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Abstract: Research over the last decade recognized the importance of novel molecular pathways
in pathogenesis of intracranial meningiomas. In this review, we focus on human brain tumours
meningiomas and the involvement of Wnt signalling pathway genes and proteins in this common
brain tumour, describing their known functional effects. Meningiomas originate from the meningeal
layers of the brain and the spinal cord. Most meningiomas have benign clinical behaviour and
are classified as grade I by World Health Organization (WHO). However, up to 20% histologically
classified as atypical (grade II) or anaplastic (grade III) are associated with higher recurrent rate and
have overall less favourable clinical outcome. Recently, there is emerging evidence that multiple
signalling pathways including Wnt pathway contribute to the formation and growth of meningiomas.
In the review we present the synopsis on meningioma histopathology and genetics and discuss our
research regarding Wnt in meningioma. Epithelial-to-mesenchymal transition, a process in which
Wnt signalling plays an important role, is shortly discussed.

Keywords: meningioma; Wnt signalling; meningioma genetics; E-cadherin; APC; beta-catenin;
AXIN1; p53

1. Introduction

In the recent years, genome- and exome-wide sequencing approaches revealed a number of gene
mutations and pathways associated with meningioma initiation and progression. Despite recent
advances in understanding molecular, genomic and epigenetic profile of meningiomas, one of the
most common intracranial tumours, further understanding of the factors that drive meningioma
formation and progression is needed for successful treatment and subsequent clinical outcome.
Most meningiomas are benign, indolent, slowly growing tumours, effectively treated with gross
total surgical resection. However, up to 20% of the cases will have aggressive behaviour with high
propensity for recurrence, which leads to an increased morbidity and mortality [1]. Even meningiomas
that lack histological features of malignancy can recur. The origin of meningioma lies in progenitor
cells that give rise to arachnoidal cap cells positioned outside of the thin arachnoid layer that covers
the brain and spinal cord (Latin arachnoidea encephali; arachnoidea spinalis). The layer was termed
arachnoid since its thin trabeculae form delicate web resembling a spider web (Latin aranea) [2].
Arachnoidal cap cells are a high metabolically active subgroup of arachnoid cells involved in the
reabsorption of cerebrospinal fluid. In order to fulfil their functions, arachnoid cells form a variety of
cell junctions [3]. To maintain strong adhesion these cells contain numerous desmosomes. Nevertheless,
gap, tight, intermediate junctions and hemidesmosomes are present on these cells and play a role
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in adhesion. On the other hand, they also need flexibility which is provided by adherens junction
molecule E-cadherin. Since arachnoid lacks vascularization intercellular circulation is very important.
Metabolites and ions communicate through gap-junctions. The reason why meningioma cells are
thought to be derived from arachnoid cells is that both cells share many ultrastructural and functional
features. For instance desmosomes, tight junctions, pinocytic vesicles and cistern-like extracellular
spaces are morphological features found in both cells [2].

The biological territories that need to be investigated in meningiomas are diverse. Currently,
there is a lack of understanding of adhesion, migration, cell-to-cell communication, proliferation,
differentiation, cell survival, apoptosis and tissue homeostasis in pathogenesis of meningioma.
New research shows that multiple signalling pathways including Wnt pathway are involved in
formation and growth of meningiomas. Today, a lot of expectation is placed on high throughput
techniques and analyses which can provide us with knowledge about specific disease on a large scale
basis. In this article we focus on recent molecular aspects of meningioma genetics and pathology and
discuss several signalling pathways involved, including Wnt pathway. We will also give an overview
of our research findings on the role of Wnt signalling in meningioma and comment on its potential
role in epithelial-to-mesenchymal transition (EMT).

2. Epidemiology and Histopathological Classification

Sixteen different variants or subtypes of meningiomas are classified into three grades according
to 2007 WHO classification [4–6]. The majority of meningiomas (80%) correspond to grade I and thus
are considered to be benign, slowly growing tumours [4,5]. Grade I meningiomas exhibit a wide
range of histological subtypes, including meningothelial, fibrous (fibroblastic), transitional (mixed),
psammomatous, angiomatous, microcystic, secretory, lyphoplasmacyte-rich and metaplastic subtypes
(Figure 1). Yet, these classifications are not always specific in respect to prediction of patient outcome,
recurrence or response to treatment. Although most meningiomas histologically classified as “benign”
have indolent biological behavior when adequately resected, there is substantial morbidity associated
with recurrence. Meningiomas associated with less favourable clinical outcome, significantly higher
rates of recurrence, morbidity and mortality correspond to grade II (atypical) and grade III (anaplastic).
The incidence of atypical meningioma is 10%–15% and the incidence of anaplastic is fortunately low
with 2%–5% of cases.

