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Abstract 

 

Botulinum toxin A (BTX-A) is approved for treatment of chronic migraine and has been 

investigated in various other painful conditions. Recent evidence demonstrated retrograde 

axonal transport and suggested the involvement of CNS in antinociceptive effect of BTX-A.  

However, the mechanism of BTX-A central antinociceptive action is unknown. In this study 

we investigated the potential role of opioid receptors in BTX-A’s antinociceptive activity.  

In formalin-induced inflammatory pain we assessed the effect of opioid antagonists on 

antinociceptive activity of BTX-A. Naltrexone was injected subcutaneously (0.02 - 2 mg/kg) 

or intrathecally (0.07 ng/ 10µl – 350 µg/10 µl), while selective µ-antagonist naloxonazine was 

administered intraperitoneally (5 mg/kg) prior to nociceptive testing. The influence of 

naltrexone (2 mg/kg s.c.) on BTX-A antinociceptive activity was examined additionally in an 

experimental neuropathy induced by partial sciatic nerve transection. To investigate the 

effects of naltrexone and BTX-A on neuronal activation in spinal cord, c-Fos expression was 

immunohistochemically examined in a model of formalin-induced pain. 

Antinociceptive effects of BTX-A in formalin and sciatic nerve transection-induced pain were 

prevented by non-selective opioid antagonist naltrexone. Similarly, BTX-A-induced pain 

reduction was abolished by low dose of intrathecal naltrexone and by selective µ-antagonist 

naloxonazine. BTX-A-induced decrease in dorsal horn c-Fos expression was prevented by 

naltrexone. 

Prevention of BTX-A effects on pain and c-Fos expression by opioid antagonists suggest that 

the central antinociceptive action of BTX-A might be associated with the activity of 

endogenous opioid system (involving µ-opioid receptor). These results provide first insights 

into the mechanism of BTX-A’s central antinociceptive activity. 
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Highlights: 

• Opioid antagonists prevent the antinociceptive activity of peripheral BTX-A 

• This effect occurs on spinal cord level 

• BTX-A-induced pain reduction is mediated by µ-opioid receptor 

• The effect is present in different types of pain 

• Behavioral effect is accompanied by changes in dorsal horn c-Fos activation 

 

Abbreviations: BTX-A – botulinum toxin type A, SNAP-25 - Synaptosomal Associated 

Protein of 25kDa, i.pl. – intraplantarly, s.c. – subcutaneously, i.t. – intrathecally, i.p. – 

intraperitoneally, PBS – phosphate-buffered saline, PBST - Triton X-100 in phosphate-

buffered saline, NGS - normal goat serum 
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1. Introduction 

 

Botulinum toxin type A (BTX-A), an endopeptidase derived from Clostridium botulinum, 

cleaves SNAP-25 (Synaptosomal Associated Protein of 25kDa), one of the proteins essential 

for neuroexocytosis (Blasi et al., 1993). Prevention of acetylcholine release in neuromuscular 

junction and autonomous synapses is the main feature of BTX-A poisoning. The same 

mechanism enables local application of BTX-A in low picomolar doses to be used in 

treatment of neuromuscular and autonomous disorders (Lim and Seet, 2010).  

Apart from its effect on neuromuscular junction, recent preclinical and clinical studies 

reported the efficacy of BTX-A in reduction of allodynia and hyperalgesia in pain of different 

origins (Jabbari and Machado 2011; Pavone and Luvisetto, 2010). Moreover, BTX-A was 

recently registered for treatment of chronic migraine (Dodick et al., 2010) and several 

controlled clinical studies in other painful conditions are in progress (Jabbari and Machado, 

2011; Singh, 2010). Importance of BTX-A application in clinical practice results from its 

unique ability to reduce pain in a long lasting manner (up to 6 months in humans).  

It was suggested that antinociceptive effect of BTX-A results from inhibition of 

neurotransmitter release from peripheral sensory nerve endings (Aoki, 2005; Cui et al., 2004), 

similarly as in neuromuscular junction. On the other hand, recent behavioral (Bach-Rojecky 

and Lackovic, 2009; Bach-Rojecky et al., 2010; Favre-Guilmard et al., 2009; Filipović et al., 

2012) and immunohistochemical studies (Matak et al., 2012, 2011)  indicate that the 

antinociceptive action occurs primarily in the central nervous system where BTX-A is 

axonally transported (Antonucci et al., 2008; Matak et al., 2012, 2011). However, there are no 

in vivo data regarding central molecular mechanism, receptors and possible neurotransmitters 

involved. Here we report that the antinociceptive action of BTX-A is associated with central 

µ-opioid receptor activity. 
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2. Materials and methods 

 

2.1 Animals 

Male Wistar rats (University of Zagreb School of Medicine, Croatia) weighing 300-400 g, 

kept in temperature-regulated environment (23 ̊C) under 12 h light-dark cycle, with free 

access to food and water (except during testing), were used in all experiments. Experiments 

were conducted according to the European Communities Council Directive (86/609/EEC) and 

recommendations of the International Association for the Study of Pain (Zimmerman, 1983). 

