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Abstract
Nonalcoholic fatty liver disease (NAFLD) is a condition 
in which excess fat accumulates in the liver of a patient 
with no history of alcohol abuse or other causes for 
secondary hepatic steatosis. The pathogenesis of 
NAFLD and nonalcoholic steatohepatitis (NASH) has 
not been fully elucidated. The “two-hit“ hypothesis is 
probably a too simplified model to elaborate complex 
pathogenetic events occurring in patients with NASH. It 
should be better regarded as a multiple step process, 
with accumulation of liver fat being the first step, 
followed by the development of necroinflammation 
and fibrosis. Adipose tissue, which has emerged as an 

endocrine organ with a key role in energy homeostasis, 
is responsive to both central and peripheral metabolic 
signals and is itself capable of secreting a number of 
proteins. These adipocyte-specific or enriched proteins, 
termed adipokines, have been shown to have a variety 
of local, peripheral, and central effects. In the current 
review, we explore the role of adipocytokines and 
proinflammatory cytokines in the pathogenesis of 
NAFLD. We particularly focus on adiponectin, leptin and 
ghrelin, with a brief mention of resistin, visfatin and 
retinol-binding protein 4 among adipokines, and tumor 
necrosis factor-α, interleukin (IL)-6, IL-1, and briefly 
IL-18 among proinflammatory cytokines. We update 
their role in NAFLD, as elucidated in experimental 
models and clinical practice.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The pathogenesis of nonalcoholic fatty 
liver disease (NAFLD) is still not fully elucidated. We 
explored the role of the following adipocytokines 
and proinflammatory cytokines in the pathogenesis 
of NAFLD: adiponectin, leptin, ghrelin, resistin and 
visfatin among adipokines, and tumor necrosis 
factor-α (TNF-α), interleukin (IL)-6 and IL-1 among 
proinflammatory cytokines. Although a definite 
conclusion is complex, from analyzed data we could 
conclude that adiponectin, des-acyl ghrelin and leptin 
are adipokines that decrease, while TNF-α and IL-6 
are cytokines that enhance insulin resistance and 
subsequently NAFLD. Acting on these premises, new 
therapeutic possibilities emerge; however, much work 
remains to be done. 
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INTRODUCTION
In nonalcoholic fatty liver disease (NAFLD) excess fat 
accumulates in the liver of  a patient with no history of  
alcohol abuse or other causes for secondary hepatic 
steatosis[1]. NAFLD represents a complex spectrum of  
diseases, and is usually classified into nonalcoholic fatty 
liver (simple steatosis) and nonalcoholic steatohepatitis 
(NASH). Simple steatosis is characterized by the presence 
of  steatosis without evidence of  significant inflammation 
or fibrosis, while in NASH, steatosis is associated 
with hepatic inflammation that may be histologically 
indistinguishable from alcoholic steatohepatitis, and is 
often accompanied by progressive fibrosis. Long-standing 
NASH may progress to liver cirrhosis and is probably an 
important cause of  cryptogenic cirrhosis; end-stage liver 
disease and hepatocellular carcinoma may be possible 
outcomes[2].

NAFLD is regarded as a hepatic manifestation of  
metabolic syndrome (MS), and patients with NAFLD, 
particularly those with NASH, often have one or 
more components of  the MS: obesity, hypertension, 
dyslipidemia and raised fasting plasma glucose levels or 
overt type 2 diabetes (T2DM).

The epidemiological data for NAFLD vary depending 
on the population and region studied, but estimated 
prevalence of  NAFLD worldwide is around 20%, with 
2%-3% of  adults having NASH. It is the most common 
liver disorder in the Western industrialized countries, 
where the major risk factors for NAFLD are common. 
Clinical studies have revealed an increasing prevalence of  
NAFLD worldwide, and especially worrying data come 
from studies of  children and adolescents where NAFLD 
is on the rise, together with obesity and MS, and such 
an early onset of  the disease may provide more time 
for its deleterious evolution through the lifetime. The 
pathogenesis of  NAFLD and NASH is still extensively 
researched. Although it is sometimes explained by a “two-
hit“ hypothesis, it should be better regarded as a multiple 
step process, with accumulation of  liver fat being the first 
step, followed by the development of  necroinflammation 
and fibrosis[3]. 

Strong epidemiological, biochemical, and therapeutic 
evidence implicate insulin resistance (IR) as the primary 
pathophysiological derangement and the key mechanism 
leading to hepatic steatosis[4]. Insulin actions are altered in 
IR and MS, resulting in increased lipolysis and synthesis 
of  free fatty acids (FFA) and decreased apolipoprotein 
B-100 in the liver. 

Accumulation of  triglycerides in the liver thus 
represents the primary insult or the “first hit” in the 
pathogenesis of  NAFLD, but the progression of  NASH 
requires the presence of  additional pathophysiological 
abnormalities. The next step or the “second hit“ is the 
result of  reactive oxygen species (ROS) that increase 
oxidative stress within the hepatocytes, and by that 
mediate progression from steatosis to steatohepatitis and 
fibrosis. Also a “third hit” has been proposed, based on 
the fact that oxidative stress causes progressive cell death 
with diminished replication of  mature hepatocytes and 
subsequent increased progenitor cell expansion, leading 
to progression of  liver cirrhosis and hepatocellular 
carcinoma. 

A number of  recent reviews have pointed out the 
importance of  gut microbiota, which is now considered 
also as a metabolic organ, in the pathogenesis of  
metabolic and inflammatory diseases such as obesity 
and T2DM[5-7]. Aron-Wisnewsky et al[8] summarized the 
influence of  gut microbiota in promoting NASH in five 
steps. Disregulated microbiota promotes energy yield 
from food, as was observed in animal (obese animals 
had a greater capacity to extract and store energy in 
comparison with lean ones) and human studies (obese 
patients had increased Firmicutes and decreased 
Bacteroidetes compared with lean ones)[9]. Secondly, 
microbiota regulates gut permeability, participating in 
that way in the innate and adaptive immune responses 
as well as in contributing to low grade inflammation[10]. 
Gut permeability and bacterial overgrowth of  the small 
intestine have been associated with the stage of  steatosis 
and higher endotoxin levels as found in adults and children 
with NASH[11]. Another mechanism is the alteration of  
the choline metabolism. Namely, dysregulated microbiota 
produces enzymes that catalyze the breakdown of  choline 
into toxic methylamines which can, through enterohepatic 
circulation, induce liver inflammation[12]. Furthermore, 
dietary saturated fats influence the composition of  
bile acid metabolism, which is not only important in 
the digestion and absorption of  metabolites but also 
for antimicrobial activity, thus promoting dysbiosis[13]. 
Finally, patients with NASH had an increase of  alcohol 
producing bacteria, such as Escherichia, which is important, 
since metabolites of  endogenously produced alcohol can 
influence the production of  ROS and subsequently cause 
liver inflammation[14]. 

Factors that determine the presence and extent of  
necroinflammation are not yet well understood. Several 
possible mechanisms have been theorized, including 
host factors, such as defects in mitochondrial structure 
and function, altered expression of  proinflammatory 
cytokines, impaired free oxygen radical scavenging, 
increased hepatic iron, and hepatotoxic byproducts 
of  intestinal bacteria. The factors involved in hepatic 
fibrogenesis are slowly becoming understood. Activation 
of  both lobular stellate cells and hepatic progenitor cells 
has been observed in NAFLD.

