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In this article we first point at the expansion of associative cortical areas in primates, as well
as at the intrinsic changes in the structure of the cortical column. There is a huge increase
in proportion of glutamatergic cortical projecting neurons located in the upper cortical
layers (II/III). Inside this group, a novel class of associative neurons becomes recognized
for its growing necessity in both inter-areal and intra-areal columnar integration. Equally
important to the changes in glutamatergic population, we found that literature data suggest
a 50% increase in the proportion of neocortical GABAergic neurons between primates and
rodents. This seems to be a result of increase in proportion of calretinin interneurons
in layers II/III, population which in associative areas represents 15% of all neurons
forming those layers. Evaluating data about functional properties of their connectivity we
hypothesize that such an increase in proportion of calretinin interneurons might lead to
supra-linear growth in memory capacity of the associative neocortical network. An open
question is whether there are some new calretinin interneuron subtypes, which might
substantially change micro-circuitry structure of the primate cerebral cortex.
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INTRODUCTION
The main biological substrate for mammalian mental abilities
is the neuronal circuitry of the cerebral cortex. Tremendous
evolutionary increase in the neuron number and cortical con-
nections (DeFelipe, 2011; Charvet and Finlay, 2012) allowed
humans to adopt language and mathematical skills, to make affec-
tive modulation of emotional cues, possess self-conceptualization,
mentalization, as well as to have high capacity of cognitive flexibil-
ity and working memory (Rakic, 2009). Such complex functioning
is strongly related to distinct expansion of multimodal – high order
associative areas, particularly the granular areas of the frontal lobe
(i.e., associative prefrontal cortex; Teffer and Semendeferi, 2012).
These areas have no clear correlate in mice and rats (Uylings
and van Eden, 1990). In addition to expansion in size, there
are significant changes in intrinsic organization of cortical cir-
cuitries (Figure 1). There are novel neuronal elements that
appear in the human cerebral cortex making organization of
microcircuitry (and consequently functional properties) sub-
stantially different when compared to non-primate mammals
(Clowry et al., 2010).

In this article we first give a short overview of evolutionary
changes in the connectivity of a specific class of principal (gluta-
matergic) cortico-cortical projecting neurons, as well as a possible
functional significance of those changes regarding increase in
cognitive capabilities. We also found that present comparative
anatomical data suggest a distinct role in reorganization of cor-
tical microcircuitry for one of the GABAergic local circuit neuron
classes, the calretinin expressing neurons that in primates have
much higher proportion. We propose a possible mechanism

how calretinin neurons might contribute to reorganization of
microcircuitry in the human associative cortex and how this might
be related to an increase of cognitive capabilities.

MICROCIRCUITRY CHANGES IN THE PRIMATE PREFRONTAL
CORTEX AND INCREASE IN PROPORTION OF CALRETININ
NEURONS
It is well recognized that upper layer pyramids (DeFelipe, 2011;
Shepherd, 2011; Teffer and Semendeferi, 2012) are cortico-
cortical projecting neurons (Elston et al., 2011; DeFelipe et al.,
2012). It is less recognized that in primates, large deep layer
III pyramids are long distance cortico-cortical neurons which
establish in parallel connections with several cortical areas
(Barbas et al., 2005; Yeterian et al., 2012). Experimental stud-
ies in rhesus monkey show that they are key elements in the
circuitry involved in working memory and other prefrontal
cortex-dependent associative cognitive functions (Wang et al.,
2006; Verduzco-Flores et al., 2009). Data from various psychi-
atric disorders showed that selective alteration of large layer
III pyramidal cells correlates with a decline in higher cogni-
tive functions (Morrison and Hof, 2002; Selemon et al., 2003;
Dean, 2009; Dorph-Petersen et al., 2009; Courchesne et al.,
2011; Jacot-Descombes et al., 2012; Teffer and Semendeferi, 2012;
Selemon et al., 2013) and developmental studies found that
prominence in size of neurons in the upper cortical layers and
peak in synaptic number appear by the end of infancy, stage when
human specific mental capacities appear (Petanjek et al., 2008,
2011). Altogether, it can be concluded that large layer III pyramidal
neurons in the high order associative areas are the main integrative
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FIGURE 1 | Microphotography of the Golgi Cox impregnated