All efforts were made to reduce the number of animals used and to reduce their suffering. 

Experiments were approved by the Ethical Committee of the University of Zagreb, School of 

Medicine (permit No. 07-76/2005-43). 

 

2.2 Drugs  

The following drugs and chemicals were used: BTX-A (Botox®, Allergan, Inc., Irvine, USA); 

non-selective opioid antagonist naltrexone (Sigma, St.Louis, MO, USA); selective µ-opioid 

antagonist naloxonazine (Santa Cruz Biotechnology, Inc., CA, USA); chloral-hydrate (Sigma, 

St.Louis, MO, USA); diethyl ether (Sigma, St.Louis, MO, USA); acetone (Sigma, St.Louis, 

MO, USA). To obtain the doses needed, BTX-A and opioid antagonists were dissolved in 

0.9% saline. Each vial of Botox® contains 100U (~4,8ng) of purified Clostridium botulinum 

type A neurotoxin complex.  

For immunohistochemical experiment the following chemicals are used: paraformaldehyde 

(Sigma-Aldrich, St.Louis, MO, USA), Triton X-100 (Sigma-Aldrich, St.Louis, MO, USA), 

normal goat serum (Vector, Inc., Burlingame, CA, USA), c-Fos rabbit polyclonal antibody 

(Santa Cruz Biotechnology, Inc., CA, USA), goat anti-rabbit Alexa Fluor-448 (Invitrogen, 
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Carlsbad, CA, USA), anti-fading agent (Fluorogel, Electron Microscopy Sciences, Hatfield, 

PA, USA). 

 

2.3 Animal treatment 

BTX-A was injected subcutaneously into the plantar surface of the hind paw (intraplantarly, 

i.pl.), ipsilateral to formalin injection/ nerve injury, to conscious, gently restrained rats, in a 

volume of 20 µl with a 27 ½ gauge needle. To test the effect on formalin-induced pain, BTX-

A was injected in a dose of 5 U/kg, while 7 U/kg BTX-A was used in the model of 

neuropathic pain. Doses were chosen based on previous experiments from our laboratory 

(Bach-Rojecky et al., 2005; Bach-Rojecky and Lacković, 2005).  

Naltrexone was injected: 1. subcutaneously (s.c., 0.02 mg/kg - 2 mg/kg) into the abdominal 

area in a volume of 250 µl; and 2. intrathecally (i.t., 0.07 µg/10 µl – 350 µg/10 µl) at the 

lumbar L3-L4 level . Dose of s.c. injected naltrexone was chosen based on literature (Correa 

et al., 2010), while dose of i.t. naltrexone (100-fold lower than s.c. dose) was based on 

preliminary experiment. 1 ml of naloxonazine was injected intraperitoneally (i.p.) in a dose of 

5 mg/kg, as used by other authors (de Freitas et al., 2011). 

 

2.4 Nociceptive assessment 

Nociceptive experiments were performed in a quiet laboratory, between 10 a.m. and 4 p.m. 

Animals were allowed to accommodate to the testing environment for 10 min. Evaluation of 

nociceptive testing was performed by observer unaware of the animal treatment. Animal 

treatment was known to other experimenter who treated and marked the animals. However, 

the main observer could recognize the injured hind-limb either in formalin-induced pain (paw 

edema) or nerve injury (limping and characteristic posture of injured paw).  
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Formalin test. Conscious, gently restrained rats were s.c. injected with saline-diluted 5% 

formalin solution (50 µl) into the plantar side of the right hind paw pad and immediately 

returned to the transparent cage for 1 h observation period. Pain was measured as the number 

of nocifensive behaviors (licking, flinching and shaking of the injected paw). Recording time 

was divided in two phases: acute phase I (0-15 min) response caused by direct stimulation of 

peripheral sensory nerve endings with formalin, and inflammatory phase II (15-60 min) 

characterized by peripheral sensitization (Tjolsen et al., 1992). Each experimental group 

contained 5-6 animals.  

