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ABSTRACT  

 

Xanthones and their thio- derivatives are a class of pleiotropic compounds with various 

reported pharmacological and biological activities. Although these activities are mainly 

determined in laboratory conditions, the class itself has a great potential to be utilized as 

promising chemical scaffold for the synthesis of new drug candidates. One of the main 

obstacles in utilization of these compounds was related to the difficulties in their 

chemical synthesis. Most of the known methods require two steps, and are limited to 

specific reagents not applicable to a large number of starting materials. In this paper a 

new and improved method for chemical synthesis of xanthones is presented.  By applying 

a new procedure, we have successfully obtained these compounds with the desired 

regioselectivity in a shorter reaction time (50 s) and with better yield (> 80%). Finally, 

the preliminary in vitro screening on different bacterial species and cytotoxicity 

assessment, as well as in silico activity evaluation were performed.  

The obtained results are in line with potential pharmacological use of this class of 

molecules. 
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1. INTRODUCTION 

 

Many plants are known to have pharmacological properties and have been used in 

traditional medicine for the treatment of numerous ailments and diseases since ancient 

times. Various plants have been used for religious purposes and some of them in mystical 

rituals.1 Although these plants have exhibited healing effects in some populations and in 

many conditions, the clear pharmacological bases of these actions still remain to be fully 

elucidated. Since pharmaceutical companies are on a continual quest for new active 

compounds, in recent years many attempts have been focused on the utilization of natural 

biodiversity of traditional medicinal plants’ constituents by applying virtual and 

biological screening approaches to detect their therapeutic potentials.2  

The main objective of this paper is to present the synthesis optimization of the naturally 

occurring compounds. Synthetic variants can be further optimized to enhance their 

biological activity and improve their selectivity and safety. The obtained compounds can 

be considered as new promising hits for subsequent research and development of novel 

pharmacophores.3 

Xanthones are a group of heterocyclic compounds containing a dibenzo-γ-pyrone 

skeleton (Fig. 1).  

 

These secondary metabolites are found in higher plant families such as Guttiferae and 

Gentianaceae4,5 and they also occur in fungi, lichens and ferns.6 The growing interest in 

the natural and synthetic xanthones is due to their pharmacological and biological 

activities,7-10 like antibacterial, anti-inflammatory and modulators of glucose 
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metabolism,11 anticancer12 and antiviral.9 Their antioxidant potential makes them feasible 

for utilization as nutritional supplements in order to prevent premature ageing and 

ameliorate conditions in chronic inflammatory diseases.9   

Thioxanthones, their synthetic analogues that are not found in nature, have also been 

found to exhibit pharmacologic characteristics13-21 such as antihistaminic, antiparasitic, 

neuroleptic, and antiproliferative properties.22 Hydroxyl thioxanthones are particularly 

useful as heat and ultraviolet stabilizers for polyolefins.19 Acetylation of hydroxy 

xanthones and thioxanthones can further enhance their biological activities.23,24 

Monohydroxyxanthones, such as 1-hydroxyxanthone, are reported in the literature as 

monoamine oxidase inhibitors,25,26 α-glucosidase inhibitors27,28  and exhibit antioxidant 

properties.29 Of the dihydroxyxanthones, 1,3-dihydroxyxanthone possesses antimalarial 

activity,30 antihypertensive activity31 and can inhibit α-glucosidase.27,28 The same has 

been reported for 1,3-diacetoxyxanthone and in addition, this compound can inhibit 

Na/K-ATPase.32 Likewise, its analogue, 1,6-dihydroxyxanthone, possesses 

antihypertensive activity31 and can inhibit α-glucosidase.27,28 Trihydroxyxanthones, like 

1,3,5-trihydroxyxanthone, has shown anticancer 33 and antimalarial activity30. The same 

compound tested in vitro exhibited antiviral activity on HIV-1-infected MT-4 cells and 

