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Abstract 

 
Communities with increased shared ancestry represent invaluable tools for genetic 

studies of complex traits. "1,001 Dalmatians" research program collects biomedical 

information for genetic epidemiological research from multiple small isolated 

populations (“metapopulation”) in the islands of Dalmatia, Croatia. Random samples of 

100 individuals from 10 small island settlements (n<2000 inhabitants) were collected in 

2002 and 2003. These island communities were carefully chosen to represent a wide 

range of distinct and well-documented demographic histories. Here, we analysed their 

genetic make-up using 26 short tandem repeat (STR) markers, at least 5cM apart. We 

found a very high level of differentiation between most of these island communities 

based on Wright’s fixation indexes, even within the same island. The model-based 

clustering algorithm, implemented in STRUCTURE, defined 6 clusters with very 

distinct genetic signatures, 4 of which corresponded to single villages. The extent of 

background LD, assessed with 8 linked markers on Xq13-21, paralleled the extent of 

differentiation and was also very high in most of the populations under study. For each 

population, demographic history was characterised and 12 “demographic history” 

variables were tentatively defined. Following stepwise regression, the demographic 

history variable that most significantly predicted the extent of LD was the proportion of 

locally born grandparents. Strong isolation and endogamy are likely to be the main 

forces maintaining this highly structured overall population.  (218 words) 

 

Key words: isolated populations, linkage disequilibrium, demographic history, 

structure, Croatia
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Introduction 

Despite an overall low level of differentiation in human population, local factors such as 

geographic or cultural isolation can greatly enhance genetic discontinuity. Clearly 

differentiated genetic isolates have been very valuable for the mapping of rare genetic 

diseases 
1
 and are also believed to offer advantages for unravelling the genetics of more 

common complex diseases 
2-4

. Along with a small number of young isolate populations, 

many small isolates of ancient origins have persisted to this day in stable environments 

and many could be amenable to genetic studies. On a small scale, within isolated 

regions, a substructure of markedly differentiated endogamous sub-populations is often 

maintained, as reported in the Sardinian region of Ogliastra, in the Daghestan highlands 

and in mountainous areas in Bosnia 
5-7

. 

The communities on the Eastern Adriatic islands in Dalmatia, Croatia, have been the 

subject of extensive anthropological studies
8-10

. Those more remote from the coast 

display an unusually high degree of isolation, endogamy and inbreeding. Preliminary 

genetic studies using serological markers 
11

, a small number of STR markers 
12

 as well 

as analysis of uniparentally inherited mtDNA 
13,14

 and Y chromosome markers 
11

 

indicated reduced diversity within the island populations surveyed in comparison to the 

general Croatian population and a high degree of differentiation among and within 

island populations, consistent with the action of strong genetic drift. The analysis of 

mtDNA and Y chromosome markers, taken together with the known phylogeographic 

patterns of their major haplogroups, further suggest that the founding groups may have 

been of multiple, diverse, origins. This is not surprising since these Adriatic islands 

have witnessed a turbulent history, being situated at a major crossroads between Europe 

and the Near East. The demographic history of each island community differs according 
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to the founding times, origin and number of founders, bottleneck and admixture events, 

length of isolation, and historical fluctuations in population size. All of these 

characteristics are expected to influence the extent of genetic differentiation and shape 

specific linkage disequilibrium (LD) patterns within each population, through their 

impact on random genetic drift and levels of endogamy and inbreeding.  

Here, we describe in detail the genetic make up of ten of these island communities, 

which were carefully chosen to represent a wide range of distinct demographic histories. 

The primary aim was to characterize the extent of genetic variation in these populations, 

some of which are candidates for future epidemiological and genetic studies.  We 

describe the level of differentiation of these different villages to provide information on 

their isolation and uniqueness. Their well-documented demographic histories also 

provide an opportunity to gain a greater understanding of the action of diverse 

demographic factors on LD. The 10 communities sampled (Figure 1), all populated by 

less than 2,000 inhabitants, were the villages of Banjol, Barbat, Lopar, Rab and S. 

Draga, on the Island of Rab, the villages of Vis and Komiza, separated by about 10 km, 

on the Island of Vis; the village of Lastovo on the island of Lastovo, a mix of small 

village communities on the island of Mljet, and the village of Susak on the most remote 

inhabited island of Susak. 

Historic and demographic background  

Demographic history data were collated from numerous sources: census data, church 

records and official demographic statistics, and were used to construct timelines of key 

recent historical events (Table 1). 