Atypical meningiomas are defined by histopathological criteria and two histological variants
(clear cell and chordoid). Criteria include presence of at least 4 mitosis per 10 high power fields (HPF)
or presence of at least three of the following histological features: sheet-like growth, spontaneous
necrosis, high nuclear-to-cytoplasmic ratio, prominent nucleoli and increased cellularity. Anaplastic
(grade III) meningiomas have excessive mitotic index defined as 20 or more mitoses per 10 high power
fields (ě20/10 HPF) and the presence of frank anaplasia, including malignant cytology resembling
carcinoma, melanoma or sarcoma. The brain invasion is a criterion for atypical meningioma [7].
Papillary and rhabdoid variant have been classified as variants of grade III. Aggressive meningiomas
are usually highly vascularized and express high levels of vascular endothelial growth factor (VEGF).
Current treatment options for recurring higher-grade tumours are inadequate [4,6,8,9].
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Figure 1. (A) Meningothelial meningioma, Grade 1; H & E staining, 200ˆ magnification, showing
typical whorl formations; (B) Atypical Meningioma, Grade 2; H & E staining, 200ˆmagnification, with
increased cellularity, sheet-like growth, high nuclear/cytoplasmic ratio and prominent nucleoli; (C)
Clear cell meningioma, Grade 2; H & E staining, 200ˆmagnification, meningothelial cell neoplasm
with predominant clear, glycogen-rich cytoplasm; (D) Anaplastic Meningioma, Grade 3; H & E staining,
200ˆmagnification, showing sarcoma like morphology and frequent mitoses. The scale bar 50 µm.

The incidence of meningiomas is different in adults and children. Meningiomas account for
approximately 30% of adult CNS tumors, whereas in children and adolescents incidence is 4.6% [10].
The mean age at diagnosis is 63 years and the incidence increases with age. The dramatic increase
happens after age 65 and continues to be high even among the population aged 85 years and older.
The overall annual incidence is approximately 7 per 100,000 individuals [4,11]. The incidence is
increasing in the past 10 years and this trend is especially pronounced in females [11]. Meningiomas
are incidentally found in 2.3% of performed autopsies. Meningiomas show great predominance in
women in most investigated ethnic groups, with a female to male ratio of approximately 2:1 for
intracranial and 10:1 for primary spinal meningiomas. The observed female predominance guides to
the hypothesis that sex hormones could also be a risk factor for meningioma development. Meningioma
frequently express estrogen and progesterone receptors from which half seem to be functional [12].
Since meningiomas exhibit steroid receptors on the cell surface, hormonal influences may explain
the sexually dimorphic characteristics of this disease [13,14]. In favour of this hypothesis are the
findings that meningiomas show increased growth during pregnancy or during hormone replacement
therapy [15]. Also, ter Wengel et al. [16] found three patients who developed a meningioma in
male-to-female transgenders. However, definite role of sex hormones as risk factors in the development
and biology of meningiomas still needs to be established [16]. Besides estrogen and progesterone
receptors, meningiomas express androgen receptors too, as well as nonsteroidal hormone receptors
including receptors for somatostatin and dopamine [14].

Cytogenetic studies gave further insight into chromosomal alterations in meningiomas. A study
by Tabernero et al. [17] analysed the characteristics of meningiomas in male and female patients by
interphase fluorescence in situ hybridization (iFISH) and found the existence of different patterns of
chromosome abnormalities and gene-expression profiles associated with patient gender. Male patients
had a significantly higher percentage of del(1p36), while loss of an X chromosome was significantly
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associated to meningiomas from female patients. The group also showed a higher frequency of
chromosome losses, other than monosomy 22, in meningiomas arising in male patients, while female
patients displayed a higher frequency of chromosome gains or monosomy 22 alone. Eight genes
displayed a significantly different expression pattern in male versus female patients and they were all
localized to the sex chromosomes: two in chromosome X (DDX3X, XIST); and six in chromosome Y
(RPS4Y1, DDX3Y, JARID1D, EIF1AY, USP9Y, and CYorf15B) [17].

The firmly established risk factor associated with development of meningiomas is primarily
ionizing radiation. This environmental risk factor is usually associated to radiotherapy for primary
intracranial tumours in childhood [18–20]. It has been shown that radiation-induced meningiomas are
highly proliferative and more commonly high grade. Surprisingly, radiation-induced meningiomas
rarely display NF2 alterations, both allelic losses and mutations in comparison to sporadic cases
which may indicate that NF2 plays a less important role in the pathogenesis of radiation-induced
meningiomas [18]. Besides, ionizing radiation, head trauma, hormone-replacement therapy and
advanced age are also the established risk factors [21]. The use of mobile phones does not seem to
be associated with the increased risk of meningioma development although there are controversial
reports [9,22].

Survival rates of meningioma patients differ according to assigned grade [10,20], the 5-year overall
survival is 92% for grade I, 78% for grade II and 47% (37.7% according to Champeauy et al. [23]) for
grade III meningioma. Benign meningiomas have recurrence rates of ~7%–25%; atypical 29%–52%
and anaplastic 50%–94% [5]. In the study by Perry et al. [24], tumour recurrence rates were 7%–20%
of benign (Grade I), 29%–40% of atypical (Grade II), 50%–78% of anaplastic (Grade III) meningiomas.
Age at diagnosis has a significant effect on relative survival: 10 years survival for ages 24–44 is 85.2%
and for patients older than 75 it is 29.1% [11]. The risk of meningioma recurrence depends on multiple
clinical and biological factors, histological grade, extent of surgical resection, tumour size, location,
patient age and gender, increased mitotic activity, as well as genetic characteristics of the tumour [25].
Espinosa et al. [26] analysed the cytogenetic relationship between primary and subsequent recurrent
meningiomas developed in the same individual and found that in most cases similar tumour cell
clones identified in the initial lesion were also detected in the subsequent recurrent tumour samples.
The authors concluded that the development of recurrent meningiomas after gross total tumour
resection is usually due to regrowth of the primary tumour and rarely to the emergence of an unrelated
meningioma. A prognostic signature for meningioma prognosis was reported by Chen et al. [27] who
analysed genome wide expression profiles of 119 meningioma samples from two previously published
DNA microarray studies [17,28] using the Cox proportional hazards regression models and found
37 genes to be specifically related to meningioma overall survival.