MDCK cells infected with influenza virus.34 Trihydroxyxanthones have also been shown 

to be monoamine oxidase25,26 and Na/K-ATPase inhibitors.32 Finally, 1,3,7-

trihydroxyxanthone also shows anticancer activity33 and possesses monoamine 

oxidase,25,26 α-glucosidase27,28 and fatty acid synthase inhibitory activity.35 
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Synthetically, xanthones are usually obtained by chemical synthesis from benzophenones 

or diaryl ethers under harsh reaction conditions and/or in the presence of strong acids or 

toxic metals.36 

In the literature, different methods have been reported37-42 so far for the synthesis of 

xanthones, with varying yields. Base catalyzed cyclisation of a substituted benzophenone 

precursor to obtain some polymethoxyxanthones has also been reported, but the yields 

were low.38 However, when the same precursor was heated for 72 h in the presence of 

tetramethylammonium hydroxide/pyridine/H2O, the yield improved.43 This reaction was 

also carried out applying microwave (MW) irradiation 44 during 13 minutes. Finally, the 

synthesis of thioxanthones and substituted thioxanthones has also been carried out using 

different methods.13,15-20  

The above mentioned methods suffer from one or another disadvantage such as low 

yields, long reaction times, the use of large amounts of concentrated sulfuric acid, and 

lack of regiochemical control in the ring closure step. Moreover, most of these methods 

require two steps, are limited to specific benzoic acids or benzene derivatives having 

electron-withdrawing groups and are not applicable to a large number of starting 

materials. 

Bearing all this in mind and taking into consideration the pharmacological importance of 

xanthones, thioxanthones and their acetyl derivatives, we have developed and report here 

a simple methodology to obtain hydroxyxanthones and hydroxythioxanthones in a short 

time using MW irradiation. Moreover, this paper also includes the in vitro screening on 

different bacterial species and cytotoxicity assessment as well as preliminary in silico 

evaluation of their potential biological targets.  
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2.  Results and discussion 

 

2.1. Synthesis 

Herein we report the modified microwave synthesis of hydroxy xanthones and 

thioxanthones (Scheme 1). 

 

In the modified synthesis, a homogenous mixture of resorcinol/phloroglucinol, 

substituted salicylic acids and a Lewis acid AlCl3/ZnCl2/TiCl4/SnCl2, was subjected to 

microwave irradiation using CEM Discover Model 908010 at a power of 200W, with 

continuous stirring to obtain the required xanthone(s) with good yield (Table 1) without 

the formation of any side products, which was confirmed by TLC and HPTLC. The use 

of a Lewis acid under microwave irradiation reduces the reaction time from 13 min44 to 

just 50 s. Of all the Lewis acids, SnCl2 was found to be the most efficient with xanthone 

yields of 80-84%. Compounds 1a-h were then acetylated separately using acetic 

anhydride in DMAP under dry conditions to obtain acetyl derivatives 2a-h in quantitative 

yield. The method has also been extended to the synthesis of thioxanthones. 

 

2.2. In vitro biological screening 

Experimentally, the synthesized compounds have been assessed in terms of their 

antibacterial potency as well as cytotoxicity, the two major concerns associated with 

potential preventive or curative drugs that are intended for prolonged use.  
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The determined antibacterial and cytotoxic activities are presented in the Table 2. The 

majority of compounds showed no effects on the growth of the microorganisms tested. 

However, several compounds exhibited weak antibacterial activity on M. catarrhalis, S. 

aureus and H.influenzae. In order to improve antibacterial activity of these few 

compounds, the exact mode of action should be clarified and the compounds have to be 

further derivatised. 

The cytotoxic activity was assessed on a HepG2 (hepatocytes) and Jurkat (T lymphocytes) 

cell lines that are used to determine potential inhibitory effects on cell metabolism. The 

test measures cellular metabolic activity by assessing NADH levels, thus indicating 

whether the compounds impair any of the key metabolic pathways. An encouraging result 

was obtained in that none of the compounds tested exhibited any significant inhibition on 

the HepG2 or Jurkat within 24 h, suggesting that the compounds could be used as 

potential hits for further derivatisation in order to further optimize their biological 

activities. 