The earliest settlements studied are the two villages of Rab and Vis, which date back at 

least to the Illyrian period, approximately 1,000 years BC. Both were later fortified, first 
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by incoming Greeks and subsequently by Romans, representing their main strongholds 

in the eastern Adriatic. Banjol and Lopar were founded by the Greeks, in the 4
th

 century 

AD, as military camps. Barbat was founded two centuries later, by the Romans, as a 

place of worship. The Croats, people of Slavic origin, arrived in the 7
th

 century AD and 

admixed with populations in all these settlements. Croats founded the villages of 

Lastovo and villages on Mljet in the 9
th

 century, S. Draga (11
th

 century) and Komiza 

(14
th

 century). Finally, the Cyprian and Candian wars from 1570 to 1650 AD, with the 

Turkish Empire, forced immigration from the Croatian mainland to the islands. This 

resulted in the last major admixture, affecting mainly the villages on the Island of Rab 

and the village of Vis, while the most geographically remote villages of Komiza, Mljet 

and Lastovo remained isolated. This migration wave from the mainland also resulted in 

the foundation of the most remote village investigated, Susak. 

For this study, we recorded severe bottleneck events, which had led to a reduction in 

population size greater than 40% within a maximum time of 2 generations (50 years). 

Plague epidemics affected the island of Rab in years 1449 and 1456 such that 95% of 

the inhabitants of Rab and 60% of inhabitants from S. Draga, Banjol, Barbat and Lopar 

were killed or forced to take refuge. The villages of the islands of Vis, Lastovo and 

Mljet were spared, while Susak was not yet founded. However, the isolation that saved 

those communities during the 15
th

 century became a burden in the 20
th

 century (Table 

1). The proximity of the mainland helped the island of Rab to develop economically 

while Vis and Susak experienced hardship, which caused a 44-88% reduction in their 

populations during the second half of the 20
th

 century 
10,15

. The island of Susak lost the 

majority of its population (nearly 90%) due to massive emigration to the United States 

of America after 1951 
16

. 
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Recent demographic trends and current population size 

Current population sizes in the villages studied range from 188 (Susak) to 1,971 

(Banjol). Populations of the most geographically isolated villages, Lastovo, Vis, 

Komiza, Susak and the villages on Mljet, which continuously expanded until the mid 

20
th

 century, rapidly declined through emigration thereafter, especially sharply in the 

case of Susak. Four settlements on the island of Rab (Rab, S. Draga, Barbat, Lopar) 

maintained relatively constant population size after their recovery from plague 

epidemics and, during the last two centuries, 700-1300 persons inhabited them. The 

population of Banjol is the only one, which continuously expanded over the past 10 

generations, from 300 residents in the year 1750 to the present size of nearly 2,000. 
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Subjects and methods 

Subjects 

In each of the five villages from the island of Rab, examinees were chosen through 

consecutive selection of household numbers from random number tables. Then, the 

local general practitioner (GP) alternately included male and female participants from 

the chosen households until 100 examinees were recruited in each village. In two 

villages from the island of Vis, examinees were randomly chosen from voting lists and 

invited to participate, until a sample of 100 examinees was reached. In the village of 

Susak with only 180 inhabitants, the entire population was invited to participate and 72 

of them agreed. In Mljet, samples were drawn randomly from the lists of the 2 local 

Health centers covering the whole island community, in the villages of Babino Polje and 

Sobra. This sample will be called Mljet for simplicity in the rest of the paper. In 

Lastovo, samples were drawn randomly from the village GP list.  Research teams from 

the Andrija Stampar School of Public Health and the Institute for Anthropological 

Research, Zagreb, Croatia, collected blood samples at local medical clinics and 

administered questionnaires providing basic information on the examinees. Fieldwork in 

Susak was undertaken in October 2001, in Vis in February 2002, in Rab in March 2002, 

in Lastovo in April 2003 and in Mljet in October 2003. Informed consent, DNA 

sampling procedures and questionnaires were reviewed and approved by relevant ethics 

committees in Scotland and Croatia. 

 

DNA extraction and genotyping of microsatellite markers 

DNA was extracted from blood samples using Nucleon DNA purification kits (Tepnel). 