The current treatment and management options for meningioma patients include observation
and surgical resection. It is important to individualize treatments for each patient, but the majority
of patients are treated with surgery. Radiotherapy is reserved for some special circumstances or
as adjuvant therapy. Chemotherapy is rarely utilized, since effective chemotherapeutic agents for
meningioma are still in the investigation phase [2].

3. Genetics and Signalling Pathways

3.1. Chromosome Aberrations

Besides being histologically heterogeneous, meningiomas are also showing great cytogenetical
heterogeneity. Chromosome gains and losses have been found to occur frequently. The most common
alteration observed in meningiomas is monosomy of chromosome 22, observed in 40%–70% grade
I meningiomas (WHO, 2007). Other most common cytogenetic alterations in meningioma, besides
abnormalities in the 22q locus, are the deletion of the short arm of chromosome 1 (specific regions
1p33-34 and 1p36), loss of chromosomes 6, 10, 14, 18 and 19 [6,29,30] and gains of chromosomes 1q, 9q,
12q, 15q, 17q and 20q of which many are associated with tumour grade [21,31]. Besides 22q, losses of
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6q, 10 and 14q have been proposed as particularly important events in meningioma progression and
recurrence [4,6,32].

Sayagues et al. [33] applied multicolor iFISH analysis in a series of meningioma patients, using
specific probes for DNA sequences of 11 chromosomes in combination with flow cytometry in
order to explore the intratumoral cytogenetic heterogeneity of meningiomas. The group found that
benign tumours displayed different intratumoral clonal evolution pathways from atypical/anaplastic
meningiomas. Another study [1] proposed 3 major cytogenetic profiles: diploid, isolated monosomy
22 and complex iFISH karyotypes based on the cytogenetic characterization and unique protein
expression profiles.

3.2. Gene Mutations and Gene Expression Analysis

Meningiomas are a principal feature of neurofibromatosis type 2 (NF2), a rare autosomal dominant
disorder caused by germline mutation in the NF2 gene on 22q12.2. The first insight on genetic
susceptibility for meningioma came from studies of such rare genetic syndromes. The main genetic
event in this disorder is the biallelic inactivation of NF2 tumour suppressor gene and consequential
loss of expression of its protein product. Up to 75% of patients with neurofibromatosis type 2 develop
meningiomas during their lifetime [9]. The NF2 gene was identified in 1993 [34–36], and the protein
it codes was named Merlin, also known as moesin-, ezrin-, radixin-like protein, showing a great
sequence homology to members of the band 4.1 families of cytoskeleton-associated proteins [37–39].
Loss of merlin is a consistent finding in all NF2 associated meningiomas and meningiomas can be
considered as tumours evolved due to the loss of merlin, together with schwannomas, hamartomas
and ependymomas. Nevertheless, sporadic cases [22,37] exhibit similar genetic alterations in the 60%
of cases. Mutations of NF2 in sporadic meningiomas show relatively high frequency and usually lead
to a truncated protein [40]. Tabernero et al. found mutations which involved five different exons in
30% of sporadic meningiomas they investigated.

It has been shown that different WHO meningioma grades display similar frequency of NF2
inactivation which suggests that NF2 changes are early event in the etiology of this tumour. On the
other hand different histologies display different frequencies of NF2 mutations. The NF2 mutations are
frequently found in fibrous, transitional and psammomatous but also in atypical and anaplastic
meningiomas, whereas meningothelial, secretory and microcystic subtypes rarely harbour NF2
mutations. It has been shown that meningothelial meningiomas tend to express lower levels of
merlin loss than fibrous and other forms of meningiomas [41,42].

The definite list of gene alterations in meningiomas with unaffected NF2 gene remains unknown
and is under intensive investigations. The high through-put data in cancer is providing us with
information often referred to as genomic landscapes of cancer [28,43–45]. This term illustrates the
multitude of specific genetic events in these complex diseases [46]. So what is the genomic landscape
of meningioma? On the basis of recent whole genome-sequencing approaches [17,22,28,47–50], novel
candidates in benign meningiomas have been identified which include: TRAF7 (the receptor-associated
factor 7), KLF4 (Kruppel-like factor 4), AKT1 (v-akt murine thymoma viral oncogene homolog 1) and
SMO (Smoothened). TRAF7 located on chromosome 16p13 is encoding a proapoptotic E3 ubiquitin
ligase and the mutations of this gene occur in 24% of meningiomas.

The KLF4 gene located on chromosome 9q, is encoding 3 C2H2 zinc finger motifs and has been
shown to be mutated in 10% of meningiomas. A persistent mutation in codon 409 of KLF4 gene’s
exon 4 (K409Q) changing the wildtype lysine by a glutamine amino acid has been found to appear in
parallel with TRAF7 mutations. It has been shown that KLF4 mutations were exclusive for secretory
meningiomas so finding combined TRAF7/KLF4 mutation can serve in the diagnosis of secretory
meningioma subtype [9].