Most of  the data on the pathophysiology and natural 
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course of  the disease therefore come from animal studies. 
In the last few years, animal studies have yielded an 
impressive list of  molecules associated with NAFLD and 
NASH pathogenesis. Animal models of  NAFLD/NASH 
are classified into genetic models, nutritional models, and 
combined models of  genetic and nutritional factors[15-17]. 
Numerous rodent models of  NAFLD/NASH have been 
reported to date; however, no animal model completely 
reflects liver histopathology and pathophysiology of  
human NAFLD/NASH. 

Adipose tissue, as an endocrine organ, participates 
in energy balance. Adipose tissue, in response to 
peripheral tissue and central brain signals, secretes 
various chemokines. These adipokines are characterized 
by a spectrum of  local, peripheral, and central effects[18]. 
These chemokines activate macrophages, which release 
pro- and anti-inflammatory cytokines, and by this 
enhance inflammatory and suppress anti-inflammatory 
adipokines[19,20]. Obesity, which is often associated with 
IR, is therefore often seen as a chronic systemic low-
grade inflammation, in which adipose tissue and its 
hormones have a central role[21-23].

Here, we explore the role of  adipocytokines and 
proinflammatory cytokines in the pathogenesis of  
NAFLD. We particularly focus on adiponectin, leptin 
and ghrelin, with a brief  mention of  resistin, visfatin 
and retinol-binding protein 4 (RBP4) among adipokines, 
and tumor necrosis factor-α (TNF-α), interleukin-6 
(IL-6), IL-1, and briefly IL-18 among proinflammatory 
cytokines. We update their role in NAFLD, as elucidated 
in experimental models and clinical practice.

ADIPOKINES AND NAFLD
Adipose tissue is, as mentioned earlier, not only a source 
of  lipids, but also an endocrine organ, since it produces 
adipokines that have local, peripheral and central 
effects[24]. Although adipose tissue secretes the majority 
of  adipokines, they are also produced by other organs, 
such as the gastrointestinal tract, and these other sources 
of  adipokine production should not be disregarded. 
Thus, adipokines represent a heterogeneous group of  
mediators such as adiponectin, leptin, resistin, visfatin, 
ghrelin, and RBP4, but more than 50 others have been 
described so far. 

ADIPONECTIN AND NAFLD
In 1999 Arita et al[25] isolated a product of  the apM1 
gene, previously cloned by Maeda et al[26], a kind of  
soluble matrix protein, which they named adiponectin. 
Adiponectin circulates as several oligomeric isoforms in 
serum and isoform-specific effects have been described in 
the literature[27-29]. The three most common isoforms are: 
trimers (low molecular weight-LMW), hexamer (middle 
molecular weight-MMW) and oligomeric complexes (high 
molecular weight-HMW)[30]. In serum it can also exist as 
a proteolytic cleavage fragment of  the full-length protein 
known as globular adiponectin[25,31].

Two transmembrane proteins, AdipoR1 and AdipoR2, 
are identified as adiponectin receptors. Both receptors 
are mostly present in skeletal muscle and moderately 
expressed in the liver[32]. Although AdipoR2 is more 
abundant in the liver, AdipoR1 can be found in human 
hepatocytes, pointing out the important part played by 
both receptors in the pathogenesis of  liver diseases[33]. 

A great number of  studies, reported in Table 1, 
have investigated in human, animal and in vitro models 
the pathogenesis and molecular mechanisms through 
which adiponectin influences obesity, IR, NAFLD and 
other components of  MS. Plasma concentrations of  
adiponectin were found to be significantly lower in 
obese subjects (visceral fat predomination), although 
adiponectin is secreted only from adipose tissue[25,34-38]. 
Serum levels of  adiponectin were reduced in T2DM and 
IR[39-44], which was confirmed in animal studies as well 
as through various molecular mechanisms[45-47]. Certain 
genotypes of  the adiponectin gene were associated with 
a higher risk for developing IR and T2DM[48,49]. In vivo 
studies showed that low serum levels of  adiponectin were 
associated with MS, NAFLD and tumor formation[50-63]. 
In vitro and in vivo studies suggest that oligomeric 
complexes of  adiponectin can modulate the biological 
actions of  several growth factors by controlling their 
bioavailability at a pre-receptor level and that this 
effect might partly account for the anti-atherogenic, 
anti-angiogenic, and anti-proliferative functions[64-69]. 
However, not all mentioned studies concur regarding the 
level of  adiponectin receptor and adiponectin itself, a 
phenomenon which could be explained by an adiponectin 
resistant state; more studies are needed to draw firm 
conclusions. There have been reports of  adiponectin 
as a good predictor of  the necroinflammatory grade 
and fibrosis in NAFLD through mechanisms which 
were clarified in vitro[70-73]. Regarding the treatment 
protocols with adiponectin, in humans a diet high in 
polyunsaturated fatty acids is recommended (it enhances 
adiponectin expression), but larger studies are needed 
to confirm the benefit of  such therapy[74]. Different 
distribution of  specific adiponectin isoforms and lower 
levels of  HMW adiponectin were found in obese patients 
compared to normal weight individuals. This explains the 
metabolic complications related to obesity and T2DM, 
and in future, evaluation of  adiponectin actions, specific 
isoforms should be taken in account[75-78]. 

Leptin and NAFLD 
Leptin is a peptide hormone secreted mainly by 
adipocytes of  white adipose tissue (WAT). It is a product 
of  the ob gene. Leptin modulates food intake, body fat 
composition, insulin activity, thermogenesis, angiogenesis, 
and the immune system[79]. It is considered an anorexigen 
hormone; in the brain it decreases food intake and 
increases energy expenditure. Leptin circulates in the 
plasma as a free adipokine, or bound to proteins. Leptin 
requires an interaction with a specific transmembrane 
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Women have higher circulating levels of  leptin than 
men, which could be associated with a stimulating role 
of  estrogen, or a suppressing role of  androgens on leptin 
production, since studies[105-107] have demonstrated that 
higher leptin levels in women were independent of  fat 
mass. 

Certain inflammatory and infectious stimuli, such as 
IL-1, lipopolysaccharides (LPS) and TNF-α, can also 
increase leptin levels, which correlate with the level of  
inflammation. Levels of  leptin are enhanced by pro-
inflammatory cytokines and help to perpetuate the loop 
of  chronic inflammation in obesity[108,109].

IR and T2DM are correlated with higher leptin levels 
in plasma independently of  adipose tissue[110,111] although 
not all studies concur[112]. Genetic polymorphism of  
the leptin receptor and leptin itself  were investigated, 
and certain genotypes were associated with MS, IR and 
obesity in human and animal studies[113-115].

Leptin seems to participate in both hits of  NASH 
development (contributing to IR and steatosis as 

receptor for its metabolic effect. Ob-R, which represents 
the leptin receptor, is a member of  the class-1 cytokine 
receptor family. In lean individuals it is mostly bound 
to proteins, and in the obese it circulates in the free 
form[80,81]. The levels of  leptin in adipose tissue and 
plasma are dependent on the amount of  adipose tissue 
as well as the status of  energy balance. Therefore, leptin 
levels are higher in obese individuals (central obesity) 
and increase with overfeeding[82-86]. Leptin downregulates 
transcription of  the preproinsulin gene and insulin 
excretion, which could be connected with high leptin 
levels in IR[84,87]. Studies on a non-lipoatrophic diabetes 
population (human and animal models) lead to the 
conclusion that total absence of  leptin leads to obesity. 
However, in non-lipoatrophic obese individuals, although 
total leptin levels are elevated, its action is not amplified 
due to the condition called leptin resistance (reduced 
sensitivity to the anorectic response to exogenous 
administrated leptin), which has also been confirmed in 
animal studies[88-104]. 
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Table 1  Studies and their findings on adiponectin

Study Finding Ref.