BTX-A (5 U/kg i.pl.) was injected 5 days before the formalin testing, while naltrexone (0.02 

mg/kg - 2 mg/kg s.c.; 0.07 µg/ µl - 350 µg/ µl i.t.) and naloxonazine (5 mg/kg i.p.) were 

injected 40 min and 24 h prior to the formalin test, respectively. Control animals received 

0.9% saline in the appropriate volumes. For intrathecal application of naltrexone, animals 

were briefly anesthetized with diethyl ether until no reflexive response to paw pinch was 

elicited. Animal’s hair was shaved at the lumbar L3-L4 level. Small skin incision (1 cm) was 

performed. Naltrexone or saline were injected between the vertebrae. Animals recovered from 

diethyl ether anesthesia in approx. 10 min. Shortly acting diethyl ether was used to achieve 

fast recovery prior to nociceptive testing (40 min following i.t. injection). 

To investigate whether the effect of naltrexone on BTX-A- induced antinociception is short-

lasting or long-lasting, we performed an additional experiment where naltrexone was 

administered 24 h prior to formalin testing. 24 h point was chosen based on the time required 

for complete elimination of naltrexone from the organism (Verebey et al., 1976.). 

 

Peripheral neuropathy. A total number of 38 rats underwent sciatic nerve partial transection, 

as previously described (Bach-Rojecky et al., 2005; Lindenlaub and Sommer, 2000). In brief, 

right sciatic nerve was exposed in rats under general anesthesia (chloral hydrate 300 mg/kg) 
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and the middle of the nerve trunk was pierced using a thin surgical needle. Half of the nerve 

diameter was transected by the scalpel in the needle direction. Six rats were subjected to sham 

procedure; sciatic nerve was exposed, but not transected. Six naive rats served as control. 

Two weeks following the peripheral nerve injury, animals which developed mechanical 

sensitivity to pressure/ von Frey filaments and cold allodynia (at least 20% changes from the 

mean of the sham-operated group) were included into the further experiment. Animals were 

divided in four groups (5-6 animals per group) as follows: (1) 0.9% saline (i.pl.), (2) BTX-A 

(7 U/kg; i.pl.), (3) naltrexone (2 mg/kg, s.c.), (4) BTX-A + naltrexone.  

Nociceptive measurements were performed 5 days following BTX-A i.pl. injection, and  40 

min following naltrexone s.c. injection. The assessment of each animal started with 

mechanical sensitivity to pressure, followed by mechanical sensitivity to von Frey filaments 

and cold allodynia measurements, with 30 min period between each type of measurement. 

 

2.4.2.1. Mechanical sensitivity to paw pressure  

Mechanical sensitivity was measured by the modified paw pressure test, originally described 

by Randall and Selitto (1957), on both hind paws. Average mechanical nociceptive threshold 

expressed in grams was calculated from 3 measurements. Measurements were repeated in 10 

min intervals by applying increased pressure to the dorsal surface until paw withdrawal or 

struggling of the animal occurred (Bach-Rojecky et al., 2010).  

 

2.4.2.2. Mechanical sensitivity to von Frey filaments  

Paw withdrawal threshold in response to a mechanical stimulus was determined using a series 

of von Frey filaments (Stoelting Co, Wood Dale, IL, USA) ranging from 0.6 g to 26 g. 

Animals were placed in a plastic cage with a metal mesh floor 10 min prior to testing. Von 

Frey filaments were applied to the mid-plantar surface of the hind paw through the mesh floor. 
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Each filament was applied 3 times, kept in bent position on the rat’s hind paw for 4 s. 

Filaments were applied in ascending order, and the lowest filament that elicited a foot 

withdrawal response was considered the threshold stimulus (Wei et al., 1998). 

 

2.4.2.3. Cold allodynia 

Cold allodynia was measured as the number of foot withdrawal responses after an application 

of cold stimuli (a drop of 100% acetone) to the plantar surface of the hind paw. Testing was 

repeated five times with an interval of approximately 5 min between each test. Response 

frequency to acetone was expressed as a percent withdrawal frequency [(number of paw 

withdrawals/number of trials) × 100] (Park et al., 2006). 

 

2.5 Immunohistochemistry 

Immunohistochemical analysis was performed on samples collected from the formalin test 

experiment with s.c. applied naltrexone. 

Two hours following the i.pl. formalin injection rats were deeply anesthetized using chloral-

hydrate (300 mg/kg) and transcardially perfused with 250 ml of 0,9% saline, followed by 250 

ml of fixative (4% paraformaldehyde  in 0,01M phosphate-buffered saline (PBS), pH 7.4). 

