explanation for a few relatively high values of ∆, although lesser than tolerance levels, 

measured in the pelvis or thorax region could be attributed to a wrong estimation of the beam incidence 

angle. Since kangle factors are quite large, the angles need to be determined very precisely, which might be 

a problem in some situations.  

 In a routine in-vivo dosimetry with diode dosimeters (Scanditronix EDE-5) that was previously 

established in our department, more than 700 treatment field measurements were made at the same cobalt 

treatment machine. Based on that experience the tolerance levels for ∆ were set at ±5%. In the OSL in-

vivo measurements only 6% of all measured fields exceeded the tolerance level, which is a similar result 

compared to the 5%, result that we had with diodes. Differences ∆ between 5 and 10% were observed in 4 

measured fields, while in 2 cases ∆ was larger than 10%. These two large differences were discovered in 

one patient treated with tangential breast fields. Later inspection of a treatment plan showed the wrong 

fractionation of the total prescribed dose, which resulted in a lower dose per fraction. The results of 

repeated measurements following the correction of the treatment plan were satisfactory. Other causes of 

differences exceeding tolerance levels can be attributed to a bad positioning of the patient or an incorrect 

SSD.  

 
Table 3. Patient data analysis according to the treatment anatomical site: the total number of 

measured fields, the mean difference between the measured and the expected dose ∆, SD of ∆, a 
number of measurements with ∆ between ± (5-10) %, and a number of measurements with ∆ larger 

than ±10%. Numbers in the brackets refer to the values without two major detected discrepancies. 

Anatomical site N Mean ∆ (%) SD (%) 5% <∆ <10% ∆ >10% 

All 103 (101) 0.4 (0.8) 3.7 (2.5) 4 2 

Head & neck 17 1.1 2.4 1 0 

Pelvis 34 2.2 2.4 2 0 

Breast 21 (19) -2.1 (-0.3) 6.0 (2.4) 0 2 

Abdomen & thorax 21 -0.6 1.5 0 0 

Rest 10 0.3 2.7 1 0 

 

 Differences from the expected entrance doses ∆, for all OSL in-vivo measurements are presented as a 

frequency distribution in figure 9. When all data were included, the mean ∆ was (0.4 ± 3.7) %, whereas 

with the exclusion of two major detected differences it changed to (0.8 ± 2.5) %. Since there is a lack of 

published patient measurements with OSL as passive dosimeters, clinical results can be compared to other 

in-vivo studies with different dosimeters. We had got very similar results from 727 diode patient 

measurements; the mean relative difference of the measured entrance dose was 0.5% with the standard 

deviation of 3.2% (IAEA 2011). Fiorino et al (2000) in a large study of 2700 patients reported the mean 

difference of 0.4% (3% SD) with diodes. Vordeckers et al (1998) described the implementation of diode 

in-vivo dosimetry in a small department. They found -1.5% mean difference with 4% SD in 650 measured 

doses. Similar results were also obtained in several other diode studies (Millwater et al 1998, Jursinic 
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2001, Shakeshaft et al 1999). Patient study with TLDs was reported by Loncol et al (1996) where the 

mean difference of 1.3% and 4.1% SD were obtained. 
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Figure 9.  Frequency distribution of percentage differences between the measured and expected 

dose for in-vivo patient measurements.   
  

4. Conclusion 
The results presented in this study show that OSL dot dosimeters are suitable for in-vivo dosimetry in 

radiotherapy. They demonstrated sufficient accuracy and acceptable reproducibility in measuring the 

entrance doses in 
60
Co photon beams. The OSL response was found to be independent of various radiation 

parameters relevant for clinical practice. Significant angular correction is not inherent to the dosimeters, 

but it is related to the setup parameters and also to the use and design of the build-up caps. Investigated 

dosimetric system with sensitive, small and lightweight dot OSLDs along with portable microStar reader, 

proves to be convenient and easy to use in hospital environment. These characteristics make it appropriate 

for clinical in-vivo applications with the potential to substitute or complement TLDs or diodes, especially 

with financial considerations taken into account. On the other hand, issues like dependence of the 

dosimeters response with accumulated dose and a small long term fading effect require a careful 

consideration in practical application. More extensive investigations that will include different radiation 

qualities that are necessary for the in-vivo dosimetry in photon beams other then 
60
Co, with larger number 

of patient measurements, would certainly contribute to the enhanced utilization of OSLD in radiotherapy.  
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