 

2.3. In silico analysis 

All compounds were additionally subjected to a similarity search for potential biological 

activity in order to identify their additional “hidden” values and to create conditions for 

further exploration of their pharmacological effects. Such an approach is currently widely 

accepted by the pharmaceutical industry.45  

By combining computational and biological methods, positive and reliable hits could be 

detected in a very short time-frame by using small amounts of reagents. In this way, the 
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whole early stage drug discovery process known as “hit generation” can be performed 

utilizing minimal resources and any duplication work can be avoided.46 

Considering simple structural characteristics and lipophilicity, the synthesized hydroxy 

xanthones/thioxanthones are drug-like molecules satisfying the Rule of Five.47 According 

to the calculated lipophilicity clogP coefficients, all molecules have moderate 

lipophilicity. In addition, all considered polyphenolic derivatives are weakly acidic 

compounds (ACD (Advanced Chemistry Development, www.acdlabs.com) with pKa 

values ~ 7 as calculated using ChEMBL (www.ebi.ac.uk/chembl/). This can affect their 

ADME properties like binding to plasma protein human serum albumin.48 

Regarding anti-infective activities, only antihelmintic activity (Pa > 0.6) of studied 

thioxanthones were predicted by PASS in accordance with reported experimental 

observations (Tables 3 and 4).49 According to PASS predictions the most plausible 

human biological targets of hydroxylated xanthones are oxidoreductases, particularly 

CYP450 isoforms (Pa > 0.9), similar to other planar polyphenols such as quercetin. Other 

targets pointed out by program PASS may be involved in glucose and lipids metabolism 

and homeostasis,e.g. chlordecone reductase and UDP-glucuronosyltransferase. All 

molecules have been predicted to be membrane integrity agonists and permeability 

inhibitors (Pa > 0.9). The predicted membrane activity is in accordance with already 

experimentally detected activities on the membrane localized targets lysosomal α-

glucosidase50 and mitochondrial monoamine oxidases.25 In addition to metabolic targets, 

PASS predictions (Pa > 0.8) indicate that these compounds could bind to kinases such as 

protein kinase C zeta and PI3-kinase subunit gamma.  
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By PASS, fewer activities for hydroxy thioxanthone derivatives have been predicted in 

comparison with the xanthone analogues. This is due to their lower structural similarity 

with the compounds with known activities used in the PASS training set.51 In that respect, 

the studied thioxanthones can be considered the “newest” chemical entities. They were 

not predicted to have CYP450 activities but they do also target enzymes related to 

xenobiotic metabolism. Thioxantones have been suggested as chemopreventive agents 

(predicted with Pa = 0.500, Pi = 0.019).22 According to the Molinspiration predictions, 

acetyl derivatives appeared to be potential nuclear receptor ligands. 

 

3. CONCLUSIONS 

 

A series of (poly)hydroxyl-xanthones and their acetyl derivatives have been successfully 

synthesized in moderate to high yields by using the microwave approach along with 

Lewis acids AlCl3, ZnCl2, TiCl4 or SnCl2 during just 50 s. Out of the four explored Lewis 

acids, SnCl2 was found to be most efficient with xanthone yields of 80-84%. 

The (poly)hydroxyl-xanthones and their thio-analogs shown no significant HepG2 or 

Jurkat cytotoxicity and majority have no anti-bacterial activities on 6 bacterial strains 

tested. 

The in silico predictions based on the program PASS indicate that these xanthone 

derivatives possess the potential to target membrane associated proteins, particularly 

those with redox activity. Therefore, structural modification of the synthesized xanthones 

is a good and feasible approach to increase their activities towards specific targets.  
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4. Materials and methods 

4.1. General Procedures for the Synthesis of Hydroxyxanthones 

To an equimolar mixture of phenolic acids and phenol derivatives, anhydrous AlCl3, 

ZnCl2, TiCl4 or SnCl2 was added. The reaction mixture was heated at 140°C for 50 s in 

CEM microwave. The contents were poured into ice and extracted with ethyl acetate. The 

organic layer was dried over anhydrous sodium sulphate and the solvent was removed 

under reduced pressure. The product thus obtained was purified by silica gel column 

chromatography.  

 

4.2. General Procedures for the Synthesis of Acetoxyxanthones  

To a solution of hydroxyxanthone/thioxanthones (0.2 mmol) in acetic anhydride (5–8 

mL), DMAP was added in catalytic amount. The mixture was stirred at 60°C for 4-5 h. 

The contents were then poured into ice and extracted with ethyl acetate. The organic layer 

was dried over anhydrous sodium sulphate and the solvent was removed under reduced 

pressure to obtain the desired acetoxy xanthones. Since this is a simple acetylation 

reaction and all the hydroxyl groups present in the molecule get acetylated under these 

conditions, there are no issues regarding regioselectivity of this reaction. 