Human Adiponectin levels reduced in obese individuals [25,34,35]
Adiponectin levels higher in women [36]
Adiponectin levels reduced in T2DM
Hypoadiponectinemia associated with visceral fat accumulation

[37]

High concentrations of adiponectin correlated with a decreased risk of developing T2DM [41-43]
Adiponectin mRNA decreased in obese T2DM [40]
SNP +45T>G genotypes and lower adiponectin level associated with higher FBG, insulin levels and HOMA-IR in 
obese women

[48]

SNPs: 3971 A/G (rs822396), +276 G/T (rs1501299), -4522 C/T (rs822393) and Y111H T/C (rs17366743) significantly 
associated with hypoadiponectinemia

[49]

High adiponectin/leptin ratio associated with lower plasma triglyceride, HOMA-IR and higher HDL [44]
Lower adiponectin levels an independent risk factor for NAFLD [51]
In human liver biopsies, hepatic adiponectin receptor mRNAs increased in biopsy-proven NASH [52]
Similar levels of adiponectin receptor mRNA in normal, steatotic liver and NASH [53,54]
Reduced AdipoR2 protein in NASH compared to steatotic liver [55]
Adiponectin levels lower in NASH and correlated with the progression of the disease [56,70-72]
HMW adiponectin isoforms increased after biliopancreatic diversion in obese subjects [77]

Animal Adiponectin lowers gluconeogenesis in the liver, increases fatty acid oxidation in muscle and reduces IR [45]
Disruption of both adiponectin receptors (adipo R1 and R2) increased tissue triglyceride content, inflammation, 
oxidative stress and IR

[46]

Adiponectin enhanced the progression of hepatic steatosis, fibrosis, and hepatic tumor formation in NASH [57]
Adiponectin prevents lipid accumulation by increasing β-oxydation and by decreasing synthesis of FFA in 
hepatocytes in NASH

[47,58-60]

Association of NAFLD and reduced expression of hepatic adiponectin receptors not consistently reported [61,62]
Peripheral injection of adiponectin resulted in reduction in body weight and improvement of peripheral IR [47]
Adiponectin reduced TNF-α and induced IL-10 release from Kupffer cells [63]
Pretreatment with adiponectin ameliorated D-galactosamine/LPS induced elevation of serum AST and ALT levels, 
and the apoptotic and necrotic changes in hepatocytes

[64]

In vitro Adiponectin inhibited TNF-α induced expression of endothelial adhesion molecules and decreased LPS induced 
TNF-α production

 [66]

Adiponectin mediated anti-inflammatory activity by lowering NFκB action [67]
Adiponectin increased IL-8 and monocyte chemotactic protein-1 production, and activated the proinflammatory 
transcription factor NFκB

[68]

Adiponectin acted antifibrotic through antagonizing leptin-induced STAT3 phosphorylation in activated hepatic 
stellate cell who promote fibrosis

[73]

Lower HMW adiponectin closely associated with obesity-related metabolic complications and T2DM [75]

T2DM: Type 2 diabetes mellitus; HOMA-IR: Homeostasis model assessment-estimated insulin resistance; FBG: Fasting blood glucose; HDL: High-density 
lipoprotein; NAFLD: Non-alcoholic fatty liver disease; NASH: Nonalcoholic steatohepatitis; HMW: High-molecular weight; IR: Insulin resistance; FFA: 
Free fatty acids; TNF-α: Tumor necrosis factor alpha; IL-10: Interleukin-10; LPS: Lipopolysaccharide; NF-κB: Nuclear factor kappa-light-chain-enhancer of 
activated B cells; Il-8: Interleukin-8; STAT-3: Signal transducer and activator of transcription 3.
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mentioned earlier), and through the proinflammatory 
role in regulation of  hepatic stellate cells (HSCs) in 
promoting liver fibrosis[24]. Leptin levels are increased in 
NASH patients and are related to the grade of  hepatic 
steatosis[116-119]. In contrast, there have been studies 
that did not show a considerable discrepancy in leptin 
concentrations comparing patients with steatohepatitis 
and healthy subjects, or in connection to the severity of  
liver fibrosis[120-122]. 

Regarding the reviewed studies, leptin levels correlate 
with obesity and steatosis, while it is still unclear how 
leptin is upregulated in NASH and how it contributes to 
fibrosis; locally produced leptin and/or leptin resistance 
may have a crucial role[123]. To facilitate the understanding 
of  certain studies in different animal, human and in vitro 
models, findings of  those studies together with references 
regarding the role of  leptin are stated in Table 2. Larger 
studies with carefully matched controls are needed to 
draw further conclusions regarding the influence of  
leptin in NAFLD. 

Ghrelin and NAFLD
Ghrelin is a peptide hormone that was discovered in 
1999, and it acts as a ligand of  the growth hormone 
secretagogue receptor (GHS-R) with a unique post
translational modification of  the Ser3 residue. It is 

produced by the stomach, pancreas and the large 
intestine[124]. Ghrelin has a part in appetite stimulation 
and control of  body mass[125]. Ghrelin O-acyl transferase 
(GOAT) is the enzyme which acylates the ghrelin 
peptide to form acyl-ghrelin (AG)[126]. Recent studies 
have shown that des-acyl ghrelin (DAG) is no longer 
regarded as an inert product of  AG. Ghrelin stimulates 
liver gluconeogenesis, and prevents suppression of  
glucose production by insulin; however, DAG inhibits 
liver glucose production[127]. Studies involving ghrelin role 
in NAFLD and other components of  MS are reported in 
Table 3. 

Studies have shown that obese individuals have 
lower concentrations of  DAG than lean ones, while no 
difference was noticed in the concentrations of  AG. It 
seems that obesity changes the concentration of  DAG 
and AG with a relative AG excess or DAG deficiency 
which leads to obesity-associated IR in MS[128-130].

After assessing the influence of  ghrelin on insulin 
sensitivity, other groups of  investigators concentrated 
on the potential role of  ghrelin in NAFLD. IR is a major 
factor controlling ghrelin levels in subjects with NAFLD, 
but the correlation with the progression of  the disease 
shows conflicting results since all studies did not take into 
consideration DAG and AG concentrations[54,131,132]. 

Possible mechanisms through which ghrelin influences 
NAFLD progression were investigated in vitro, some 
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Table 2  Studies and their findings on leptin

Study Finding Ref.

Human Leptin levels higher in obese individuals and increased with overfeeding [82,83]
Higher leptin levels in women independent of fat mass [104-107]
Body mass index and IR strongly correlated with leptin levels [84]
Central obesity correlated with higher leptin levels in comparison with non-central obesity [86]
Administration of leptin to individuals with lipoatrophic diabetes resulted in reduction of triacylglycerol concentrations, liver 
volume, glycated hemoglobin and discontinuation, or a large reduction in antidiabetes therapy

[89]

Leptin inhibited insulin secretion and transcription of the preproinsulin gene [87]
IR associated with elevated plasma leptin levels independently of body fat [110]
Leptin/adiponectin ratio predicted T2DM in both sex [111]
Leptin C2549A AA genotype found at a higher rate in T2DM [114]
Leptin levels significantly higher in NASH, and correlated with the severity of hepatic steatosis, but not with the grade of 
necroinflammation or fibrosis

[116-118]

Leptin not found as a predictor of histological severity of NASH [119]
No significant difference in leptin concentrations between NASH patients and controls, or in connection to the severity of liver 
fibrosis

[120,121]

IR and low leptin levels predictors of steatosis in the liver [122]
Animal Mice lacking the ob gene became severely obese [91]