sections of the associative areas in the human (A,B) and mice

neocortex (C). (A) Dorso-lateral part of the frontal granular cortex
(area 9) shows that supragranular cortical layers (II/III), which contain
cortical projecting neurons, are two times thicker than infragranular
layers (V/VI), which contain subcortical projecting neurons. In addition,
pyramidal neurons (arrows) located deep inside layer III (sublayer IIIC)
have largest cell body as well as most complex and extended
dendritic arborization. Therefore they are the most prominent neurons
found on Golgi staining, and on the Nissl staining they produce
distinct cytoarchitectonic feature found only in high order associative
areas of the cerebral cortex of human and apes, the magnocellularity
(magnopyramidality) of the layer III (Petrides et al., 2012). Those
neurons are on Nissl stained sections not only prominent by cell body
size, they also have most intense cytoplasmatic staining showing high
metabolic activity (Rajkowska and Goldman-Rakic, 1995a). They also
have the most intense SMI32 staining, that indicates a very long and

ramified axon tree (Morrison and Hof, 2002). The mentioned
morphological features are a mark of associative cortico-cortical
neurons. (B) Enlarged part of panel (A) is shown to be of the same
magnification as panel (C). (C) The highest order associative areas in
the mice neocortex are located in the parieto-occipital region. When
compared to highest order associative areas of the human neocortex
(A,B) proportion of cortico-cortical projecting neurons is smaller than
cortico-subcortical projecting neurons, and the largest neurons are layer
V pyramids. Therefore, thickness of layers II/III in mice is less than
half of the thickness of layers V/VI, which is opposite to human. In
the parasensory associative areas (that do not have developed sublayer
IIIC) of the human temporal cortex, layers II/III contain 44% of total
number of neurons and have 30% more neurons than are located in
layers V/VI (DeFelipe, 2011). It can be assumed that in areas with
developed layer IIIC upper cortical layers contain more than 50% of
neurons. In mice, upper cortical layers contain only 22% of neurons
that is less than half of amount located in layers V/VI.

elements (“associative” neurons) between different cortical areas
(Goldman-Rakic, 1999; see discussion from Petanjek et al., 2008).

Pyramidal neurons located in upper layers of the primate pre-
frontal cortex also provide rich intracortical projections. From
large layer III pyramids 80% of synaptic output belongs to local
connections coming from axonal side branches (Melchitzky and
Lewis, 2003). They extend several millimeters around, with dense
columnar termination through layers II and III.

Human brain evolution is characterized by an increase in the
number and width of minicolumns, but also in the increase
of space available for interconnectivity between neurons, espe-
cially in the human prefrontal cortex where associative layer III
pyramidal neurons are particularly abundant (DeFelipe et al.,
2012; Spocter et al., 2012). Except to primary regions, pre-
frontal cortex established connections with all other cortical areas
(Groenewegen and Uylings, 2000). That way efficacy of inter-
and intra-areal integration within prefrontal cortex correlates
with overall level of information processing, influencing con-
sequently level of individual cognitive capability (Petanjek and
Kostovic, 2012). Inter-individual differences in internal structure
of upper cortical layers of human prefrontal cortex (Rajkowska
and Goldman-Rakic, 1995a,b) make additional support that asso-
ciative layer III neuron class has the major role in increasing the

efficiency of cortico-cortical network (Buckner and Krienen, 2013;
Hofman, 2014).

In parallel with evolutionary changes in connectivity of cortico-
cortical network, significant changes appear in the organization
of GABAergic network. This network acts as intrinsic modulator
of cortical output since it is composed of local circuit neurons
(interneurons; DeFelipe et al., 2013). Numerous studies analyzing
laminar distribution and density of cortical GABAergic neuron
subpopulations were performed in various species (Table 1A). It
is curious that only rarely the same group performed a systematic
analysis of several species, using the same methodology, mak-
ing it difficult to conclude about interspecies differences. Most
of the studies performed in rat and mouse found that cortical
GABAergic neurons represent around 15% (14–16%) of the over-
all population. In monkey and human their proportion mostly
exceeds 20% (20–29%) suggesting an increase in proportion for
about 30–50%.

This large increase in proportion of GABAergic neurons seems
to be principally caused by increase in number of neurons con-
taining calretinin. Another two main classes, those containing
parvalbumin and somatostatin, do not show such a robust increase
in proportion (Hladnik et al., 2014). In rodents the proportion
of calretinin neurons among the total population of GABAergic
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Table 1 | Overview of publications quantifying proportion of GABAergic and calretinin neurons in the neocortex of rodents and primates.

(A) Proportion of GABAergic cells in population of all neurons, and (B) proportion of calretinin neurons inside the GABAergic population.