Spinal cord was removed and cryoprotected at 4oC overnight in 15% sucrose-fixative 

solution, followed by 30% sucrose in PBS the next day, until the tissue sank. Lumbar spinal 

cord (L4/L5 segment) sections of 4 rats belonging to each experimental group were processed 

for immunohistochemical analysis. Frozen sections (30 µm), cut on cryostat (Leica, 

Germany), were taken for free floating in wells with PBS. Sections were washed 3x5min in 

0,25% PBST (PBS + 0.25% TritonX-100), blocked in 10% normal goat serum (NGS) for 1 h 

and incubated overnight at room temperature with rabbit anti-c-Fos polyclonal antibody 

diluted in 1% NGS. Sections were washed in PBST and incubated for 2h at room temperature 
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with 1:400 goat anti-rabbit Alexa Fluor-448 fluorescent secondary antibody in the dark, 

diluted in 1% NGS. Sections were washed and mounted on glass slides with anti-fading agent.  

Sections were visualized with fluorescent microscope (Olympus BX51, Olympus, Tokyo, 

Japan) connected to digital camera (Olympus DP-70, Olympus, Tokyo, Japan) and 

photographed using 10x and 40x magnification. C-Fos-positive neurons were counted in 

sensory laminae of the spinal cord dorsal horn (I to VI) by experimenter unaware of the 

treatment groups. Average number of c-Fos-positive neurons for each animal was calculated 

from three randomly selected sections. Figures were assembled using Microsoft Paint and 

processed for brightness and contrast using Adobe Photoshop. 

 

2.6 Statistical analysis 

Results, presented as mean ± SEM, were analyzed by one-way analysis of variance (ANOVA) 

followed by the Newman-Keuls post hoc test. P<0.05 was considered significant.  

 

 

3. Results 

 

3.1 Opioid antagonists abolish the antinociceptive effect of BTX-A during phase II of the 

formalin test 

 

3.1.1. Systemically applied naltrexone inhibits the antinociceptive effect of BTX-A during 

phase II of the formalin test 

Peripheral BTX-A pre-treatment (5 U/kg, i.pl.) significantly reduced the number of 

licking/flinching during second phase of formalin-induced pain (p<0.001). Naltrexone (2 

mg/kg s.c.), applied 40 min prior to formalin test, abolished the antinociceptive effect of 
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BTX-A (p<0.001, Fig. 1A). Additionally, formalin test was performed 24 h after naltrexone (2 

mg/kg) s.c. injection to investigate whether naltrexone interferes with antinociceptive effect of 

BTX-A only shortly, until eliminated from the organism, or it has long-lasting reducing effect 

on BTX-A antinociceptive action. Naltrexone had no effect on BTX-A induced 

antinociception in this experiment (Fig. 1A). Naltrexone alone did not influence formalin-

induced pain (Fig. 1A).  

 

3.1.2 Centrally applied low dose naltrexone reduces antinociceptive effect of peripheral BTX-

A 

To examine the possible central site of naltrexone action on BTX-A induced antinociception, 

low dose-naltrexone (7µg/10 µl) was injected intrathecally. Similarly to 100-fold higher 

systemic dose (2mg/kg), it abolished the antinociceptive effect of peripherally applied BTX-A 

(p<0.01; Fig. 1B). However, the same low dose of naltrexone applied s.c. (7µg/ 10 µl) did not 

influence BTX-A antinociceptive effect (Fig. 1B). 

 

3.1.3 Antinociceptive action of BTX-A is dependent on µ-opioid receptor 

Single i.p. injection of selective µ-opioid antagonist naloxonazine (5 mg/kg) applied 24 h 

before the test abolished the antinociceptive effect of BTX-A in phase II of formalin test 

(p<0.01; Fig. 1C). Naloxonazine alone did not alter formalin-evoked licking and flinching of 

the injected paw (Fig. 1C). 

 

3.2 Systemic and central naltrexone dose-dependently prevents the antinociceptive effect of 

BTX-A 

Naltrexone dose-dependently decreased the antinociceptive effect of BTX-A (5 U/kg i.pl.) in 

the second phase of the formalin test (Fig. 2). The highest tested doses of naltrexone (2 mg/kg 
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s.c. or 350 µg/10 µl i.t.) had maximal effect on prevention of BTX-A antinociceptive effect 

(p<0.001). A decrease in preventing the antinociceptive effect of BTX-A was found with 

lowering naltrexone dose (Fig. 2).  

The highest tested doses of naltrexone alone (10 mg/kg s.c., and 350 µg/10 µl i.t.) had no 

significant influence on formalin-induced pain (number of nocifensive behaviors: 454.6 ± 

20.7 vs. saline s.c.: 489.8 ± 15.2 and 485.8 ± 16.4 vs. saline i.t.: 494 ± 22.7). Accordingly, 

lower doses of naltrexone alone (2 mg/kg s.c.; 0.7 µg/10 µl and 0.07 µg/10 µl i.t.) had no 

significant influence on formalin-induced pain, as well (results not shown). 