DNA was amplified using fluorescent primer-pairs. Genotyping was performed using an 

ABI3700 DNA sequencer and Genotyper software (Applied Biosystems).  
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To investigate population structure, twenty-six microsatellite markers, at least 5cM 

apart, from ABI Prism linkage panels 11 and 19 were genotyped: D7S517, D7S513, 

D7S516, D7S484, D7S510, D7S502, D7S669, D7S630, D7S657, D7S640, D8S264, 

D8S549, D8S258, D8S1771, D8S260, D8S514, D8S272, D12S352, D12S364, 

D12S326, D12S324, D13S153, D13S265, D13S159, D13S158, and D13S173. 

To investigate the extent of pairwise linkage disequilibrium between markers, ten X-

linked microsatellites were genotyped, eight of them on Xq13-21. These markers 

encompassed six of the markers described by Laan and Paabo 
17

 that have been 

genotyped in various populations: DXS983, DXS8092, DXS8037, DXS1225, 

DXS8082, and DXS995 as well as two additional interspaced microsatellites: DXS1165 

and DXS56. These eight markers span 3.36 cM. To investigate LD patterns at genomic 

distances that are an order of magnitude greater, two additional markers were 

genotyped: DXS8085 and DXS8014. They are located in Xp21 region, and situated 18 

cM and 23.68 cM away from the most proximal Xq13 marker (DXS983), respectively.  

 

Statistical analyses  

Allele frequencies for each microsatellite marker were computed by the FSTAT 

software (http://www2.unil.ch/popgen/softwares/fstat.htm). Estimate of population 

heterozygosity per locus, or gene diversity, was calculated as one minus the sum of the 

squared allele frequencies
18

 . The multilocus estimates of Wright’s fixation indexes FIT, 

FIS, and FST were computed following Weir and Cockerham 
19

, and their 95% CIs were 

derived by bootstrapping over loci using the Genetix package (http://www.univ-

montp2.fr/~genetix/genetix/genetix.html). Chord genetic distances 
20

 were computed 
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using the Genetix software, and were represented in two-dimensional space by 

multidimensional scaling analysis using SPSS 6.0 Sofware (SPSS Inc., Chicago,IL).  

We used the model-based clustering algorithm implemented in STRUCTURE v2.0 

(http://pritch.bsd.uchicago.edu) to infer population structure 
21

. The algorithm was run 

with a burn-in length of 100,000 MCMC iterations followed by 1,000,000 iterations for 

estimating the model parameters. 

To measure pairwise LD between the X chromosome markers, male haplotypes were 

readily available while female haplotypes were inferred using a Bayesian method 

implemented in PHASE v2.0 
22

 (http://www.stat.washington.edu/stephens/). The 

algorithm was run 5 times and the run with the best average goodness-of-fit kept. At 

each locus, only those genotypes for which phase certainty was >80% were further 

analysed. Such inferred female haplotypes and the males haplotypes were then used to 

calculate a pair-wise measure of LD, D’adj, an adjusted D’, the multiallelic measure of 

LD 
23

, using the software miLD developed by Aultchenko et al 
24

. D’adj is defined as  

D’adj =D’- D’sto, where D’sto is the mean D’ obtained from samples generated by random 

loci permutation (1000 replicates).  

Historic “variables” were quantified to enable correlation to LD measures and entered 

into SPSS 6.0 statistical software as presented in Table 1. They were defined as: (1) 

CurPop: current population size; (2) GrPar%: the percentage of subjects’ grandparents 

born in the same village; (3) FoundT: time since the founder event (years); (4) AdmixN: 

number of putative admixture events; (5) AdmixT: time since the most recent putative 

admixture (years); (6) BottlT: time since the most recent bottleneck event (years); (7) 

Bottl%: the percentage of reduction in population size during last major bottleneck; (8) 

MaxPop: maximum population size in the history; (9) Dem10G%: demographic trend 
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over the past 10 generations (since 1750), with 25 years per generation and current 

population of each village expressed as % of 1750 population; (10) Dem5G%: 

demographic trend over the past 5 generations (since 1875); (11) Dem2G%: 

demographic trend over the past 3 generations (since 1925). In addition to these 11 

historical predictor “variables” of LD, another one was constructed to take into account 

both the time elapsed since the last bottleneck and the reduction in population size. It 

was defined as “bottleneck index” (BottlX) and calculated as: BottlX = BottlT x (100-

Bottl%). 

The only criterion variable was pair-wise LD (LD28p) between closely linked markers 

(i.e. on Xq13-21), expressed as the number of marker pairs on Xq13 with D’adj>0.1. 