Leptin infusion attenuated hepatic steatosis and hyperinsulinemia [92]
Mice without leptin signaling had an increased lipid accumulation in liver [93]
Leptin prevented lipid accumulation in nonadipose tissue through SREBP-1 modulation [94]
After long-term exposure to high-fat diet (> 20 wk), mice resistant to leptin even when directly infused into the brain [95-98]
Hyperleptinemia itself contributed to leptin resistance by down regulating cellular response to leptin [99]
Mice with poly (ADP-ribose) polymerase-1 deficiency susceptible to diet-induced obesity, hyperleptinemia, and IR [115]
Leptin-deficient, insulin-resistant mice developed leptin resistance on a high fat diet independently of hyperleptinemia, c-Jun 
N-terminal kinase inflammatory pathway relevant in the induction of diet-induced glucose intolerance

[100]

Leptin increased expression of procollagen-I, transforming growth factor beta1, smooth muscle actin and TNF-α and thus increased 
liver fibrosis and inflammation

[101]

Leptin-resistant mice exhibited significantly reduced fibrogenic response [102,103]
In vitro Fibrogenic effect of leptin accomplished through hepatic stellate cells, leptin a potent mitogen and apoptosis inhibitor [23]

IR: Insulin resistance; T2DM: Type 2 diabetes mellitus; NASH: Nonalcoholic steatohepatitis; SREBP-1: Sterol regulatory element-binding protein 1; ADP-
ribose: Adenosine diphosphate ribose.
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taking into account AG and DAG respectively[133-135]. 
Summarizing these investigations, one can conclude that 
ghrelin has an important role in insulin sensitivity but 
its role in NAFLD has not yet been clarified. Further 
studies are needed, which should differentiate between 
the concentrations of  DAG and AG.

Resistin and NAFLD
Resistin is an adipocyte-derived signaling polypeptide 
that was initially found to be upregulated in obesity 
and IR[136,137]. It has a scarce tissue distribution, with the 
highest levels in adipose tissues[138]. Resistin circulates 
in two states, the high-molecular-mass hexamer that 
has a higher concentration and the low-molecular-mass 
complex which is more bioactive[139]. Peripheral blood 
mononuclear cells are main producers of  resistin[140]. 
Studies have conflicting results regarding the influence 
of  resistin in glucose metabolism, obesity and IR. There 
are numerous studies that have connected obesity 
with higher circulating resistin levels compared to lean 
controls in human and animal studies with conflicting 
results[141-143]. The correlation between resistin, obesity, 
T2DM and IR also remains controversial [144-148]. In 
NAFLD, concentrations of  resistin were higher than in 
controls and positively correlated with liver inflammation 
and fibrosis severity, but this was not consistent in all 
undertaken studies[118,149-151]. Findings of  the previously 
mentioned studies are displayed in Table 4. 

Data of  in vitro studies concluded that resistin 
participates in the progression of  inflammation[152]. 
Considering the connection between adipocytokines 
and inflammatory pathways, resistin may represent a link 
between MS and inflammation. Resistin and its role in the 
pathogenesis of  NAFLD are still not sufficiently studied 
and new studies are needed. 

Visfatin and NAFLD
Visfatin is also a hormone whose plasma levels are 
associated with obesity, visceral fat, T2DM, as well as 
MS. Secretion of  visfatin was enhanced by glucose 

administration, and the glucose-derived rise of  visfatin 
could be interrupted by co-administration of  insulin or 
somatostatin[153]. Studies related to visfatin and its roles 
in metabolic processes are shown in Table 4. Plasma 
visfatin was higher in obese individuals, and those with 
T2DM and MS[154-156]. Some studies, however, did not 
confirm the previous association[157,158]. There are scarce 
data on the role of  visfatin in NAFLD. Although the 
visfatin level was lower in NASH compared to NAFLD 
patients, a positive correlation with portal inflammation 
was found[159,160]. 

RETINOL-BINDING PROTEIN 4 and 
NAFLD
RBP4 is predominately produced in visceral adipose 
tissue. Serum RBP4 concentration was elevated in 
insulin-resistant obese humans and in T2DM. It was 
found elevated in individuals who had a family history 
of  T2DM and had normal glucose levels[161,162]. An 
association between increased RBP4 and MS was found, 
but other studies failed to detect the connection with 
single components of  MS[163-171].

RBP4 levels were found to be associated with the 
inflammatory response in obese individuals[168,172]. The 
role of  RBP4 in the pathogenesis of  NAFLD is not 
sufficiently elucidated. Circulating RBP4 levels were 
higher in subjects with advanced stages of  NAFLD[173-175]. 
However, some studies differed in their results[176,177]. All 
mentioned studies and their results are reported in Table 
4. 

Proinflammatory cytokines and 
NAFLD
Proinflammatory cytokine is a general term for those 
immunoregulatory cytokines that favor inflammation. 
They represent a heterogeneous group of  molecules 
secreted by various cell types with numerous biological 
effects. They act as endogenous pyrogens, upregulate 
the synthesis of  secondary mediators and other 
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Table 3  Studies and their findings on ghrelin

Study Finding Ref.

Human AG and the AG/DAG ratios positively associated with HOMA-IR in obese children [128]
IR obese subjects had elevated AG/DAG ratio compared with non IR obese subjects because of decreased DAG and total ghrelin levels [129]
Obese patients with MS had lower total ghrelin and DAG, comparable AG and higher AG/DAG, AG/DAG ratio correlated with IR [130]
Ghrelin significantly correlated with HOMA-IR, but was reduced in NAFLD [131]
Ghrelin levels were higher in higher stages of fibrosis in morbidly obese patients with NAFLD [132]
Higher total ghrelin concentrations in patients with NASH in comparison with steatosis and normal liver [54]

In vitro Adipocytes after incubation with AG and DAG significantly increased PPARγ and SREBP-1 mRNA levels and accumulated lipids [133]
Ghrelin inhibited AMP-activated protein kinase activity, through which also influenced PPAR-γ in liver and in adipose tissue [134]
Administration of ghrelin attenuated NAFLD-induced liver injury, oxidative stress, inflammation, and apoptosis partly through the 
action of serine/threonine kinase/AMPK and phosphoinositide 3-kinase/protein kinase B pathways in rats

[135]

AG: Acyl-ghrelin; DAG: Des-acyl ghrelin; IR: Insulin resistance; MS: Metabolic syndrome; HOMA-IR: Homeostasis model assessment-estimated insulin 
resistance; NAFLD: Non-alcoholic fatty liver disease; PPAR-γ: Peroxisome proliferator-activated receptor gamma; SREBP-1: Sterol regulatory element-
binding protein 1; AMP: Adenosine monophosphate.
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proinflammatory cytokines by both macrophages and 
mesenchymal cells, stimulate the production of  acute 
phase proteins, or attract inflammatory cells. The major 
proinflammatory cytokines that have been studied in the 
pathogenesis of  NAFLD include TNF-α, IL-6, IL-1α, 
IL-1β and IL-18.

Tumor necrosis factor ALPHA and 
NAFLD 
A balance between proinf lammatory and ant i-
inflammatory cytokines seems to have a major role in 
systemic, local metabolic and inflammatory processes 
involved in the development of  NAFLD and IR. 
TNF-α is the proinflammatory cytokine characterized 
by various biological effects including metabolic, 
inflammatory, proliferative but also necrotic, with 
enhanced expression in liver and adipose tissue thus 
making it an optimal causative agent for NAFLD. It is 
secreted by macrophages infiltrated in adipose tissue of  
obese models, by hepatocytes, Kupffer cells, and other 
cell types, as a response to chronic inflammatory activity. 