 

3.3 Opioid antagonist reduces the antinociceptive effect of BTX-A in experimental 

neuropathic pain 

Two weeks following the partial sciatic nerve transection 60% of rats developed mechanical 

sensitivity and cold allodynia ipsilateral to the nerve injury. A single i.pl. BTX-A (7 U/kg) 

injection significantly decreased mechanical sensitivity to pressure and von Frey filaments, as 

well as cold allodynia (Fig. 3).  

Naltrexone (2 mg/kg, s.c.) applied 5 days after BTX-A injection reversed the antinociceptive 

effect of BTX-A on mechanical sensitivity to pressure (Fig. 3A), and reduced its effects on 

mechanical sensitivity to von Frey filaments and cold allodynia (Fig. 3B and C).  All 

measurements were conducted starting from 40 min after naltrexone injection. Naltrexone 

alone did not alter the pain in all nociceptive tests.  

 

3.4 Naltrexone prevents the effect of BTX-A on c- Fos expression in dorsal horn of the spinal 

cord 

Behavioral changes in previously described experiment were accompanied by changes of c-

Fos protein expression (Fig. 4) in the dorsal horn in a similar fashion. The number of c-Fos 
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positive neurons was significantly reduced (p<0.05, Fig. 4B) in BTX-A treated animals 

compared to control (saline + formalin) group. Naltrexone prevented the effect of BTX-A on 

c-Fos expression in formalin test (p<0.05, Fig. 4B).  

4. Discussion 

 

According to textbook description, BTX-A does not enter CNS and its therapeutic, as well as 

toxic effects, are associated with peripheral nerve endings only. However, the antinociceptive 

effect of BTX-A cannot be explained without assumption that it is centrally mediated. This is 

demonstrated by numerous behavioral evidence such as: bilateral effect following unilateral 

toxin injection in different bilateral or polyneuropathic pain models, prevention of 

antinociceptive effect by axonal transport blocker colchicine, effect on contralateral side after 

injection to distally cut sciatic nerve (Bach-Rojecky and Lacković, 2005, 2009; Bach-Rojecky 

et al., 2010; Favre-Guilmard et al., 2009; Filipovic et al., 2012; Matak et al., 2011). Moreover, 

using antibody specific for BTX-A-cleaved SNAP-25, Caleo and co-workers discovered 

axonal and transynaptic transport of BTX-A inside the brain, and from periphery to the facial 

motor nucleus (Antonucci et al., 2008; Restani et al., 2011), while our group discovered the 

axonal transport of BTX-A within sensory neurons projecting from periphery to the brainstem 

(trigeminal sensory nuclei) or spinal cord (corresponding segment of dorsal horn). In our 

experiments, axonal transport blocker colchicine prevented the antinociceptive activity of 

BTX-A, as well as central SNAP-25 cleavage (Matak et al., 2011, 2012), suggesting that 

toxin’s retrograde axonal transport to CNS is necessary for the antinociceptive activity.  

Up to now, the mechanism of BTX-A antinociceptive action in the CNS is unknown. Since 

SNAP-25 is believed to be the main target of BTX-A, it could be assumed that, in sensory 

areas of CNS, BTX-A directly or indirectly affects central neurotransmitters involved in pain 

processing. But, up to now, there are no studies specifically examining this issue in vivo. Few 
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previous observations (Auguet et al., 2008; Vacca et al. 2012.) discovered synergistic effect of 

BTX-A and morphine, thus, indirectly suggested the association between opioid system and 

BTX-A. Therefore, we investigated if the central antinociceptive activity of BTX-A is 

associated with the endogenous opioid system, since opioids play a pivotal role in control of 

nociception and they are one of the most studied innate pain-relieving systems (Holden et al., 

2005).  

We tested the effects of selective and non-selective opioid antagonists on antinociceptive 

action of BTX-A in two different types of pain: formalin-induced inflammatory pain and 

partial sciatic nerve transection-induced neuropathic pain.  

In the present study a non-selective opioid receptor antagonist naltrexone (2 mg/kg s.c.), as 

well as selective µ-opioid antagonist naloxonazine (5 mg/kg i.p.), prevented the 

antinociceptive effect of peripheral BTX-A on second inflammatory phase of the formalin test 

(Fig 1). To exclude the possibility that opioid antagonists increase pain by a mechanism 

independent from the BTX-A effect, dose-response experiment was preformed (Fig. 2). 