SMO is encoding a negative regulator of the Hedgehog pathway and the mutations were found in
3%–5% of grade I meningiomas. AKT1 is encoding a key effector of PI3K signalling and has been found
to be mutated in 10%–15% of meningiomas. AKT1 gene harbours an activating mutation (p.Glu17Lys)
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named AKT1E17K. A fraction of meningiomas (~13%), most frequently targeted with this mutation,
were WHO grade I meningothelial and transitional meningiomas. Tumours grade II rarely harboured
AKT1E17K mutation while it was absent in grades III [9].

A strong up-regulation of secreted frizzled-related protein 1 (SFRP1) expression was suggested
in all meningiomas with AKT1E17K mutation. Therefore the use of SFRP1 immunohistochemistry
may be a reliable marker for the detection of AKT1E17K mutations [51]. Abedalthagafi et al. [52]
found oncogenic PI3K mutations in meningioma and demonstrated that they are as common as AKT1
and SMO mutations. Of note is that the mutations found in the above-mentioned genes are mutually
exclusive of NF2 mutations.

Another gene thought to be involved early in meningioma pathogenesis and also being a member
of the 4.1 family, is DAL1 with its gene product protein 4.1B [4]. Martinez-Glez et al. [53] performed a
mutational study of DAL1 and found mutations in its exons 13 and 19, intron 18 and a polymorphism
in exon 14. In approximately 60% of investigated meningiomas its reduced protein expression was
found regardless of histological grade [9]. Lack of DAL1 protein was only slightly, and not significantly,
more frequent in anaplastic meningiomas than in benign and atypical meningiomas, suggesting that
it represents an early event in meningioma tumorigenesis. Combined loss of DAL1 and merlin was
detected in 58% of investigated cases, suggesting that they belong to different signalling pathways [18].

In addition other candidate genes include SMARCB1 (INI1) involved in chromatin remodelling.
The found germline missense mutation in SMARCB1’s exon 2 predisposes individuals to the
development of multiple meningiomas and schwannomas [20,22]. Since loss of chromosome
22 region is a common event in meningioma, the region represents interesting genetic territory
for search of additional candidate genes. Putative genes on chromosome 22q include LARGE
(Like-Glycosyltransferase), BAM22 (AP1B1, Adaptor-Related Protein Complex 1, Beta 1 Subunit,
also known as ADTB1 or beta-adaptin) and MN1 (Meningioma (Disrupted In Balanced Translocation)
1). LARGE encodes a member of the N-acetylglucosaminyltransferase gene family involved in the
synthesis of glycoprotein and glycosphingolipid sugar chains. Also localized in the meningioma critical
chromosomal region is BAM22. The gene codes for the subunit of clathrin-associated adaptor protein
complex 1 [54], a member of the adaptin protein family. The molecule plays a role in protein sorting in
the trans-Golgi network. BAM22 is part of the complexes that mediate both the recruitment of clathrin
to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane
receptors. MN1 gene located on 22q12.1 [55,56] was found to be disrupted in its first exon by balanced
translocation (4; 22) in a meningioma patient. Resent research [44,56] indicates that MN1 (a putative
meningioma tumour suppressor) was found to be differently expressed in malignant and benign
meningiomas. Chang et al. [44] assessed gene expression levels and copy number variants using
microarray platform and showed that MN1 was significantly repressed in all the malignant samples
analysed in their study. Zhang et al. [56] from exome sequencing data, identified two novel potential
driver mutations in MN1 which nominated MN1 as a candidate gene for malignant transformation
of meningiomas.

Other genes alterations associated with meningioma include the well-known TP53 gene. Although
mutations of the TP53 gene have been reported to be rare in meningiomas, low frequency of point
mutations is constantly found and reported [57–59]. In addition, relatively high incidences of somatic
mutations and enhanced expression in meningiomas have been reported for sis, myc, ras, fos, mos,
TP73, BCL-2 and STAT3 oncogenes [56].

Several genes have been associated with malignant progression in meningioma.
Tumour suppressor genes CDKN2A (encoding p16INK4a), ARF (encoding p14ARF), and CDKN2B
(encoding p15INK4b) residing on chromosome 9p21 are all associated with the anaplastic grade [30,38].
Homozygous deletions or mutations of the above mentioned genes are found in most anaplastic
meningiomas [4,9].

Another candidate engaged in meningioma progression is the TIMP3 (the tissue inhibitor of
metalloproteinase 3) gene on 22q12, because it has been shown that anaplastic meningiomas showed
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much higher hypermethylation of its promoter than atypical and benign cases [6]. The maternally
expressed gene 3 (MEG3) located in the 14q32 region has been implicated in meningioma progression,
too. Allelic losses, promoter hypermethylation and reduced expression of MEG3 gene have been
associated to aggressive meningioma phenotype. It has been reported that MEG3 has anti-proliferative
and anti-tumour activity in meningiomas. The gene encodes a non-coding RNA, whose expression
was reduced in aggressive meningiomas [6].

Lusis et al. [60] using DNA microarray techniques identified a new meningioma associated
candidate gene NDRG2 (N-myc downstream regulated gene 2) on chromosome 14q11.2. This tumour
suppressor is a Myc-repressed gene and is supposed to participate in cell growth, differentiation
and p53-mediated apoptosis [25]. NDRG2 was found to be commonly inactivated in meningioma
progression. It is down-regulated in anaplastic meningiomas and atypical meningiomas with
aggressive clinical behaviour. The reduced expression of NDRG2 was associated with promoter
hypermethylation [6]. Skiriute et al. [25] observed statistically significant differences in NDRG2
gene expression level between primary and recurrent meningioma groups and between benign
(WHO grade I) and atypical (WHO grade II) meningiomas measured at the mRNA level. Interestingly,
NDRG2 contributes to the regulation of the Wnt signalling pathway. It down-regulates
CTNNB1-mediated transcriptional activation of target genes, such as CCND1 and may thereby act as a
tumour suppressor [61,62].