This was confirmed in numerous studies in which 
increased expression of  TNF-α was found in adipose 
tissue of  diverse animal models of  obesity, IR and 
T2DM suggesting TNF-α is a key link in obesity-induced 
IR[178,179]. Among all proinflammatory cytokines involved 
in the pathogenesis of  obesity, IR and NAFLD, TNF-α 
is the most commonly investigated and characterized 
by conflicting results, because of  heterogeneity in study 
populations, small sample sizes and factors that possibly 
interfere with serum TNF-α level detection. Human[180] 
and experimental studies in dietary-induced NAFLD 
models with or without genetic modulation resulting in 
its impaired signaling or neutralization with antibodies, 
implied that TNF-α had a role in development of  every 
setting of  NAFLD (liver steatosis, necrosis, apoptosis 
and fibrosis) as well as IR; this is shown in Table 5. 

The complexity of  TNF-α mechanisms of  action has 
been extensively investigated. Once produced in adipose 
tissue, TNF-α causes impaired insulin-derived peripheral 
uptake of  glucose by increasing serine phosphorylation 
of  insulin receptor substrate 1 (IRS-1) and consequently 
inhibition of  translocation of  glucose transporter type 4 
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Table 4  Studies and their findings on resistin, visfatin and retinol binding protein 4

Adipocytokines Finding Ref.

Resistin Resistin levels increased in morbidly obese humans [142]
Resistin levels in T2DM patients 20% higher when compared to non-diabetic patients [144]
No correlation between resistin and components of MS on T2DM patients [145]
Resistin did not correlate with BMI but significantly correlated with IR [146]
G/G -180C>G homozygotes for resistin had significantly higher resistin mRNA levels in abdominal subcutaneous 
fat

[148]

Serum resistin levels not associated with the presence of NASH [149]
Serum resistin levels higher in NAFLD that in controls and positively correlated with liver inflammation and 
fibrosis severity

[118,150]

Resistin serum levels in NAFLD patients were associated with histological severity of the disease but not with IR [151]
Expression of resistin in human peripheral-blood mononuclear cells upregulated by TNF-α and IL-6 [152]

Visfatin Secretion of visfatin enhanced by glucose administration [153]
Plasma visfatin elevated in patients with T2DM [154]
Visfatin plasma concentrations markedly elevated in obese subjects
Bariatric surgery reduced body mass index, visfatin, leptin and increased adiponectin after 6 mo

[155]

Plasma visfatin levels elevated in subjects with MS [156]
Significantly higher visfatin mRNA in visceral fat of obese subjects compared with lean controls, and positively 
correlated with body mass index

[158]

Visfatin level lower in NASH compared to NAFLD patients and healthy controls [159]
Visfatin level positively correlated with portal inflammation [160]

Retinol binding protein 4 Serum RBP4 concentration elevated in IR, obese humans, T2DM and in subjects with a strong family history of 
T2DM

[161,162]

Strong association of increased circulating RBP4 levels with IR and MS [163-166]
No connection of RBP4 with obesity, IR, or components of the MS [167-171]
RBP4 levels associated with inflammatory response in obese individuals [168,172]
Circulating RBP4 levels higher in subjects with NAFLD
RBP4 liver expression higher in moderate/severe NASH compared to mild forms 

[173]

RBP4 level a risk factors for fibrosis ≥ 2 in NASH
RBP4 and HOMA-IR independently associated with steatosis in patients with chronic hepatitis C

[174]

In NAFLD patients, serum RBP4 significantly lower compared with controls, did not correlate with IR
RBP4 liver tissue expression enhanced in NAFLD patients and correlated with NAFLD histology

[175]

Serum RBP4 levels did not correlate with BMI, HOMA-IR, fasting blood glucose, or insulin levels in patients with 
simple steatosis and NASH
Patients with cirrhosis and fibrosis had higher RBP4 compared to controls

[176,177]

T2DM: Type 2 diabetes mellitus; MS: Metabolic syndrome; NASH: Nonalcoholic steatohepatitis; NAFLD: Non-alcoholic fatty liver disease; IR: Insulin 
resistance; TNF-α: tumor necrosis factor alpha; IL-6: Interleukin 6; RBP4: Retinol binding protein 4; HOMA-IR: Homeostasis model assessment-estimated 
insulin resistance.
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Table 5  Studies and their findings on tumor necrosis factor alpha

(GLUT4) to the plasma membrane resulting in peripheral 
IR[181]. It also stimulates hormone sensitive lipase resulting 

in increased serum FFA and their influx in the liver. 
Lipid accumulation in the liver induces Bax (pro-
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Study Finding Ref.

Human Healthy subjects with highest serum TNF-α levels had significantly greater risk of developing NAFLD [180]

TNF-α infusion in healthy humans impaired insulin signaling via increased phosphorylation of p70 S6 kinase, extracellular signal-
regulated kinase-1/2, c-Jun NH(2)-terminal kinase, and serine phosphorylation of IRS-1 as well as impaired phosphorylation of 
Akt substrate 160 thereby GLUT4 translocation and glucose uptake in skeletal muscle

[181]

TNF-α gene polymorphism in the -238 A allele associated with susceptibility to NAFLD, correlated with IR and increased BMI in 
Chinese population

[202,203]

TNF-α polymorphism at position 1031C and 863A in a Japanese population associated with NASH without significant difference 
between NAFLD patients and controls

[188]

TNF-α and soluble TNFR2 plasma levels increased in NASH patients, independently of IR, compared to controls, but not among 
different stages of NAFLD

[187],
[192]

Serum TNF-α/TNFR1 increased in NASH patients as compared with other stages [189]

In obese NASH patients expression of liver and adipose TNF-α mRNA and its p55 receptor increased and correlated with advanced 
fibrosis

[190]

In children serum TNF-α and leptin associated with a NAFLD activity score of 5 or more [191]

TNF-α mRNA cut-off of 100 ng/mL predicted NASH [192]

In morbidly obese NASH patients high TNF-α mRNA expression in liver correlated with plasma levels of LPS-binding protein [200]

Treatment with TNF-α inhibitor (pentoxifylline) for 6 mo reduced liver enzymes, serum TNF-α level and improved IR [204]

In NAFLD/NASH patients probiotic therapy decreased TNF-α levels [208]

Patients with MS with or without NAFLD treated with fish oil for 6 mo resulted in the reduction of oxidative stress and production 
of proinflammatory cytokines (TNF-α and IL-6) 

[214]

Animal Prolonged infusion of TNF-α in rats decreased ability of insulin to suppress hepatic gluconeogenesis and stimulate peripheral 
glucose utilization

[178]

Obese mice with impaired TNF-α signaling protected from obesity-derived IR in peripheral tissues and had lower levels of 
circulating free fatty acids

[179]

Mice deficient in both TNF-α receptors fed with MCD diet had attenuated liver steatosis, fibrosis and number of recruited Kupffer 
cells
TNF-α administration induced tissue inhibitors of metalloproteinases 1 mRNA expression in activated HSC and suppressed their 
apoptosis

[193]

On MCD-diet induced NASH mice model NASH developed independently of TNF-α synthesis [186]

Fructose overfeeding in mice led to endotoxemia, increased TNF-α and liver steatosis that was reduced after treatment with 
antibiotics

[197]

Mice lacking TNFR1 were resistant to fructose-induced steatosis (increased phospho AMPK and AKT levels, decreased SREBP-1 
and FAS expression in the liver as well as RBP4 plasma levels)