Spearman rank correlation coefficients were calculated using SPSS 6.0 Software. To 

determine the most significant explanatory variables, stepwise regressions of the LD 

measure on the different demographic variables were performed using Minitab 14 

Software (http://www.minitab.com/).  

Results 

Isolation 

To estimate the degree of recent isolation of the villages, we used the proportion of 

examinees’ grandparents born in the same village. With the number of successfully 

genotyped individuals ranging between 70 and 94 in the villages, this provided the 

opportunity to establish the birthplace of 280 to 376 examinees’ grandparents per 

community. This study indicates that the villages even today preserve extreme levels of 

isolation. More surprisingly, this was true not only in the villages affected by recent 

economic crisis (Vis, Komiza, Susak, Mljet and Lastovo), but also in two villages on 

the island of Rab: Barbat and Lopar. In Lopar as many as 98.4% of examinee’s 
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grandparents were autochthonous. In Barbat, Vis, Komiza, Lastovo, Mljet and Susak 

this proportion ranged from 71.7% to 93.5% (Table 1). Those figures are all 

exceptionally high. The remaining three settlements, all on the island of Rab, had values 

ranging from 39.4% to 46.9% which agrees with the fact that these villages were much 

more open to immigration (Table 1).  

Gene diversities and effective number of alleles were measured for 26 autosomal and 9 

X-linked STR markers and compared with their values in the CEPH reference 

consisting of 8 to 20 outbred families of European descent (Table2). They were clearly 

low for both set of markers in the remote island of Susak, but were quite similar for the 

others samples with Barbat, S. Draga, Mljet and Lopar at the lower end of the small 

spectrum and the CEPH families at the highest end.  

Wright’s fixation index FIT, measuring the global heterozygote deficit, was positive and 

highly significant, 0.035 (95% CI: 0.026-0.044), based on 26 autosomal markers. Most 

villages taken singly were in Hardy-Weinberg equilibrium, with FIS values non-

significantly different from zero (Table 2). However, Mljet and S.Draga, and to a lesser 

degree Barbat and Lopar, had a significant excess of homozygous genotypes compared 

to the proportions expected under random mating, suggesting inbreeding or residual 

structure within these communities. FIT measured after removing these four villages was 

lower, but still positive and highly significant, 0.02 (95% CI 0.01-0.027), suggesting 

separation among the villages and structure in the overall sample. 

 

High level of differentiation between villages 

The variance-based measure of differentiation, FST, indicated a strong, highly 

significant, level of differentiation overall, with an estimated FST value of 0.02 (95% CI: 

0.017-0.022) based on the 26 autosomal markers genotyped. Pairwise comparisons 
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among populations indicated that all villages sampled are highly differentiated from 

each other, the least differentiated being Banjol-Rab and Komiza-Vis (Table 3). The 

population of the remote island of Susak appeared the most distinct with pairwise FST 

with any of the other villages being above 3.5%. Barbat, Mljet and Lopar were the next 

most strongly differentiated. Plots of genetic distances derived from STR allele 

frequencies by multidimensional scaling summarised the amount of differentiation 

among populations taking account of all the data simultaneously (Figure 2).  

Attempts to assign individuals to K distinct source populations solely on the basis of 

their multilocus data (26 autosomal STRs), without prior assignment of individuals to 

distinct villages, were carried out using the model-based clustering approach 

implemented in the STRUCTURE program. Each source population is characterised by 

a set of allele frequencies at each locus. This revealed a highly structured overall 

population with an impressive clustering of individuals by location (Figure 3). 

Individuals strongly assigned to distinct populations were those from Susak, Mljet, 

Barbat and Lopar. The optimal number of different source populations, K, appears to be 

5 as the value of Pr (K) reach a plateau with larger values of the parameter K, with a 

lower increase between consecutive log Pr(X/K), the log likelihood of the data given a 

number of source populations. The village of Susak appeared to have a very distinct 

genetic signature as people from this village cluster even when only three populations 

are allowed (K=3). The inhabitants of Mljet, Barbat and Lopar also seem to be very 

differentiated in runs with higher values of K. Interestingly, Lopar and to a lesser degree 

Barbat appeared to have a very different genetic make up from the other three villages 

investigated on the same island (Rab): Banjol, Rab and S. Draga. These three villages 
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shared a similar gene pool, very distinct from Lopar's. The villages of Komiza and Vis, 

on Vis Island, shared a similar genetic composition, close to that of Lastovo. 