Genetic and expression alterations found in meningioma are systematized in Table 1.

Table 1. Genetic and expression alterations reported in meningioma.

Affected Genes and
Their Locations MA or ES ** Expressional

Changes *
Meningioma

Grade Tumorigenesis Citations

PI3K/3q26 MA Ò Grade I Early event [52]
SMO/7q32.1 MA Ò Grade I Early event [17,22,28,47–50]
KLF4/9q31 MA ÓÒ Grade I Early event [17,22,28,47–50]

AKT1/14q32.33 MA Ò Grade I Early event [17,22,28,47–50]
TRAF7/16p13 MA unknown Grade I Early event [17,22,28,47–50]

DAL1/18p11.32 MA; ES Ó Grade I, II, III Early
event/Progression [4,6,9,18]

SMARCB1/22q11.23 MA Ó
Multiple

meningioma Early event [20,22]

NF2/22q12.2 MA; ES Ó Grade I, II, III Early event [9,22,34–37]
BAM22/22q12.2 MA Ó Grade I, II, III Early event [6,38,54]
CDKN2A/9p21 MA Ó Grade III Progression [4,6,9,30,38]

ARF/9p21 MA Ó Grade III Progression [4,6,9,30,38]
CDKN2B/9p21 MA Ó Grade III Progression [4,6,9,30,38]

NDRG2/14q11.2 MA; ES Ó Grade II, III Progression [6,25,60]
MEG3/14q32 MA; ES Ó Grade III Progression [6]
TP53/17p13.1 MA; ES ÓÒ Grade I, II, III Progression [57–59,63]
MN1/22q12.1 MA; ES ÒÓ Grade I, II, III Progression [38,44,55,56]

LARGE/22q12.3 MA Ó Grade I, II, III Progression [4,38]
TIMP3/22q12 MA; ES Ó Grade III Progression [6]

* Ó = downregulated; Ò = upregulated; ** MA = mutational anlysis; ES = expression studies.

3.3. Microsatellite Instability

The investigations into the mechanisms of the maintenance of genomic stability and integrity are
also relevant in meningioma research field. The usual incidence rate of spontaneous somatic mutations
is much lower to the rates of genetic changes observed in tumour cells and this increased frequency is
the result of genomic instability that characterizes tumour cells. To simplify, the genome of tumour
cells, besides the accumulation of somatic mutations is also affected by additional genomic instability.
A type of genomic instability which reflects impaired cellular mismatch repair is microsatellite
instability (MSI). MSI is associated with changes in the number of repetitive DNA sequences termed
microsatellites. Simple repeated sequences are genetically unstable, as judged by their polymorphic
nature in the human population [64]. Pećina-Šlaus et al. have found replication/repair machinery to be
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constantly targeted in the meningiomas they investigated in two different studies [65]. Microsatellite
markers specific for two different Wnt genes that were used (CDH1, AXIN1), revealed a fraction
of meningiomas with MSI. This is indicative of malfunctioning of replication/repair genes (hMLH1
or hMSH2, hPMS1, hPMS2), opening a potential area of interest in meningioma studies. D16S752
microsatellite tetranucleotide marker for E-cadherin gene (CDH1) revealed 11% of samples with MSI.
All MSI samples were reamplified and repeatedly analysed on both Spreadex and polyacrylamide
gels. The samples demonstrating MSI were confirmed by direct sequencing. One meningothelial,
one transitional and one anaplastic case harboured MSI [65].

There are other studies that show that certain proportions of meningiomas demonstrate features
of genomic instability. Pykett et al. [66] have reported that 25% of meningiomas exhibit MSI,
Sobrido et al. [67] have reported on 6.3% of meningiomas with MSI at 2 or 3 loci, which is similar to
the findings of Zhu et al. [68] of 2.4%. Bethke et al. [69] analysed single nucleotide polymorphisms
of the DNA repair genes in association to meningioma predisposition and found that some DNA
repair gene variants are connected to higher risk of meningioma development. The similar results on
DNA repair variants affecting the risk of meningioma are reported by Rajaraman et al. [70]. A study
by Chen et al. [71] investigated the roles of the methylation of hMLH1 and MSI in meningiomas and
found 4.66% of cases to exhibit MSI. Hypermethylation of a promoter of hMLH1 was found in 18% of
investigated meningiomas and associated to meningioma progression. In their paper Yang et al. [72]
showed that a tumour suppressor gene—CHEK2, involved in DNA repair and genome stability,
contributes to the genomic instability in meningiomas. Alternative splicing and frequent codeletion of
CHEK2 with NF2 in meningiomas harbouring chromosome 22q deletions impaired DNA repair in
their study and increased chromosomal instability, thus promoting meningioma progression.

3.4. Epigenetic Studies in Meningioma

New evidence suggests that altered epigenetic regulation which include: altered DNA
methylation, microRNA expression, histone and chromatin modifications, plays an important role in
the pathogenesis of meningiomas [21,73]. Of note, aberrant promoter hypermethylation of a variety of
genes has been identified as a frequent event in atypical and anaplastic meningiomas, suggesting that
epigenetic changes are substantially involved in meningioma progression [6]. The detailed description
of these findings is beyond the scope of this article.