Moreover, lower doses of naltrexone alone tested, as well as high doses, had no effect on 

formalin-induced pain (results not shown), while the same doses injected to BTX-A pretreated 

animals affected differently BTX-A induced antinociception (Fig. 2). This result indicates the 

possible involvement of µ-opioid receptor in antinociceptive effect of BTX-A. Although 

selective µ-opioid antagonist reversed BTX-A effect similarly as non-selective opioid 

antagonist (Fig. 1A and C), the involvement of other than µ-opioid receptor cannot be 

completely excluded, since experiments with selective κ- and δ-opioid antagonists were not 

preformed. 

Since previous studies (Bach-Rojecky and Lacković, 2009; Filipovic et al., 2012; Matak et al., 

2011) indicated that BTX-A antinociceptive action is of central origin, we hypothesized that 

the site of BTX-A interaction with opioid receptors in our experiments occurs in the spinal 
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cord. Therefore, to eliminate possible systemic effects of naltrexone, the low, systemically 

ineffective dose of naltrexone (7 µg/10 µl) was administered intrathecally. Centrally applied 

naltrexone abolished the antinociceptive activity of peripherally applied BTX-A (Fig. 1B), 

which confirms the central site of BTX-A action.  

To examine whether the association of BTX-A action with opioid receptor is common in 

different types of pain, we additionally investigated the effect of naltrexone and BTX-A in a 

model of neuropathic pain induced by partial sciatic nerve transection. Naltrexone (2 mg/kg, 

s.c.) significantly reduced the antinociceptive effect of BTX-A on mechanical sensitivity to 

pressure and von Frey filaments, as well as cold allodynia (Fig. 2) in neuropathic animals. 

This further demonstrates that the mechanism of BTX-A activity in acute inflammatory pain 

and chronic neuropathic pain, and possibly in other types of pain, is connected with opioid 

receptor.  

Further support for involvement of µ-opioid receptors in antinociceptive effect of BTX-A was 

demonstrated by examining neuronal activation in spinal cord dorsal horn (Fig. 4). Using c-

Fos expression as a measure of neuronal activation in pain pathways (Coggeshall et al., 2005) 

after formalin-induced pain, we showed that BTX-A (5 U/kg i.pl.) significantly reduced the 

number of c-Fos positive neurons in sensory laminae of spinal cord (I-VI) (Fig. 4 A and B). 

The effect of BTX-A on c-Fos expression in the spinal cord was shown previously in the 

formalin test (Aoki, 2005), as well as in chronic bladder inflammation model (Vemulakonda 

et al., 2005). However, in our experiments, effect of BTX-A on nociceptive neuronal 

activation was prevented by naltrexone (Fig. 4A and B), which parallels the behavioral effect 

of naltrexone on BTX-A-induced antinociception. 

Our results, which suggest the interaction of BTX-A with opioid system, are in accordance 

with previous studies which examined antinociception of combined application of BTX-A and 

morphine in low, non-active doses. Auguet et al. (2008) observed significant antinociceptive 
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effect of ineffective dose of morphine (0.03 mg/kg i.p.) applied 3 days after ineffective dose 

of BTX-A (Dysport) (10 U/kg) in carrageenan-induced inflammatory pain in rats. More 

recently, significant antinociceptive effect was shown in another study (Vacca et al., 2012) 

also combining ineffective doses of BTX-A (2 pg/paw) and morphine (1 mg/kg s.c.) in 

formalin-induced inflammatory pain in mice.  

Major finding of present study points to association of BTX-A antinociceptive activity with µ-

opioid receptors. The nature of this association remains to be elucidated. The possibility that 

BTX-A has direct agonistic effect on µ-opioid receptors seems unlikely, primarily since the 

analgesic properties and mechanism of actions of BTX-A and opioid agonists are different 

(the only known mechanism of BTX-A action is the prevention of neuroexocytosis by SNAP-

25 cleavage). Most likely explanation for the prevention of BTX-A analgesic effects by opioid 

antagonists might be that BTX-A, during pain, indirectly increases the antinociceptive activity 

of endogenous opioid system. This could be achieved either by (1) enhanced synthesis/release 

of opioid peptides or (2) enhanced opioid receptor function. 