 

LD 

The extent of background linkage disequilibrium (LD) in the ten subpopulations was 

assessed using 8 markers on Xq13-21, a region of very low recombination (0.25 

cM/Mb). Xq13-21 has been extensively used to explore population-specific differences 

in LD and markers in that region consistently displayed increased pairwise association 

in populations with a history compatible with a reduced effective population size 
17,25-29

. 

The 10 villages analysed displayed variability in the strength of LD (Figure 4). At the 

extremes of the range, Susak, the remotest village, displayed the most extensive LD 

while Rab village, which had a high flow of emigrants from the mainland, displayed 

less LD. For comparison, the level of LD measured in a sample of 96 unrelated 

individuals from an outbred population, the UK 
29

, analysed in the same way, was very 

low (Figure 4). Lopar and Mljet showed a high level of LD followed by Barbat and 

Komiza, then by Draga, Banjol, Vis and Lastovo. 

LD between unlinked markers (Marker on Xp21-Marker on Xq13-21 pairs) was 

observed in the Susak and Lopar samples suggesting that these samples are admixed or 

more likely, given the nature of the samples and the outcome of the clustering 

algorithm, composed of closely related individuals. 

 

Correlations between historic and demographic “variables” and estimated LD 

Given that values of some historic variables could not be accurately estimated whereas 

their hierarchy between villages is more probably correct, we calculated rank correlation 

between variables and LD (supplementary Table 1). The proportion of grandparents 
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from the same village displayed the highest correlation with LD strength (ρ=0.70; 

P=0.024). Significant negative correlation was also noted between founding time and 

LD (ρ=-0.64; P=0.048): the older the population, the lower the extent of pairwise LD. 

Using stepwise regression, the only significant demographic predictors of LD strength 

were in order of decreasing relative contribution (decreasing P-values): the proportion 

of local grandparents, the founding time and the time since the most recent admixture 

(the more recent the event, the stronger the disequilibrium). These 3 predictors are 

uncorrelated. As mentioned above Susak and Lopar may have a high proportion of 

closely related individuals biasing this analysis (i.e. high proportions of grandparents 

from the same village and high LD). Removing these two villages, the proportion of 

local grandparents and the founding time remained suggestive predictors of LD 

(P=0.057; P=0.063).  

 

Discussion 

In this study, the variance-based measures of differentiation, FST, were generally above 

1%, the very conservative upper bound often cited for FST between major European 

countries (consequently well above the more realistic FST value of 0.28% obtained with 

the forensic STR set using 11 diverse countries across Europe 
30

). The among-group 

component of genetic variation is expected to be accentuated by the strong homogeneity 

within groups when isolated populations are compared. This provides further detail of 

the overall picture of a high degree of isolation of villages between islands previously 

reported for villages on the other Adriatic Islands of Hvar, Krk, Brac and Korcula 
31

. 

The island of Susak is an extreme isolate which we have described separately in an 

earlier publication
16

, and is confirmed as very distinct by this analysis. Recently 

founded on a remote island, with strong protective policies for many years, which 
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further prevented contacts with mainland Croatia or other islands, Susak has only 2 

frequent surnames (5 in total) 
16

 and has recently undergone a 90% population decline 

due to massive emigration. It is likely that this village represents a pool of related 

individuals as suggested by the low number of family surnames, the low gene diversity, 

the high degree of allelic association even between unlinked markers and the distinctive 

signature of individual genotypes based on multilocus data. 

Our data also illustrated the maintenance within an island of a high level of structure: on 

the island of Rab, the villages of Lopar and to a lesser extent Barbat, are very distinct 

from the 3 other villages studied on the same island. Here again, it is likely that the 

samples analysed, representative of these villages, consist of small groups of related 

people each with a high level of endogamy and likely inbreeding. Similar situations of 

differentiation within short distances, have been reported among villages geographically 

no more than 15-25km apart in the mountainous Bosnian area
7
, and have long been 

recognised in Sardinia 
32

. The organization into small groups (sub-structuring) was 

probably a characteristic demographic feature during the vast majority of human 

population history, and persists today to a greater or lesser degree in many rural areas. 

This phenomenon is largely ignored when modelling human population history and may 

lead to distorted demographic inferences. For example, a population structure 

developing during an initial human population geographic range expansion could 

weaken a subsequent growth signal
33

. Novel metapopulation models for human 

evolution, which take into account the likely structure of early settlements as well as 

realistic sub-groups dynamics, seem very promising tools
33-35

. 