[198]

Dietary oleate reduced hepatic steatosis, inflammation, fibrosis and mRNA expression of TNF-α in MCD diet-induced NASH 
animal model 

[216]

TNF-α levels in liver were lower in dietary induced NASH animal model treated with glutamine [217]

α- and γ-tocopherol protected against LPS-triggered NASH in an obese mouse model, by decreasing liver necroinflammatory 
activity, levels of TNF-α, without affecting body mass or hepatic steatosis

[219]

Obese mice on a HFD treated with thalidomide (100 mg/kg per day for 10 d) showed improvements in insulin sensitivity, through 
restoration of the hepatic insulin IRS-1 and AKT phosphorylation, an improvement in hepatic steatosis was also noticed, which 
correlated with reduced TNF-a levels

[218]

Statins (rosuvastatin and pioglitazon) in diet-induced NASH rat models decreased serum TNF-α level [212,213]

Treatment with anti-TNF antibodies in ob/ob mice fed with HFD improved liver steatosis, insulin sensitivity, and serum ALT 
levels

[209]

Treatment of HFD-rat with monoclonal TNF-α antibody, infliximab, reduced proinflammatory markers (TNF-α, IL-6, IL-1β), 
activity of JNK and IKK-B, SOCS-3 expression, and improved insulin signaling through JAK2/STAT-3 and IRS/AKT/FOXO1 
pathway in the liver
This all led to reduced IR, fat liver accumulation and inflammation

[210]

LPS derived TNF-α production enhanced expression of SREBP-1 mRNA leading to hepatic steatosis [201]

In vitro JNK2-/- hepatocytes resistant to TNF-α induced apoptosis [183]

Tiazolidinediones reversed TNF-α induced IR [211]

Quercetin decreased TNF-α expression in oleic acid induced steatotic HepG2 cells [215]

TNF-α: Tumor necrosis factor alpha; NAFLD: Non-alcoholic fatty liver disease; BMI: Body mass index; IRS-1: Insulin receptor substrate 1; GLUT4: 
Glucose transporter type 4; IR: Insulin resistance; NASH: Nonalcoholic steatohepatitis; TNFR1: Tumor necrosis factor receptor 1; IL-6: Interleukin 6; LPS: 
Lipopolysaccharide; HFD: High-fat diet; JNK: c-Jun N-terminal kinase; MS: Metabolic syndrome; MCD: Methionine and choline deficient diet; HSC: 
Hepatic stellate cells; TNFR2: Tumor-necrosis factor receptor 2; AMPK: AMP-activated protein kinase; SOCS-3: Suppressors of cytokine signaling-3; Akt: 
Protein kinase B; SREBP-1: Sterol regulatory element-binding protein 1; FAS: Fatty acid synthase; RBP4: Retinol binding protein 4; IKK-B: Inhibitor of 
nuclear factor kappa-B kinase subunit beta; STAT3: Signal transducer and activator of transcription 3. 
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apoptotic Bcl-2 family member) translocation to 
lysosomes causing their destabilization and release 
of  lysosomal cysteine protease cathepsin B, through 
activation of  inhibitor of  nuclear factor kappa-B 
kinase (IKK-β) in hepatocytes this activates nuclear 
factor-kappaB (NFκB), and enhances gene expression 
of  proinflammatory cytokines including TNF-α[182]. 
Additional generators of  TNF-α in the liver are Kupffer 
cells in response to bacterial endotoxins, mediated by 
toll-like receptors (TLR). In hepatocytes, TNF-α induces 
suppressors of  cytokine signaling (SOCS) that leads to 
decreased insulin signaling, as well as to induction of  
sterol regulatory element-binding protein-1c (SREBP-
1c) and thus to liver steatosis. By activation of  cytosolic 
sphingomyelinase, TNF-α produces ceramide that 
activates several kinases resulting in impaired insulin 
signaling, but also increases ROS synthesis. ROS 
further enhance TNF-α production, which increases 
mitochondrial permeability, releases mitochondrial 
cytochrome c, and aggravates ROS formation, resulting 
in hepatocyte death. Although two different TNF-α 
receptors exist, tumor necrosis factor receptor 1 (TNFR1) 
and 2 (TNFR2), only TNFR1 is a mediator of  hepatocyte 
apoptosis. Some of  the proposed mechanisms involved in 
hepatocyte apoptosis are TNF-related apoptosis inducing 
ligand (TRAIL), Fas-mediated apoptosis via proteolytic 
caspase-8, and JNK2 pathway[183,184]. 

All these biological effects of  TNF-α result in 
evolution of  NAFLD and are extensively investigated 
in vivo and in vitro, all in order to better understand the 
underlying insulin-mediated pathologic mechanisms, 
enabling new therapeutic strategies in NAFLD[185,186]. In 
humans it was shown that even healthy individuals with 
high basal TNF-α levels had significantly greater risk 
of  developing NAFLD[180]. A great number of  studies 
in adults and children revealed increased expression 
of  TNF-α and its receptors in IR-derived NASH 
patients[180,187-192]. Although study results regarding the 
correlation of  TNF-α with the progression of  the disease 
are contradictory[187], quite a number of  newer animal and 
human studies state that TNF-α is a predictor of  NASH 
and correlates with advanced stages[189-193]. Indeed, in vitro 
and in an over-nutritioned animal model that lacks both 
TNF-α receptors, it was shown that TNF-α produced by 
Kupffer cells enhanced expression of  tissue inhibitor of  
metalloproteinase 1 (TIMP-1) mRNA in activated hepatic 
stellate cells and suppressed their apoptotic induction, 
thereby confirming its role in liver fibrosis[193].

In vitro and in vivo studies have shown that fructose-
induced NAFLD correlates with endotoxemia which 
leads to activation of  hepatic Kupffer cells in the liver 
and subsequently TNF-α production[194-201].

Genetic predisposition to NASH has lately been 
a matter of  great interest; TNF-α polymorphism in 
certain populations was associated with susceptibility for 
NAFLD[188,202,203]. 

Since numerous studies confirmed TNF-α involvement 
in the complex net that leads to development of  NAFLD, 

diverse therapeutic options were proposed. Pentoxifylline, 
a TNF-α inhibitor, was the most extensively studied. 
It was shown that patients with NASH, after treatment 
with pentoxifylline for 6 mo, had significantly reduced 
liver enzymes, serum TNF-α level and improved IR; 
after a year of  treatment, additional improvements in 
steatosis, stage of  fibrosis and lobular inflammation 
were noticed [204-207].  Furthermore, regarding the 
important role of  microbiota in gut permeability and 
endotoxemia, therapeutical options with probiotics were 
also investigated and studies reported improved insulin 
sensitivity, liver histology, decreased TNF-α, total fatty 
acid content and serum ALT levels[208,209]. Treatment with 
the monoclonal TNF-α antibody, infliximab, reduced 
IR, hepatic fat accumulation and inflammation[210]. In 
experimental models of  NASH, in vivo and in vitro, 
thiazolidinediones[211-213], fish oil[214], quercetin[215], dietary 
oleate[216], glutamine[217], thalidomide[218] and α- and 
γ-tocopherol[219] were therapeutic options that decreased 
proinflammatory activity, TNF-α among others, implying 
their possible benefit in NAFLD treatment. 

Based on extensive literature from published studies, 
we can conclude that TNF-α is associated with IR, 
enhanced peripheral lipolysis, liver steatosis, inflammation, 
necrosis, apoptosis and fibrosis. 