All the above compounds were characterized by comparing their melting points as well as 

their 1H NMR data with those already reported in the literature.28,52,53 

 

4.3. Antibacterial activity 

Bacterial strains, Staphylococcus aureus (ATCC 29213), Streptococcus pneumoniae 

(ATCC 49619), Streptococcus pyogenes (ATCC 700294), Moraxella catarrhalis (ATCC 
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23246), Haemophilus influenzae (ATCC 49247) and Escherichia coli (ATCC 25922), 

were purchased from ATCC and used for evaluation of antibacterial activity of the 

compounds.  

Antibacterial activity was determined by the standard broth microdilution method with 

azithromycin as comparator. Minimum inhibitory concentrations (MICs) were established 

according to guidelines of the Clinical Laboratory Standards Institute,54 except that for 

Streptococcus medium, lysed blood was substituted with 5% horse serum. Double 

dilutions of tested compounds in 96-well microtitre plates were prepared in a 128-0.5 

µg/mL concentration range. Bacteria were grown on appropriate agar plates (Becton 

Dickinson, USA) - Columbia agar with 5% sheep blood for streptococci, Mueller-Hinton 

chocolate agar for H. influenzae and Mueller-Hinton agar for staphylococci. Inocula were 

prepared by direct colony suspension method and plates inoculated with 5x104 CFU/well. 

Results were determined by visual inspection after 20-22h incubation at 37°C in ambient 

air. 

 

4.4. Cytotoxic activity 

A HepG2 human hepatocellular carcinoma cell line (ATCC HB-8065) and Jurkat human 

leukemic T cell lymphoblast cell line (ATCC TIB-152) were purchased from ATCC and 

maintained in complete RPMI 1640 medium (Sigma, R7388) supplemented with 10% 

Fetal Bovine Serum (Sigma, R7524) at 37oC in 5% CO2 atmosphere.  

A cytotoxicity assay was performed using MTS CellTiter 96 AQueous One Solution Cell 

Proliferation Assay (Promega, G3580).45 Double dilutions of tested compounds in 96-

well microtiter plates were prepared in 100-0.2 µM concentration range. 5x104 cells were 
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added per well and incubated overnight at 37°C in 5% CO2 atmosphere. 15 µL of MTS 

reagent was dispensed per well. Plates were incubated for 1 hour at 37°C in 5% CO2 

atmosphere and absorbance recorded at 490 nm using a 96-well Wallac Victor2 plate 

reader. Results were analyzed in GraphPad Prism software. 

 

4.5. In silico analysis 

Simple structural characteristics and physicochemical properties were calculated using 

the Internet servers of Molinspiration [http://www.molinspiration.com/] and the 

ChEMBL database [https://www.ebi.ac.uk/chembl/]. 

Tentative predictions of biological targets and activities were made by web-services using 

methods based on the identification of substructure features typical for active molecules 

which are available publicly at the Molinspiration [www.molinspiration.com/] and PASS 

[www.pharmaexpert.ru/PASSOnline/services.php] web pages.  
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Figure captions 

 

Figure 1. Xanthones as heterocyclic compounds with dibenzo-γ-pyrone scaffold. 
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Scheme 1. Xanthone synthesis. 

 

 

 

 

 

 



Table 1. 

Microwave assisted synthesis of xanthones/thioxanthones using different Lewis acids. 

 

Compounds 
Reagents Yield (%) Time (s) 

1-Hydroxyxanthone (1a) 

AlCl3 64 50 

ZnCl2 77 50 

TiCl4 79 50 

SnCl2 80 50 

1,3-Dihydroxyxanthone (1b) 

AlCl3 68 50 

ZnCl2 76 50 

TiCl4 77 50 

SnCl 82 50 

1,6-Dihydroxyxanthone (1c) 

AlCl 63 50 

ZnCl2 71 50 

TiCl4 76 50 

SnCl2 81 50 

1,3,5-Trihydroxyxanthone (1d) 

AlCl3 65 50 

ZnCl2 75 50 

TiCl4 78 50 

SnCl2 83 50 

1,3,6-Trihydroxyxanthone (1e) 

AlCl3 66 50 

ZnCl2 73 50 

TiCl4 76 50 

SnCl2 81 50 

1,3,7-Trihydroxyxanthone (1f) 

AlCl 65 50 

ZnCl2 77 50 

TiCl4 76 50 

SnCl2 84 50 

1,3,8-Trihydroxyxanthone (1g) 

AlCl3 64 50 

ZnCl2 75 50 

TiCl4 77 50 

nCl2 80 50 

1,3-Dihydroxythioxanthone (1h) AlCl3 70 50 



 

Compounds 
Reagents Yield (%) Time (s) 

ZnCl2 74 50 

TiCl4 69 50 

SnCl2 82 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. 