Results obtained with the clustering algorithm implemented by STRUCTURE illustrate 

that a relatively small number of loci, of high heterozygosity, is sufficient to reveal 
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consistent structure when differentiation is high. Due to genetic drift, small isolates 

rapidly acquire very distinctive alleles frequencies 
36

. Shared ancestry could be readily 

visualised. Individuals from the villages of Susak, Barbat, Lopar and Mljet clustered 

clearly into 4 distinct groups corresponding to their 4 predefined communities, while the 

3 remaining villages on Rab formed a fith group and Vis, Komiza and Lastovo, a sixth.  

The strength of pairwise association between markers on Xq13-21 ranged from very 

low in the outbred population control (UK), low in the village of Rab, which has many 

incomers from the mainland, to intermediate in Lastovo, Banjol, Draga, and Vis, high in 

Barbat and Komiza, and to very high in Mljet, Lopar and Susak. This is in perfect 

agreement with the differentiation data and structure results and indicates that this set of 

markers, that has been used in many population studies, is indeed a very sensitive 

indicator of any process leading to increased kinship. Recently, Laan et al 
37

 showed 

that regions of low crossing-over activity, such as Xq13, preserved the footprint of a 

demographic event for longer, thus displaying differences in level of LD more readily, 

than regions of high crossing-over activity. 

Each isolate has its own unique evolutionary history. Theoretical studies have shown 

that many demographic factors affect the extent of background LD: population size, 

population growth scenarios, inbreeding, population structure and admixture. The sub-

populations studied here are all very small (current size under 2000) and isolated to 

variable degrees. High inbreeding levels have been suggested in two of the communities 

investigated, Mljet and Susak, by the occurrence of rare autosomal Mendelian disorders 

Mal de Meleda in Mjlet
38

 and hereditary mental retardation in Susak
39

. Linkage 

disequilibrium is expected to stretch over large distances mostly in proportion to genetic 

drift and endogamy. We tested the significance of correlations of LD strength with 
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several demographic variables that were recorded in these villages and reflected their 

time of founding, size over time, severity of bottlenecks and growth pattern. It is clear 

that the number of admixture events is the more poorly defined variable and likely to be 

unreliable as it is very difficult to ascertain the genetic contribution of past dominating 

elites. A reliable predictor of increased LD was the proportion of locally born 

grandparents. This index of endogamy was also positively correlated with the strength 

of LD in a study of unrelated individuals drawn from larger rural communities within 

Scotland 
29

. It can be practically applied to quickly identify populations of interest for 

LD mapping. Two of the communities studied displayed LD between unlinked markers 

(here markers on both arms of the X chromosome), which could reflect an excess of 

close relatives in the samples and strong inbreeding, and would in fact hinder 

disequilibrium mapping. 

The other communities studied, which display a high level of LD, represent good 

candidate populations for large-scale genetic studies. One main feature of small isolates 

is that, given good genealogical records, most members of the population can be 

connected into large extended pedigrees. Several genetic studies of quantitative, 

disease-related, phenotypes have already been successfully carried out in such small 

isolated communities 
40,41

 by exploiting the availability of an increased number of pairs 

of relatives to compare in variance components methods
42

. Studies of many more small 

and geographically clustered communities of increased shared ancestry should offer 

invaluable tools for future successful gene mapping. 

 

Supplementary information is available at EJHG's website. 
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TITLES AND LEGENDS TO FIGURES 

 

 

Figure 1.  Geographic location of the 10 studied villages on islands of the Eastern 

Adriatic, Northern and Middle Dalmatia, Croatia. 
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Figure 2.  Representation, in two-dimensional space, of genetic distances between 

villages based on allele frequencies at 26 autosomal short tandem repeat (STR) markers. 

Chord distances
20

 were computed using the Genetix software, and were represented in 

two-dimensional space by use of multidimensional scaling analysis using the SPSS 6.0 

package. The average proportion of variance in the initial distance matrix accounted for 

in the 2 dimensional plots is 97%. 
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Figure 3.  Population structure in the 10 Croatian villages analysed based on 26 STR 

markers.  

Results from the clustering method implemented by the program STRUCTURE for 

inferring population structure under the different assumptions about the number of 

clusters (K=2,…7). In each run, each separate cluster is represented by a colour. Each 

individual is represented by a line, which is partitioned into coloured segments 

according to the individual’s estimated membership fractions in each of the K clusters. 