(1) Modulation of pain by endogenous opioid peptides as a consequence of their enhanced 

synthesis/release has been observed in some conditions like stress (Parikh et al., 2011), 

placebo administration (Eippert et al., 2009; Zubieta et al., 2005), infections (Glattard et al., 

2010) and exercise (Goldfarb and Jamurtas, 1997).  Possibility that BTX-A enhances spinal 

opioid peptide synthesis may be supported by studies which reported that intramuscular 

injection of BTX-A induces the enkephalin mRNA synthesis in the spinal cord ventral horn 

(Humm et al., 2000; Jung et al., 1997). These studies examined ventral horn enkephalin 

mRNA levels, while dorsal horn was not investigated. Effect was visible also in the 

contralateral side of spinal cord, and at more rostral and caudal spinal cord levels (Humm et 

al., 2000; Jung et al., 1997). 
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Recently, Mika et al. (2011) reported that BTX-A lowers the expression of pronociceptin, 

prodynorphin and proenkephalin mRNA within the dorsal root ganglia, but not in the spinal 

cord of neuropathic animals. The authors examined the synthesis of endogenous opioids 

involved in development of neuropathic pain, whose effects can also be mediated by non-

neuronal inflammatory cells. Down-regulation of opioid synthesis only at the level of dorsal 

root ganglia is difficult to associate with present observations, where BTX-A-mediated 

increase in spinal cord endogenous opioid expression might be expected. There is also a 

possibility that BTX-A effects in our study are mediated by some other endogenous opioids 

which were not examined in study of Mika et al. (2011).  

Since the only known mechanism of BTX-A action is the prevention of SNARE-mediated 

neurotransmitter release, to explain how the release of opioids might be enhanced, we 

speculate that BTX-A indirectly increases the opioid system activation, via yet unknown 

mechanism. This indirect action may involve several neurons or neurotransmitters. 

Additionally, participation of non-neuronal cells, such as glia, cannot be excluded (Mika et 

al., 2011; Vacca et al., 2012). 

If, hypothetically, the antinociceptive effect of BTX-A is associated with increased release of 

opioid polypeptides, it might be expected that the effect of BTX-A and opioid analgesics, 

such as morphine, are similar. However, preclinical data suggested that the actions of BTX-A 

and morphine are quite different. While morphine reduces both phases of the formalin test 

(Hunskaar and Hole, 1987), BTX-A acts only in the second, inflammatory phase (Cui et al, 

2004; Fig 1). Additionally, BTX-A, does not increase normal nociceptive thresholds (Bach-

Rojecky et al., 2005; Cui et. al, 2004) unlike morphine. Reasons for this are not clear, but may 

be associated with selectivity of the BTX-A effect, in contrast to morphine, for more limited 

subsets of neurons or synapses targeted by BTX-A. 
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(2) Another theoretical option is that BTX-A enhances the expression or function of µ-opioid 

receptors. At present there is no direct evidence for that option, but it might be supported by 

the recent observation that BTX-A antagonizes the morphine-induced tolerance. Morphine-

induced tolerance is suggested to be associated with decreased µ-opioid receptor functional 

binding sites (Vacca et al., 2012).  

Reversal of antinociceptive activity of BTX-A by shortly acting opioid antagonists is difficult 

to reconciliate with the known mechanism of BTX-A long term action on SNARE complexes 

and neurotransmitter release. Cleaved SNAP-25 in our experiment is already present in CNS 

5 days following the peripheral administration, prior to antagonist administration. However, 

the possibility that naltrexone, by unknown mechanism, permanently interferes with BTX-A 

effect on SNAP-25 could not be ruled out. Therefore, we examined if the effect of naltrexone 

is short-lasting. In contrast to its effect 40 min prior to formalin test, naltrexone administered 

24 h prior to nociceptive testing did not influence BTX-A-induced antinociception. This 

experiment demonstrated that the effect of naltrexone is short-lasting (in line with its 

pharmacokinetic properties), and that it does not directly prevent the BTX-A activity by 

reversal of SNAP-25 cleavage.  

In summary, SNAP-25 cleavage in CNS is probably only the first step in the overall 

mechanism of BTX-A action, which leads to activation of endogenous opioid system. 

 

 

5. Conclusion 

 

Present results demonstrate for the first time that the BTX-A activity in acute inflammatory 

pain and chronic neuropathic pain, and possibly in other types of pain, is associated with µ-

opioid receptor. 
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Legends 

 

Fig. 1 Effects of opioid antagonists, naltrexone and naloxonazine, on antinociceptive effect of 

BTX-A in the second phase of the formalin test. Measurements were performed 5 days after 

BTX-A (5 U/kg) i.pl. injection and: A) 40 min or 24 h after naltrexone (2 mg/kg) s.c. 

injection; B) 40 min after naltrexone (7 µg/ 10 µl i.t.) i.t. injection (control group intrathecally 

injected with saline); C) 24 h after naloxonazine (5 mg/kg) i.p. injection. Animals were treated 

with naltrexone or naloxonazine 5 days after BTX-A (5 U/kg) i.pl injection. A) Naltrexone 

administered 40 min prior to formalin test blocks antinociceptive effect of BTX-A, while 

naltrexone administered 24 h prior to formalin test has no effect on antinociceptive action of 