3.5. Signalling Pathways

Understanding the genetic basis and molecular etiology of meningioma is essential for clinical
phenotype determination as well as patient outcome. The involvement of multiple pathways also
suggests that therapy could be targeted against specific signalling level [74].

Molecular pathways driving meningioma progression still need elucidation. Our knowledge on
specific genetic drivers of malignant transformation is also incomplete [75]. Novel findings [41,74,76,77]
suggest that activation of multiple growth factor receptors and their signalling pathways are
responsible for the growth of meningiomas.

One of the first gene expression profiling studies of meningiomas was performed by
Watson and co-workers [78] who identified gene transcripts differentially expressed between
normal leptomeningeal cells and meningiomas of different grades. Gene expression study by
Tabernero et al. [17] showed a relationship of expression profiles to the cytogenetic subgroups of
meningiomas and patient outcome. Domingues et al. [1] investigated the different protein expression
profiles by immunophenotyping of individual meningioma cells and also found association with
tumour cytogenetics.

Comparative tissue proteomic profiling of meningioma shed light on molecular basis of the
tumorigenesis using another approach. A study by Sharma et al. [77] investigated alterations in
tissue proteome in different grades of human meningiomas. Combining the results obtained from
two mass spectrometric platforms, the authors identified 2367 proteins that exhibited differential
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expression in meningiomas. Functional analysis of the identified differentially expressed proteins
confirmed the modulation of signal transduction pathways, including integrin signalling, Wnt
signalling, Ras signalling, FGF signalling, EGF growth signalling, apoptosis signalling and ubiquitin
proteasome signalling.

Merlin acts as a tumour suppressor and is capable of modulating a wide range of signalling
pathways [79–82]. It interacts with cell-surface proteins, proteins involved in cytoskeletal dynamics
and proteins involved in regulating ion transport. Merlin-lacking cells are also known to contain
defective adherens junctions [39]. It has been shown that merlin inhibits signalling and the activation
of downstream pathways, including the Ras/Raf/MEK, PI3K/AKT/mTOR, Rac/PAK/JNK and
Wnt/β-catenin pathways [82].

Already from the listing of genes involved in meningioma in the previous paragraphs, we can
assume which signalling pathways to suspect for meningioma development. Primarily involved is the
notorious Ras/Raf/MEK signalling pathway. It has been shown that receptor tyrosine kinases such as
epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFR) are
widely expressed in meningioma tumour cells. Equally important is the Pi3K/Akt/mTOR signalling
pathway [9,47,74]. Both pathways lie downstream of receptor tyrosine kinases. Hilton et al. [74] have
demonstrated the expression of phosphorylated Jnk and Mek, in addition to Erk, pS6RP and Akt, in the
majority of meningiomas of all grades. Besides EGFR and PDGFR, the kinases known to be involved are
Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2), insulin-like growth factor 1 receptor (IGF1R) and vascular
endothelial growth factor receptors (VEGFRs) [82]. Alterations in the RB retinoblastoma protein and
p53 pathways are presumed because of the dysregulation of p16INK4a, p15INK4b, and p14ARF.
The involvement of TGFbeta/SMAD as well as Hedgehog pathways is also noted as important [38].
Integrin mediated signalling via Rac/PAK/JNK [83,84] has proved to be particularly interesting too.
Studies linking the NF2 tumour suppressor as a modulator of growth factor and extracellular matrix
signals that trigger Rac1-dependent cytoskeleton-associated processes indicate its important role in the
processes of cell adhesion and migration.

Insulin-like growth factor (IGF) signalling cascade [85] has been shown to be involved too,
since both IGF-II and IGFBP2 are expressed in meningiomas, with increased concentrations of IGFII
associated with invasiveness and malignant progression [4]. Gene expression transcript profiling
study [86] revealed the deregulation of Notch pathway [73].

4. Wnt Signalling

Signalling pathways build complex molecular network within the cell and their accurate
functioning maintains cellular homeostasis. Signal transduction pathways which regulate cell survival,
proliferation and migration are also fundamental in tumorigenesis. Alongside other well-known
signalling pathways is Wnt signalling pathway, primarily studied in development which regulates
key intercellular signalling events during embryogenesis [87,88] and plays an important role in the
development of central nervous system. Components of Wnt signalling regulate multiple aspects
of brain development in vertebrate embryos. Wnt ligands have been identified as key regulators
of regional identity in the early developing of the forebrain [89]. They modulate axon pathfinding,
dendritic development and synaptic assembly [90]. Yu and Malenka [91] identified beta-catenin,
the Wnt pathway’s main effector signalling molecule, as a critical mediator of dendritic morphogenesis.
Specifically, overexpression of a stabilized beta-catenin in transgenic neural precursors causes massive
expansion of the cerebral cortex, while loss-of-function mutations in individual Wnts cause deletions
or malformations of distinct brain regions [92]. A study by Lang et al. [93] showed that adenomatous
polyposis coli (APC), yet another key component of Wnt signalling, enhances proliferation of
oligodendroglial progenitor cells (OPCs). It is known that lymphoid-enhancer factor 1 (LEF1) and
Tcf4 (Transcription Factor 4; T cell factor 4), pathway’s transcription factors, are required for proneural
and neuronal gene expression, for neuronal differentiation in the posterior hypothalamus [94] and
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for oligodendrocyte differentiation [95]. Huang et al. [96] reported that Wnt pathway co-receptors,
Lrp 5 and 6, are required for the development of the cerebellum.