(A) Percentage of GABAergic cells in the total neuron population

Anatomical area Rat and mouse – GABA in total Monkey and human – GABA in total

Primary visual area (V1) 15% (Beaulieu et al., 1994) – Rat 20.5% (Beaulieu et al., 1992) – Monkey

14.5% (Meinecke and Peters, 1987) – Rat 15% (Fitzpatrick et al., 1987) – Monkey

15% (Lin et al., 1986) – Rat 20% (Hendry et al., 1987) – Monkey

Primary somatic sensory

area (S1)

14% (Micheva and Beaulieu, 1995) – Rat 20–29% (Jones et al., 1994) – S1 and primary motor area-Monkey

25% (Ren et al., 1992) – Rat

Frontal lobe 22% (Santana et al., 2004) – Rat 24.9% (Gabbott and Bacon (1996) – Monkey

16% (Gabbott et al., 1997) – Rat 21.2% (Hornung and De Tribolet, 1994) – Human

Temporal lobe 37.7% (del Rio and DeFelipe, 1996) – only layers II and III-Human

Multiple lobe analysis 19.5% (Tamamaki et al., 2003) – Mouse 25% (Hendry et al., 1987)

15% (Beaulieu, 1993) – Rat

(B) Percentage of calretinin expressing neurons within GABAergic population

Anatomical area Rat and mouse – calretinin in GABA Monkey and human – calretinin in GABA

Primary visual area (V1) 17% (Gonchar and Burkhalter, 1997) – Rat 20% (Yan et al., 1995) – Monkey

24% (Gonchar et al., 2007) – Mouse

Frontal lobe 16.1% (Uematsu et al., 2008) – Rat 28.6% (Zaitsev et al., 2005) – Monkey

24.7%* (Gabbott et al., 1997) – Rat 28.8%* – Human

34.2%* – Monkey (Sherwood et al., 2004)

18% (Kubota et al., 1994) – Rat 33.2–44.8%* (Gabbott and Bacon, 1996; Meskenaite, 1997;

Melchitzky et al., 2005)* – Monkey

Temporal lobe 46.2% (del Rio and DeFelipe, 1996) – only layers II and III-Human

Multiple lobe analysis 18% (Xu et al., 2010) – Mouse

13.9% (Tamamaki et al., 2003) – Mouse

Values reported with an asterisk have been calculated from values presented in the original papers.

neurons is between 16–18%, whereas in primate the proportion
of calretinin reaches in some areas 35–40% (Table 1B). del Rio
and DeFelipe (1996) have estimated that, within layer II and III
of associative temporal cortex in the human, GABAergic neurons
represent around 1/3 of the total number of neurons, and almost
half of GABAergic neurons express calretinin. In addition, a recent
study (Ma et al., 2013) suggests that, in the human and monkey,
calretinin neurons are two times more numerous in the frontal
and parietal cortical areas. Collectively all these data indicate that
the evolution lead to an increase in calretinin proportion in the
upper cortical layers of high order associative regions. Our pre-
liminary observations, comparing orbital frontal cortex in the rat
and complementary area 14 in the rhesus monkey, showed a four-
to fivefold increase in the proportion of calretinin for the upper
cortical layers, where calretinin neurons cover almost 15% of the
total number of neurons (Džaja et al., 2014).

FUNCTIONAL PROPERTIES OF CALRETININ NEURONS
For efficient functioning of the human cerebral cortex with
its complex areal subdivision and increased number of cortical
columns, there is a need for enhanced inter-areal and intra-areal

integration (Sherwood et al., 2005; Hofman, 2014). Appearance of
most likely, evolutionary new associative neurons (DeFelipe and
Fariñas, 1992; Nieuwenhuys, 1994; Spruston, 2008) makes sub-
stantial changes in the organization of microcircuitry and allows
higher level of network integration (Buckner and Krienen, 2013).
Inside the primate cortico-cortical network there is also a fivefold
increase in proportion of calretinin neurons and it is reasonable
to ask how this changes the microcircuitry structure.

Based on electrophysiological properties, two main types of
calretinin interneurons can be distinguished in rodents: accom-
modating and non-adapting non-fast spiking cells (Markram et al.,
2004; Butt et al., 2005; Caputi et al., 2009). These electrophysiolog-
ical features are correlated with expression of a group of membrane
voltage gated proteins (Markram et al., 2004), the calretinin cluster
(Toledo-Rodriguez et al., 2004; Schwaller, 2014).