BTX-A. Mean ± SEM, n=5-6, * - p<0.001 compared to control, + - p<0.001 compared to 

naltrexone (40 min) and naltrexone (24 h), # - p<0.01 compared to BTX; B) Low dose of 

intrathecal naltrexone prevents BTX-A antinociceptive action in formalin-induced pain. Mean 

± SEM, n=5, * - p<0.01 compared to control; + - p<0.001 compared to naltrexone; # - p<0.01 

compared to BTX; 

C) Selective µ-opioid antagonist naloxonazine reverses the antinociceptive action of BTX-A. 

Mean ± SEM, n=6; * - p< 0.005 compared to control; + - p< 0.01 compared to naloxonazine; 

# - p< 0.01 compared to BTX-A (Newman-Keuls post hoc)  
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Fig. 2 Naltrexone dose-response: the effect of different doses of naltrexone injected 

systemically or intrathecally on antinociceptive effect of peripheral BTX-A in the second 

phase of the formalin test. Measurements were performed 5 days after BTX-A (5 U/kg) i.pl. 

injection and 40 min after naltrexone 2 mg/kg, 1 mg/kg, 0.2 mg/kg and 0.02 mg/kg s.c. 

injection or 350 µg/10 µl, 7 µg/10 µl, 0.7 µg/10 µl and 0.07 µg/ 10 µl i.t. injection (in graph, 

all doses are shown as (µg/kg)). Zero value represents BTX-A alone. Note the log-scale on x-

axis. Mean ± SEM, n=5; ○ Naltrexone subcutaneous: ** - p<0.01 compared to control, *** - 

p<0.001 compared to control, ++ - p<0.01 compared to BTX-A, +++ -p<0.001 compared to 

BTX-A ; ●  Naltrexone intrathecal: * - p<0.05 compared to control, ** -p<0.01 compared to 

control, *** -p<0.001 compared to control; ++ -p<0.01 compared to BTX-A, +++ -p< 0.001 

compared to BTX-A (Newman-Keuls post hoc)    
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Fig. 3 Systemic application of naltrexone reduces the antinociceptive effect of BTX-A in the 

experimental neuropathic model induced by partial sciatic nerve transection. Nociceptive tests 

were performed 5 days following BTX-A (7 U/kg, i.pl.) and 40 min following naltrexone (2 

mg/kg, s.c.) application in animals with developed neuropathy. Neuropathy developed 

ipsilaterally (at the site of the transected nerve). A) Mechanical sensitivity measured with paw 

pressure test; results expressed in grams. Mean± SEM, n=5-6; * - p< 0.0001 compared to 

neuropathic control; + - p<0.005 compared to naltrexone; # - p< 0.001 compared to BTX-A 

(Newman-Keuls post hoc). B) Mechanical sensitivity measured with von Frey filaments; 

results expressed in grams. Mean ± SEM, n=5-6; * - p< 0.05 compared to neuropathic control; 

+ - p<0.05 compared to naltrexone; # - p<0.05 compared to BTX-A (Newman-Keuls post 

hoc). C) Cold allodynia; results expressed as percentage of paw withdrawals caused by drop 

of 100% acetone. Mean ± SEM, n=5-6; * - p<0.0005 compared to neuropathic control and 

naltrexone; # - p<0.0005 compared to BTX-A (Newman-Keuls post hoc) 
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Fig. 4 A) Expression of immunfluorescently labelled c-Fos (green punctate immunoreactivity) 

in the ipsilateral (to the site of formalin-injection) superficial laminae of the L4/L5 spinal cord 

sections. Representative examples of 10x magnification images. Experimental groups: saline; 

saline+formalin; BTX-A (5 U/kg, s.c.) + formalin; BTX-A (5 U/kg s.c.) + naltrexone (2 

mg/kg, s.c.) + formalin. Scale bar: 200 µm. B) Quantitative analysis of c-Fos expression in 

sensory laminae of the spinal cord sections from 10x magnification images. Total number of 

c-Fos positive neurons in sensory laminae in different formalin-treated experimental groups: 

saline; BTX-A; BTX-A + naltrexone; naltrexone. Average number of c-Fos positive neurons 

for each animal was calculated from three spinal cord sections. Mean ± SEM, n=4; * - p<0.05 

compared to control (saline); + - p<0.05 compared to naltrexone; # - p<0.05 compared to 

BTX-A (Newman-Keuls post hoc) 
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