Predefined villages: 1-Banjol, 2-Barbat, 3-Lopar, 4-Rab, 5-S.Draga, 6-Vis, 7-Komiza, 

8-Lastovo, 9-Mljet, 10-Susak. 
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Figure 4.  Number of STR pairs on Xq21-Xp13-21 displaying significant linkage 

disequilibrium (LD) in the 10 Croatian isolate village samples surveyed and in a sample 

of similar size consisting of unrelated individuals from an outbred population, the 

general UK population.  
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Table 1. Demographic variables in the 10 villages studied. 
 

Village  Current    

population size 

(2001) 

Number of 

randomly sampled 

individuals 

Number and % of 

their grandparents 

who were born in 

the same village 

Founding time 

expressed in years 

(generations) before 

present time 

Number of putative 

admixture events 

between different 

founders 

Time since most 

recent admixture in 

years (generations) 

before present time 

1. BANJOL 1,971 83 139 (41.9%) 1,600   (64) 3 350  (14) 

2. BARBAT 1,205 85 307 (90.3%) 1,450   (58) 2 350  (14) 

3. LOPAR 1,191 79 311 (98.4%) 1,600   (64) 3 350  (14) 

4. RAB 554 92 145 (39.4%) 3,000 (120) 4 350  (14) 

5. S.DRAGA 1,164 90 169 (46.9%) 940   (38) 1 350  (14) 

6. VIS 1,776 94 330 (87.7%) 3,000 (120) 4 350  (14) 

7. KOMIZA 1,523 92 336 (91.3%) 640   (26) 0 640  (26) 

8. LASTOVO 835 92 281 (71.7%) 1200 (48) 0 1200 (48) 

9. MLJET 1,111 92 344 (93.5%) 1200 (48) 0 1200 (48) 

10. SUSAK 188 70 240 (85.7%) 450   (18) 0 450  (18) 

Village 

(continued)  

Time since most 

recent bottleneck in 

years (generations) 

before present time 

Percentage 

reduction in 

population size in 

last bottleneck 

Maximum 

population size 

achieved (and 

approximate year) 

Demographic trend  

(current population 

expressed as % of 

1750 population) 

Demographic trend  

(current population 

expressed as % of 

1875 population) 

Demographic trend  

(current population 

expressed as % of 

1925 population) 

1. BANJOL 550 (22) 60% 1,971 (2001) 657% 505% 208% 

2. BARBAT 550 (22) 60% 1,300 (1950) 402% 280% 110% 

3. LOPAR 550 (22) 60% 1,500 (1400) 340% 229% 167% 

4. RAB 550 (22) 95% 5,000 (1400) 55% 62% 64% 

5. S.DRAGA 550 (22) 60% 1,164 (2001) 333% 162% 116% 

6. VIS 25 (1) 53% 4,300 (1910) 127% 58% 55% 

7. KOMIZA 25 (1) 44% 3,572 (1910) 585% 68% 46% 

8. LASTOVO 25 (1) 32% 1,602 (1931) 76% 83% 58% 

9. MLJET 25 (1) 43% 2,106 (1948) 101% 77% 57% 

10. SUSAK 25 (1) 88% 1,541 (1930) 63% 14% 12% 
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Table 2. Gene diversity and excess homozygosity based on STR markers 

 

Sample Average Gene Diversity 

based on 9 X-linked STR 

(effective number of alleles) 

Average Gene Diversity 

based on 26 autosomal STR 

(effective number of alleles) 

FIS (95% CI) 

1.BANJOL 0.69 (3.74) 0.77 (4.93) 0.012 (-0.017_0.025) 

2.BARBAT 0.67 (3.45) 0.75 (4.53) 0.029 (0.0005_0.043) * 

3. LOPAR 0.69 (3.35) 0.74 (4.58) 0.021 (-0.007_0.035) * 

4. RAB 0.69 (3.48) 0.77 (4.95) 0.009 (-0.022_0.027) 

5. S.DRAGA  0.67 (3.40) 0.77 (4.88) 0.031 (0.002_0.046) ** 

6. VIS 0.69 (3.73) 0.77 (4.87) -0.006 (-0.034_0.009) 

7. KOMIZA  0.70 (3.58) 0.76 (5.01) 0.01 (-0.016_0.025) 

8. LASTOVO  0.70 (3.64) 0.77 (5.03) 0.0104 (-0.018_0.027) 

9. MLJET  0.67 (3.48) 0.75 (4.62) 0.053 (0.016_0.072) ** 

10. SUSAK  0.66 (3.16) 0.72 (4.23) -0.011 (-0.045_0.0038) 

CEPH
a
 0.70 (3.69) 0.79 (5.06) NP 

 

The effective number of alleles, measuring the number of equally frequent alleles that would give the gene diversity 

observed, was calculated as  

, where Dj is the gene diversity of the j
th 

of r loci. 

 
a
 based on 20 CEPH families data (X-linked markers) and at least 8 CEPH families data (autosomal markers) from the CEPH genotype 

database at http://www.cephb.fr/ 

* significant at the 5% level; ** significant at the 1% level. 