Different types of calretinin neurons can be identified based
on their morphological features, particularly on the postsynaptic
domain targeted by their axon. Double bouquet cells have ver-
tically oriented axons which project mainly to basal dendrites
of pyramidal cells (del Rio and DeFelipe, 1995; Yanez et al.,
2005), while bipolar (Peters and Kimerer, 1981) and bitufted
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cells (Jiang et al., 2013) project to the proximal and middle
region of pyramidal cell’s apical dendrite. Therefore, calretinin
neurons provide direct inhibition, although with a low con-
nectivity rate of ∼10% (Caputi et al., 2009), on mid-proximal
dendritic domain of pyramidal cell (i.e., proximal parts of apical
and basal dendrites). In addition to this sparse connectivity with
nearby pyramids, calretinin neurons provide strong innervation
onto somatostatin neurons (Pfeffer et al., 2013) and other calre-
tinin cells (Caputi et al., 2009). These somatostatin neurons are
known for providing direct inhibition of pyramidal cell’s apical
and basal dendrites (Wang et al., 2004; Jiang et al., 2013), as well
as for providing an inhibitory influence on parvalbumin neurons
(Pfeffer et al., 2013).

Parvalbumin neurons are mostly basket cells, which exert
strong inhibitory control over pyramid’s soma (Markram et al.,
2004; Pfeffer et al., 2013). Optogenetic activation of fast spiking
parvalbumin cells induces gamma oscillations in nearby pyra-
mids (Cardin et al., 2009) and, without parvalbumin activity,
pyramids would continue to fire but without synchrony (Gulyas
et al., 2010). In other words, parvalbumin basket cells phase-
lock their target pyramids through hyperpolarization, after which
pyramids undergo rebound, but short lived depolarization and
fire in synchrony (Cobb et al., 1995). Elimination of inhibitory
influences on parvalbumin basket cells prolongs their influence
on pyramids (Pouille and Scanziani, 2004), and this is where
the potential role of calretinin neurons could reside. By inhibit-
ing somatostatin neurons (Pfeffer et al., 2013; Cauli et al., 2014)
they could create a disinhibitory window for parvalbumin bas-
kets. We hypothesize that this, by calretinin neurons provided
disinhibition, might prolong the effect of parvalbumin cells
on pyramids, allowing longer periods of synchronized gamma
oscillations.

This group of cells, including calretinin neurons, their somato-
statin targets, parvalbumin neurons, and their pyramidal targets,
can be collectively called a neuronal assembly (Borgers et al., 2012;
Somogyi et al., 2014). The significance of an assembly is that it can
activate its efferent targets with high probability, through the syn-
chronous activity of its pyramids (Harris et al., 2003; Buzsaki and
Wang, 2012). Interneurons are needed to segregate, maintain and
also establish a temporal sequence of activation between particu-
lar assemblies (Somogyi et al., 2014). We hypothesize that the role
of increased proportion of calretinin neurons would depend on
the criteria of their territorial exclusivity, i.e., their developmen-
tal positioning to efferent targets compared to other calretinin
interneurons. If newly added calretinin cells show no territorial
exclusivity, i.e., their connections significantly overlap with those
of pre-existent calretinin neurons, they would be incorporated into
already established assemblies, connecting to somatostatin neu-
rons to which some calretinin neurons have previously connected.
Hence, there would be an increased number of calretinin cells
per assembly, while the number of pyramids would not change,
allowing for a more potent overall effect of calretinin neurons.
However, in case of the other extreme, newly added calretinin cells
will mostly connect to their own group of pyramids and parval-
bumin and somatostatin neurons, creating smaller assemblies and
allowing for more parallel processing. More parallel units might
lead to supra-linear growth in memory capacity of the neocortical

network, which is of particular importance in regions involved in
planning and executive functions.

Present evidence suggests that the evolutionary path of the pri-
mate cortico-cortical network seems to have been an expansion
in two aspects. First, there is an increase in proportion of princi-
pal neurons located in layers II and III, which would be a way to
create the basic excitatory architecture for inter-areal processing.
Second, there is an increase in proportion of calretinin expressing
GABAergic interneurons, which would be a way to create a gain in
synchrony and parallel processing between disparate cortical areas.
An open question is whether this jump in proportion of calretinin
neurons is based on a simple expansion of already preexistent
subtypes of these cells found in the rodents or do we have some
new cellular subtypes. If so, this might produce a more profound
changes then simple supra-linear increase in their number, simi-
lar to changes occurring with appearance of associative principal
neurons. These two might have been converging processes, making
structure of microcircuitry in the primate neocortex substantially
different when compared to other non-primate mammals.
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access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroanatomy www.frontiersin.org September 2014 | Volume 8 | Article 103 | 6

http://dx.doi.org/10.3389/fnana.2014.00103
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroanatomy/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroanatomy/archive

	Neocortical calretinin neurons in primates: increase in proportion and microcircuitry structure
	Introduction
	Microcircuitry changes in the primate prefrontal cortex and increase in proportion of calretinin neurons
	Functional properties of calretinin neurons
	Acknowledgments
	References