The pathway has two distinct branches, the canonical (or beta-catenin) and non-canonical
(or planar cell polarity (PCP) and Wnt-Ca2+ pathways). Among two Wnt signalling cascades the
canonical is the longest known and the best studied one [97].

The pathway has two modes, active and inactive (Figure 2). When inactive, levels of beta-catenin
are downregulated and kept low. This is achieved by beta-catenin destruction complex where
beta-catenin is being phosphorylated by glycogen synthase kinase 3 beta (GSK3β) and casein kinase
1 (CK1). The phosphorylated beta-catenin is targeted for quick ubiquitinilation and degradation in
the proteosome. Beta-catenin cellular levels are regulated by capturing it in the destruction complex
where AXIN serves as a backbone. Besides AXIN, the complex is also composed of APC, GSK3β
and CK1 [88,98,99]. Once bound to this protein complex, beta-catenin is sequentially phosphorylated
on four relevant amino acids: serines 45, 37 and 33; and threonine at 41, ultimately resulting in the
targeting of beta-catenin for degradation [100,101].Cancers 2016, 8, 67    10 of 21 
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Figure 2. A schematic illustration of the canonical Wnt signal transduction cascade. Panel (A), in the
absence of Wnt ligand, a destruction complex consisting of AXIN, APC, GSK3-β and CK1 resides
in the cytosol. β-catenin is phosphorylated by CK1 and GSK3-β and targeted for degradation by
the proteosomal machinery; Panel (B), with Wnt stimulation, some components of protein complex
dislocate from the cytosol to the plasma membrane. The destruction complex falls apart and β-catenin
is stabilized. Dvl is also recruited to the membrane and binds to Fz and Axin which is bound to
phosphorylated LRP5/6. Stablized β-catenin is translocated to the nucleus where it associates to
LEF/TCF transcription factors, displacing co-repressor TLE and recruiting additional co-activators to
Wnt target genes. The activated Wnt pathway is associated to meningioma.

The pathway is active in response to Wnt ligands, highly conserved secreted signalling molecules.
In this mode beta-catenin cannot be degraded and it accumulates in the cytoplasm. Upon cytoplasmic
stabilization it enters the cell nucleus and since it is unable to bind to the DNA lacking necessary
domains it finds a partner among members of the DNA binding protein family LEF/TCF. Bound to
such transcription cofactors it impacts the expression of target genes including cyclin D1, c-myc, fra-1
and c-jun.
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The main characteristic of Wnt signalling activation is the rise of beta-catenin cytosolic levels.
This is achieved with the help of Dishevelled proteins that bind AXIN, pulling it out of the destruction
complex and taking it to the cell membrane. There, DVL will form large molecular supercomplexes
consisting of Wnt-Fz-LRP5/6-DVL-AXIN. When AXIN is no longer part of beta-catenin destruction
complex, the complex is destroyed and beta-catenin can no longer be degraded.

Mutations that enable constitutive activation of the Wnt pathway can be responsible for malignant
transformation of a cell. For example, mutations in the beta-catenin gene have been reported in a
variety of human tumours. Most mutations found in different types of tumours are located in exon 3,
the so called mutational hot spot. Exon 3 codes for the part of beta-catenin where the serine/threonine
residues, important for phosphorylation, are situated. Therefore, if this region is mutated, beta-catenin
can no longer be degraded; it stabilizes firstly in the cytoplasm, then is transferred to the nucleus.
It is interesting to note that in the absence of beta-catenin TCF binds to the repressor of the pathway,
Groucho, in vertebrates transducin-like enhancer of split (TLE); and acts as a co-repressor of Wnt
target genes [87]. As already mentioned earlier, the malfunctioning of the pathway has repeatedly
been implicated in a number of human tumours.

5. Key Wnt Signalling Molecules Involved in Meningioma

A number of novel studies indicate that one of the important signalling pathways targeted in
meningioma is the Wnt pathway [6,28,73,77]. Watson and co-workers [78] identified gene transcripts
differentially expressed between nonmalignant leptomeningeal cells and meningiomas and found
that Frizzled (Wnt receptor) had 3.7 times fold increased levels in meningioma. The survey by
Wrobel et al. [102] observed that anaplastic meningiomas could be distinguished from benign by
differential expression of a distinct set of genes and suggested that their behaviour could be governed
by different genetic profiles. The authors found four genes linked to the Wnt signalling: beta-catenin
(CTNNB1), the regulatory subunit of cyclin-dependent kinase 5 (CDK5R1), ectodermal-neural cortex 1
(ENC1) and cyclin D1 (CCND1), with the increased expression in meningiomas examined by
microarray. CCND1 and ENC1 were also upregulated in anaplastic meningiomas as compared
to benign cases in their study.

A study by Domingues et al. [1] analysed the different protein expression profiles in meningioma
and proposed 3 major cytogenetic profiles: diploid, isolated monosomy 22 and complex iFISH
karyotypes. The intranuclear role of CTNNB1 as transcription cofactor was connected to IGF2 and
part of complex karyotype tumours in their study.