Interleukin-6 and NAFLD
IL-6 is a proinf lammatory pleiotropic cytokine 
produced by adipocytes, hepatocytes, immune and 
endothelial cells[18]. Even though smaller in size, visceral 
adipocytes are superior cytokine generators compared 
to subcutaneous adipocytes and it was shown that obese 
and lean NAFLD patients can display a similar cytokine 
profile regarding IL-6. Endotoxemia in obesity, resulting 
from small intestinal bacterial overgrowth, stimulates 
macrophages through TLR receptors to produce 
TNF-α that possibly up-regulates IL-6 production 
from adipocytes and macrophages infiltrated in adipose 
tissue[220]. Hence, adipose tissue in obese subjects has 
an important role in enhancing low-grade chronic 
inflammation leading to IR and lipid accumulation 
in liver. Accumulated FFAs in hepatocytes activate 
IKK-B and NF-κB, a transcription factor that plays a 
central role in coordinating the expression of  various 
proinflammatory cytokines, including IL-6[221]. The role 
of  IL-6 in glucose metabolism, IR, NASH pathogenesis 
and disease progression was investigated in experimental 
models of  steatosis and liver injury, as well as in NAFLD 
patients and the findings of  these studies are reported in 
Table 6. 

I ts  ro le  in  the pathogenes is  of  T2DM was 
confirmed in several human studies suggesting that 
even healthy women with higher basal levels of  IL-6 
have a significantly higher relative risk of  developing 
T2DM [222-226]. Experimental models confirmed the 
role of  IL-6 in this manner, but are characterized 
with conflicting findings regarding peripheral IR. In 
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vitro studies showed that IL-6 promotes overall IR via 
several mechanisms[227-230]. However, in the majority of  
animal models this effect was only shown in hepatic 
IR[231-233]. The contribution of  IL-6 signaling in obesity-
induced inflammation also remains controversial 
because some studies have reported a hepatoprotective 
and hepatoproliferative role of  short-term exposure 
to IL-6[234,235].  Since NAFLD is characterized by 
chronic necroinflammatory activity, results of  short-
term liver exposure to IL-6 are not entirely applicable. 
Chronic exposure to IL-6 led to liver injury, although 
there were studies that concluded it had a protective 
role against the progression of  hepatic steatosis and 
paradoxically a hepatoprotective role in advanced stages 
of  NAFLD[236-238]. Certain polymorphisms of  the IL-6 
gene were associated with development of  NAFLD[239]. 
When compared to other chronic liver diseases, such as 
chronic hepatitis B, IL-6 levels were significantly higher 
among NAFLD patients, especially with advanced 
histopathology findings[240]. Although numerous human 
studies have shown a correlation between IL-6 levels and 
NAFLD, data concerning its relationship with stages of  
the disease are contradictory[189,241-247]. IL-6 as a single 
noninvasive marker for predicting the presence of  NASH 
is not sufficient, therefore pathophysiological-based non-

invasive panels of  serological biomarkers are intensively 
investigated. A combination of  IL-6, total cytokeratin-18 
(M65 - a marker of  necrosis and apoptosis) and 
adiponectin gave a good predictive value[248]. Several 
therapeutic options, including vitamin E and dietary 
quercetin showed a significant decrease in IL-6 levels 
in NAFLD subjects[249,250]. Tocilizumab, a humanized 
IL-6 receptor antibody, is yet to be investigated as a 
therapeutic choice in this manner[251]. 

In conclusion, IL-6 is a proinflammatory cytokine 
associated with the development of  IR, but its exact 
role in the pathogenesis of  NAFLD is still waiting to be 
determined.

Interleukin-1 and NAFLD
IL-1 family cytokine members are produced by 
macrophages, endothelial cells and fibroblasts. IL-1 
family members can be divided into potentially 
proinflammatory cytokines such as IL-1β or IL-18, and 
into antiinflammatory cytokines such as IL-1Ra[252,253]. IL-
1α, acutely administrated in vitro, transiently causes IR, 
promotes inflammation and liver fibrosis[254]. IL-1α and 
IL-1β were shown to have a role in the transformation 
of  steatosis to steatohepatitis and liver fibrosis[255]. 
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Table 6  Studies and their findings on interleukin-6

Study Finding Ref.

Human Increased plasma IL-6 in T2DM [222]
Elevated basal IL-6 levels in healthy humans present high relative risk of developing T2DM [224]
Obese patients after bariatric surgery who lost weight had decreased IR and IL-6 [225]

[226]
IL-6 174C polymorphism associated with NASH and IR [239]
IL-6 levels higher in NAFLD patients, especially with advance stages, compared to ones with hepatitis B [240]
Increased serum IL-6 levels in biopsy proven NAFLD compared to controls [241]
No difference in IL-6 levels among T2DM patients with NASH/advanced fibrosis compared to those without NASH or light fibrosis [242]
No difference in serum IL-6 and its intrahepatic mRNA expression between NASH and steatosis [243,244]
In morbidly obese patients serum IL-6 levels correlated with progression of steatosis but in NASH declined
IL-6 > 4.81 pg/ml predicted liver steatosis

[245]

Hepatocyte IL-6 expression positively correlated with degree of inflammation, stage of fibrosis and IR [246]
Increased circulating IL-6 and its soluble receptor in NASH patients compared with steatosis and healthy volunteers [189]
Normal IL-6 values exclude NASH [247]
IL-6, total cytokeratin-18 (M65) and adiponectin - a new panel for predicting NASH [248]
Decreased IL-6 levels after lifestyle changes and vitamin E administration [249]

Animal Chronic administration of IL-6 suppressed hepatic insulin signaling without effect on skeletal muscle [231]
Lep(ob) mice neutralized with IL-6 antibody showed increased insulin receptor signaling in the liver but not in peripheral tissues [232]
IL-6 decreases overall IR and hepatic inflammation [233]
Hepatoprotective and hepatoproliferative role of short-term exposure to IL-6 in ischaemic preconditioning models [234]
Treatment of IL-6-deficient mice acutely with IL-6 restored STAT3 binding and hepatocyte proliferation [235]
Chronic liver exposure to IL-6 led to cell death via Bax induction, activation of Fas agonist derived caspase-9 and cytochrome c 
release 

[236]

IL-6 showed inflammatory and antisteatotic effects in liver on mouse NASH model [237]
Hepatoprotective role of IL-6 by STAT3 activation in severe NASH model [238]

In vitro LPS through TLR receptors stimulated macrophages to produce TNF-α that up-regulated IL-6 production in adipocytes and 
macrophages

[220]

IL-6 inhibited insulin-induced glycogenesis in hepatocytes [227]
IL-6 promoted IR in hepatocytes and HepG2 via decreased tyrosine phosphorylation of IRS-1, impaired association of the p85 
subunit of phosphatidylinositol 3-kinase with IRS-1, inhibition of Akt and glycogen synthesis 

[228]

IL-6 impaired insulin signaling in 3T3-L1 adipocytes through inhibition of gene transcription of IRS-1, GLUT-4 and PPARγ [229]
IL-6-dependent IR mediated by induction of SOCS-3 protein in HepG2 cells [230]

IL-6: Interleukin 6; T2DM: Type 2 diabetes mellitus; IR: Insulin resistance; NASH: Nonalcoholic steatohepatitis; NAFLD: Non-alcoholic fatty liver disease; 
STAT3: Signal transducer and activator of transcription 3; LPS: Lipopolysaccharide; TLR: Toll-like receptor; IRS-1: Insulin receptor substrate 1; Akt: Protein 
kinase B; GLUT4: Glucose transporter type 4; PPAR-γ: Peroxisome proliferator-activated receptor gamma.
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IL-1β is a member of  the IL-1 family most commonly 
investigated in the pathogenesis of  NAFLD. Major 
generators of  IL-1β are Kupffer cells and macrophages in 
which FoxO1, through NF-κB, induces its production[256]. 
LPS, saturated fatty acids, and others, induce production 
of  pro-IL-1β through TLR in Kupffer cells, which is 
cleaved by caspase-1 to a mature biologically active 
form[257,258]. In vivo and in vitro, it was shown that IL-1β 
in many ways contributes to development of  IR-derived 
NAFLD[259-261]. Inhibition of  IL-1β decreases the severity 
of  atherosclerosis and hyperglycemia in diet-induced 
obesity[262,263]. IL-1 serum levels were significantly higher 
among NAFLD patients compared to other chronic liver 
diseases, with remarkably high levels in advanced stage 
of  fibrosis[240]. In experimental models it was shown 
that IL-1β promotes liver steatosis and fibrosis[264-267]. 
Several treatment options for NAFLD, mediated through 
reduction of  IL-1β action, were investigated[268]. The 
previously mentioned studies that investigated IL-1 
actions are displayed in Table 7. 