The results of compound antibacterial screening are shown as follows and are expressed as minimum 

inhibitory concentrations (MICs) in µg/mL. The compound cytotoxicity results are expressed as IC50 

values in µM. 

Compound # 

Antibacterial activity MIC (µg/mL) Cytotoxicity IC50 (µM) 

S. 

aureus 

*
ATCC 

29213 

S. 

pneumoniae 

*
ATCC 

49619 

S. 

pyogenes 

*
ATCC 

700294 

M. 

catarrhalis 

**
ATCC 

23246 

H. 

influenzae 

**
ATCC 

49247 

E. coli 

**
ATCC25922 

HepG2 

ATCC 

HB-8065 

Jurkat 

ATCC TIB-

152 

1a >128 >128 >128 128 >128 >128 >100 >100 

2a >128 >128 >128 128 >128 >128 >100 78 

1b 64 >128 >128 16 64 >128 >100 >100 

2b 128 >128 >128 32 128 >128 >100 >100 

1c 32 >128 >128 8 >128 >128 93 75 

2c 64 >128 >128 16 128 >128 90 >100 

1d >128 >128 >128 16 >128 >128 >100 >100 

2d >128 >128 >128 >128 >128 >128 >100 92 

1e 64 >128 >128 2 32 >128 >100 >100 

2e 64 >128 >128 4 128 >128 >100 >100 

1f 128 >128 >128 128 >128 >128 >100 >100 

2f >128 >128 >128 >128 >128 >128 >100 >100 

1g 8 128 >128 8 16 >128 90 83 

2g 128 >128 >128 128 >128 >128 93 62 

1h 16 >128 >128 8 16 >128 >100 >100 

2h >128 >128 >128 64 >128 >128 >100 >100 

Azithromycin 

(standard) 
1 <0.125 <0.125 <0.125 1 2   

 

* Gram-positive bacterial species. 

** Gram-negative bacterial species. 



Supplementary data 
 

 

 
 

1
H NMR DATA OF HYDROXY/ACETOXY XANTHONES 

 

1-Hydroxyxanthone (1a) 

1
H-NMR (300 MHz, CDCl3): δ 12.65 (s, 1H), 8.28 (d, J = 8.0 Hz, 1H), 7.76 (t, 1H),7.60 

(t, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.40 (t, 1H), 6.94 (d, J = 8.4 Hz, 1H), 6.80 (d, J = 8.4 Hz, 

1H) 

 

1-Acetoxyxanthone (2a) 

1
H-NMR (300 MHz, CDCl3): δ 8.25 (d, J = 7.6 Hz, 1H), 7.69 (m, 2H), 7.46 (d, J = 8.6 

Hz, 1H), 7.42 (d, J = 8.6 Hz, 1H), 7.36 (t, 1H), 7.00 (d, J = 7.6 Hz, 1H), 2.50 (s, 3H) 

 

1,3-Dihydroxyxanthone (1b) 

1
H NMR (300 MHz, DMSO-d6): δ 12.80 (s, 1H), 8.16 (d, J = 7.7 Hz, 1H), 8.04 (s, 1H), 

7.75 (t, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.41 (t, 1H), 6.37 (s, 1H), 6.20 (s, 1H) 

 

1,3-Diacetoxyxanthone (2b) 

1
H NMR (300 MHz, CDCl3):  δ 8.24 (d, J = 7.8 Hz, 1H), 7.71 (t, 1H), 7.45 (d, J = 8.4 

Hz, 1H), 7.37 (t, 1H), 7.26 (s, 1H), 6.83 (s, 1H), 2.49 (s, 3H), 2.35 (s, 3H) 

 

1,6-Dihydroxyxanthone (1c) 

1
H NMR (300 MHz, DMSO-d6):  δ 11.29 (s, 1H), 9.93 (s, 1H), 7.44 (t, 1H),  6.47 (s, 

1H), 6.44 (d, J = 9.0 Hz, 1H), 6.41 (d, J = 8.8 Hz, 2H), 6.40 (d, J = 9.0 Hz, 1H) 