 

 

∑
= −

r

j Djr 1 1

11
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Table 3. Pairwise village differentiation 
 

 BARBAT LOPAR RAB DRAGA VIS KOMIZA MLJET LASTOVO SUSAK 

BANJOL 0.009** 0.022** 0.002* 0.008** 0.008** 0.012** 0.021** 0.009** 0.036** 

BARBAT  0.031** 0.008** 0.014** 0.024** 0.028** 0.033** 0.020** 0.044** 

LOPAR   0.018** 0.017** 0.017** 0.021** 0.034** 0.019** 0.041** 

RAB    0.007** 0.008** 0.013** 0.026** 0.009** 0.035** 

S.DRAGA     0.008** 0.015** 0.021** 0.010** 0.040** 

VIS      0.004* 0.019** 0.006** 0.036** 

KOMIZA       0.024** 0.010** 0.035** 

MLJET        0.021** 0.051** 

LASTOVO         0.041** 
 

Pairwise FST estimates based on allele frequencies of 26 unlinked autosomal STRs are used to classify the table. The levels of statistical 

significance were tested by performing 1600 permutations using the Genetix Software.  **represents significance at 1% level, and * at the 5% 

level. 
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 Supplementary data 

 

Table 1. Matrix of rank correlations between 12 historic and demographic “variables” 

and pair-wise LD (number of Xq13 marker pairs with Dcorr>0.1): (1) CurPop: current 

population size; (2) GrPar%: percentage of subjects’ grandparents born in the same 

village; (3) FoundT: time since the founder event expressed years; (4) AdmixN: number 

of major admixture events; (5) AdmixT: time since the most recent admixture expressed 
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in years, (6) BottlT: time since the most recent bottleneck event; (7) Bottl%: percentage reduction in population size during last major bottleneck; (8) 

MaxPop: maximum population achieved through the course of history; (9) Dem10G%: demographic trend over the past 10 generations (since 1750), with 

current population of each village expressed as % of 1750 population and 25 years period presumed one generation; (10) Dem5G%: demographic trend 

over the past 5 generations (since 1875); (11) Dem2G%: demographic trend over the past 2 generations (since 1950); (12) BottlX: “bottleneck index”, as 

defined in the text; (13) LD28p: number of marker pairs on Xq13-21 displaying Dadj’ measure>0.1.  

 

 CurPop GrPar% FoundT AdmixN AdmixT BottlT Bottl% MaxPop Dem10G% Dem5G% Dem3G% BottlX LD28p 

CurPop 1.0000             

GrPar% -0.004 1.0000            

FoundT 0.22 -0.28 1.0000           

AdmixN 0.34 -0.32 **0.88 1.0000          

AdmixT -0.17 0.27 -0.32 *-0.66 1.0000         

BottlT 0.13 -0.51 0.25 0.56 *0.63 1.0000        

Bottl% -0.52 -0.37 0.26 0.41 *-0.64 0.41 1.0000       

MaxPop 0.11 -0.18 *0.70 0.50 -0.16 -0.17 0.26 1.0000      

Dem10G% *0.69 -0.1 -0.27 0.06 -0.34 0.39 -0.23 -0.19 1.0000     

Dem5G% 0.58 -0.33 0.01 0.35 -0.35 *0.66 -0.07 -0.37 *0.73 1.0000    

Dem3G% 0.56 -0.33 0.11 0.45 -0.39 *0.76 -0.06 -0.34 *0.66 **0.92 1.0000   

BottlX 0.37 -0.22 -0.07 0.31 -0.53 **0.84 0.04 -0.54 0.61 **0.81 **0.87 1.0000  

LD28p -0.07 *0.70 *-0.64 -0.50 0.24 -0.28 0.02 -0.36 0.19 -0.18 -0.37 -0.15 1.0000 
 

**represents significance at 1% level, and * at the 5% level 

 