Interleukin-1 receptor antagonist 
and NAFLD
IL-1Ra binds to IL-1 receptor competitively with IL-1α 
and IL-1β, thus blocking their activity. It has been shown 

in vivo and in vitro that IL-1β and IL-6 increase its plasma 
levels[269]. IL-1Ra is overexpressed in serum and WAT 
of  obese patients and animal models, where it correlates 
with BMI and IR[270]. A correlation was found between 
IL-1Ra and the degree of  hepatic lobular inflammation, 
while animal studies suggested that IL-1Ra may have a 
protective role against NAFLD development[271,272].

Interleukin-18 and NAFLD
IL-18, previously called interferon-γ inducing factor, 
with structural properties of  the IL-1 family, is primarily 
synthesized as a precursor protein, pro-IL-18, which 
requires activation by caspase-1 cleavage into a bioactive 
mature form[273]. Produced by macrophages, Kupffer 
cells and endothelial cells, it induces production of  
chemokines, adhesion molecules and proinflammatory 
cytokines. IL-18 binding protein, an inhibitor that binds 
on the same receptor as IL-18, enhances its negative 
feedback mechanism enabling cell protection from 
accelerated proinflammatory activity such as NASH.

Early studies showed a positive correlation of  
IL-18 with IR and obesity, but a reduction in plasma 
IL-18 was influenced only by changes in IR[274-277]. In 
NAFLD, higher levels of  IL-18 and caspase-1 were 
found when compared to controls if  components of  MS 
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Table 7  Studies and their findings on interleukin-1α, interleukin-1β, interleukin-1Ra and interleukin-18

Cytokines Finding Ref.

IL-1α Acute treatment of 3T3-L1 adipocytes with IL-1α led to transient IR at IRS-1 level, mediated by its serine phosphorylation [254]
IL-1β
Human Weight loss in severely obese patients led to decreased IL-1β in subcutaneous adipose tissue and in liver 

without effect on adipose IL-1α 
IL-1β was significantly higher in subcutaneous/visceral adipose tissue than in liver

[253]

IL1-β genetic variants in Japanese population associated with NASH [259]
Animal Hepatic IL-1α and IL-1β increased in NASH animal models 

Mice deficient in either cytokine not prone to NASH and fibrosis development 
[255]

In experimental models TLR2 and palmitic acid activated inflammasome in Kupffer cells and produced IL-1α and IL-1β [257]
IL-1β/ApoE-deficient mice had less pronounced atherosclerosis [262]
Treatment with an IL-1β antibody improved glycemic control and β cell function in diet-induced obese mice [263]
Animal NASH model showed increased macrophage infiltration in adipose tissue as well as in liver accompanied with increased 
expression of IL-1β

[264] 

Hepatic steatosis partially mediated by Kupffer cells that produced IL-1β which suppressed PPAR-α [266]
In diet induced NASH mice probiotics decreased hepatic IL-1β mRNA [268] 

In vitro IL-1β inhibited insulin-induced phosphorylation of the insulin receptor beta subunit, IRS1, protein kinase B and extracellular 
regulated kinase 1/2 in murine and human adipocytes that lead to IR and inhibition of lipogenesis 
IL-1β decreased adiponectin

[260]

IL-1β promoted hepatic fibrosis by upregulating TIMMP-1 in rat HSC mediated by p38 mitogen-activated protein kinases and JNK [267] 
IL-1Ra IL-1Ra decreased glucose uptake in muscle and was upregulated in WAT of diet-induce obese mice [270]

Atherogenic diet in IL-1Ra deficient mice caused severe liver steatosis, inflammation and portal fibrosis [272]
IL-18 In obese women IL-18 positively correlated with body weight and visceral fat [275]

In T2DM patients and non-diabetic controls IL-18 plasma levels positively correlated with HOMA-IR [276]
In male patients with NAFLD, IL-18 alone in the absence of metabolic risks cannot contribute to evolution of NAFLD [278]
IL-18 enhanced cytokine production by stimulating TNF-α synthesis in immune cells [279]
Il-18 administrated with IL-12 induced mouse fatty liver in an IFN-γ dependent manner [280]
Rosiglitazone in NAFLD rat model reduced IL-18 and caspase-1 in liver as well as improved histology [277]

IL-1α: Interleukin 1 alfa; IR: Insulin resistance; IRS-1: Insulin receptor substrate 1; IL-1β: Interleukin 1 beta; IL-18: Interleukin 18; NASH: Nonalcoholic 
steatohepatitis; TLR2: Toll-like receptor 2; PPAR-α: Peroxisome proliferator-activated receptor alfa; TIMMP-1: Tissue inhibitor of matrix metalloproteinase-1; 
HSC: Hepatic stellate cells; JNK: c-Jun N-terminal kinases; WAT: White adipose tissue; T2DM: Type 2 diabetes mellitus; HOMA-IR: Homeostasis model 
assessment-estimated insulin resistance; NAFLD: Non-alcoholic fatty liver disease; TNF-α: Tumor necrosis factor alpha; IL-12: Interleukin 12; IFNγ: 
Interferon gamma.
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were present[274,277,278]. Several possible mechanisms of  
IL-18 involvement in NAFLD were investigated[279,280]. 
Rosiglitazone treatment of  NAFLD was investigated 
because of  its inhibitory effect on hepatic IL-18 
production[277]. Li et al[281] has shown that IL-18 itself, 
as well as its ratio with IL-18 binding protein, was 
significantly higher in a NAFLD group as compared to 
controls, implying that IL-18 binding protein should be 
included in future studies. 

In conclusion, IL-18 could be involved in the 
development of  IR-derived NAFLD and exact 
mechanisms are still waiting to be elucidated. Studies on 
IL-18 that were mentioned in this review are reported in 
Table 7. 

CONCLUSION
The pathogenesis of  NAFLD is still an unfinished book 
that needs further experimental and clinical research to 
fulfill all the pages. On the basis of  previous and recent 
published data, key characters could be proinflammatory 
cytokines and chemokines that are products of  adipose 
tissue, namely inflammatory cells infiltrating the adipose 
tissue. Although a definite conclusion on the effect of  
cytokines described in this review is a highly complex 
one, we could summarize that adiponectin, des-acyl 
ghrelin and leptin are adipokines that decrease, while 
TNF-α and IL-6 are cytokines that enhance ir and 
subsequently NAFLD. Acting on these premises, new 
therapeutic possibilities emerge; however, much of  
the work remains to be done, especially on identifying 
selective targets for future treatment.
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