 

1,6-Diacetoxyxanthone (2c) 

1
H NMR (300 MHz, CDCl3): δ 8.26 (d, J = 8.4 Hz, 1H), 7.70 (t, 1H), 7.41 (d, J = 8.0 Hz, 

1H), 7.28 (s, 1H), 7.11 (d, J = 7.4 Hz, 1H), 7.01 (d, J = 7.4 Hz, 1H), 2.49 (s, 3H), 2.36 (s, 

3H) 

 

1,3,5-Trihydroxyxanthone (1d) 

1
H NMR (400 MHz, DMSO-d6):  δ 12.89 (s, 1H), 10.89 (brs, 1H), 7.88 (brs, 1H), 7.59 

(d, J = 8.0 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 7.17 (t, 1H), 6.45 (s, 1H), 6.21 (s, 1H) 



2 

 

 

1,3,5-Triacetoxyxanthone (2d) 

1
H NMR (300 MHz, CDCl3):  δ 8.11 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.34 

(t, 1H), 7.27 (s, 1H), 6.84 (s, 1H), 2.48 (s, 3H), 2.45 (s, 3H), 2.34 (s, 3H) 

1,3,6-Trihydroxyxanthone (1e) 

1
H NMR (300 MHz, DMSO-d6): δ 13.03 (s, 1H), 11.90 (s, 1H), 8.12 (s, 1H), 7.95 (d, J 

= 8.7 Hz, 1H), 6.86 (d, J = 8.7 Hz, 1H), 6.79 (s, 1H), 6.32 (s, 1H), 6.15 (s, 1H)  

 

1,3,6-Triacetoxyxanthone (2e) 

1
H NMR (300 MHz, CDCl3):  δ 8.24 (d, J = 8.7 Hz, 1H), 7.26 (s, 2H), 7.11 (d, J = 7.8 

Hz, 2H), 6.84 (s, 1H), 2.48 (s, 3H), 2.35 (s, 6H) 

 

1,3,7-Trihydroxyxanthone (1f) 

1
H NMR (400 MHz, DMSO-d6)ppm (TMS):  δ 12.84 (s, 1H), 10.24 (s, 1H), 9.33 (s, 

1H), 7.50 (s, 1H), 7.22 (m, 2H), 6.24 (s, 1H), 6.12 (s, 1H) 

 

1,3,7-Triacetoxyxanthone (2f) 

1
H NMR (400 MHz, CDCl3)ppm (TMS): δ 7.92 (s, 1H), 7.46 (m, 2H),  7.27 (s, 1H),  

6.85 (s, 1H), 2.47 (s, 3H), 2.35 (s, 3H), 2.33 (s, 3H) 

 

1,3,8-Trihydroxyxanthone (1g) 

1
H-NMR (400 MHz, DMSO-d6): δ 11.83 (s, 1H), 11.75 (s, 1H), 7.79 (s, 1H), 7.49 (t, 

1H), 6.79 (d, J = 8.0 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H), 6.27 (s, 1H), 6.13 (s, 1H)  

 

1,3,8-Triacetoxyxanthone (2g) 

1
H NMR (400 MHz, CDCl3):  δ 7.65 (t, 1H), 7.34 (d, J = 8.8 Hz, 1H), 7.22 (s, 1H), 6.97 

(d, J = 8.0 Hz, 1H), 6.80 (s, 1H), 2.43 (s, 6H), 2.34 (s, 3H) 

 

1,3-Dihydroxythioxanthone (1h) 

1
H-NMR (400 MHz, DMSO-d6): δ 14.37 (s, 1 H), 8.49 (s, 1H), 7.80 (t, 1H), 7.63 (d, J = 

6.9 Hz, 1H), 7.55 (d, J = 8.8, Hz, 1H),  7.48 (t, 1 H), 6.54 (s, 1H), 6.32 (s, 1H)  

 

1,3-Diacetoxythioxanthone (2h) 

1
H NMR (400 MHz, CDCl3):  δ 8.46 (d, J = 7.3 Hz, 1H), 7.59 (t, 1H), 7.50 (d, J = 7.3 

Hz, 1H), 7.45 (t, 1H), 7.33 (s, 1H), 6.91 (s, 1H), 2.49 (s, 3H), 2.34 (s, 3H) 

 