It has been shown that Secreted Frizzled-Related Protein 1 (SFRP1), a member of a family of soluble
proteins known for their ability to inhibit the Wnt signalling pathway plays a role in meningioma
recurrence [73,103]. The validation of the microarray expression data for SFRP1 confirmed significantly
lower mRNA levels in recurrences than in original meningiomas (p < 0.05) [103]. However, SFRPs
can also be upregulated in other tumours. It has previously been shown that astrocytomas [104]
have decreased SFRP3 expression in the nucleus, finding that positively correlates with increasing
astrocytoma grade; whereas in the cytoplasm the increase in SFRP3 protein expression was associated
with higher grade astrocytomas. It seems that SFRP3 can act both as an antagonist and agonist of the
Wnt signalling depending on the cellular context. Therefore further studies are needed to elucidate the
role of SFPR1 in meningioma.

Ludwig et al. [105] identified 13 miRNAs deregulated between different subtypes of benign
meningiomas and 52 miRNAs deregulated in anaplastic meningioma when compared with benign
meningiomas. Known and putative target genes of deregulated miRNAs found in their study include
genes involved in Wnt signalling and in epithelial-to-mesenchymal transition for benign meningiomas.
Papers by Chang et al. [44] and He et al. [73] report results of gene expression levels and copy number
variants in benign, atypical and malignant meningiomas. Many Wnt signalling components have
been found as targets in this study, for instance, TCF3, SFRP3, SFRP1, CDH1, FZD7 (Frizzled Class
Receptor 7).
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Sharma et al. [77] in their tissue proteome study of meningioma found Wnt signalling cascade as
one of the significantly modulated pathways. Frizzleds, Casein Kinase 1 Alpha 1 (CSNK1A1), also
known as CK1 and SFRPs were all upregulated, while serine/threonine protein phosphatase B (PP2A)
was downregulated.

Pecina-Slaus et al. investigated the involvement of Wnt signalling pathway in meningioma by
analysing its key signalling molecules, APC, beta-catenin, E-cadherin and AXIN1. They showed [106]
significant association between APC genetic changes and lack of wild type protein expression,
or presence of mutant APC proteins in meningiomas indicating involvement of this tumour suppressor
gene. Thirty-three meningiomas were analysed regarding genetic changes of this tumour suppressor
gene. Two genetic markers, Rsa I in APC’s exon 11 and Msp I in its exon 15 were used to test
genetic changes using the polymerase chain reaction/loss of heterozygosity (LOH) and RFLP method.
Gross deletions of the APC gene were found in 47% of investigated meningiomas. The observed genetic
changes of the APC gene were dispersed among different types of benign meningioma, indicating
that APC is not likely to be the first event in the advancement of this tumour. Meningiomas that were
harboring LOHs were also accompanied with the absence of APC protein expression or presence of
mutant APC proteins (Chi square = 13.81, df = 2, p < 0.001).

APC changes also influenced beta-catenin expression and nuclear localization. Beta-catenin was
upregulated and transferred to the nucleus in 71.2% of meningiomas and its nuclear localization
correlated to gross deletions of APC gene (Chi square = 21,96, df = 2, p < 0.0001). This high frequency
of nuclear transfer is indicative of beta-catenin’s importance in the biology of meningioma.

Together with APC in the β-catenin destruction complex is a scaffold protein AXIN1, functioning
as a tumour suppressor in cancer. AXIN1, 16p13.3, 96 kDa, is an inhibitor of Wnt signalling.
It down-regulates beta-catenin by facilitating its phosphorylation by GSK3-beta. It binds directly
to APC, beta-catenin, GSK3-beta and Dishevelled [107,108]. There is emerging evidence suggesting
that AXIN plays critical roles in the regulation of synaptic functions, formation of synaptic protein
complexes and anchoring postsynaptic proteins in the central nervous system. LOH of AXIN1 gene
was found in 21.1% of meningiomas. The majority of investigated samples showed moderate or strong
(78.2%) levels of expression for AXIN1. Nevertheless, seven out of 32 samples (21.9%) demonstrated
negative or very weak AXIN1 expression levels with exclusive cytoplasmic localization when compared
to the levels of AXIN1 in healthy brain tissues. Strong statistical correlations were observed between
cytoplasmic localization of AXIN1 and its weak expression; and also between the simultaneous
cytoplasmic and nuclear localizations; and moderate and strong expression levels (p < 0.000) [109].

E-cadherin (gene CDH1 at 16q22.1, encodes a 120-kDa glycoprotein) is considered an indirect
modulator of Wnt signalling. Bound to beta-catenin, it is localized on the surfaces of cells in regions
of cell-cell contacts known as adherens junctions, while its intracellular domain interacts with the
actin cytoskeleton. The downregulation, or loss of E-cadherin expression is considered responsible
for dysfunction in cell-cell adhesion. We assume that the disruption of bound beta-catenin can rise
cytoplasmic levels of this molecule and thus indirectly modulate the activation of Wnt signalling.

The results of analysis on E-cadherin in meningiomas showed downregulation or loss of its protein
expression in 73% of the total meningioma samples investigated [65]. Downregulation observed in
meningioma subtypes was in 50% of meningothelial, 80% of fibrous, 80% of transitional, 90% of
angiomatous, 80% of atypical and in 80% of anaplastic. Gross deletions of the CDH1 gene were also
detected in 32% of investigated meningiomas. Altogether nine samples with LOH of the CDH1 gene
out of 28 heterozygous patients were observed with the gross deletions distributed as follows: 2 in
11 informative meningothelial meningiomas; 4 in 6 informative fibrous; 3 in 4 informative angiomatous.
Next, significant association between the genetic changes of CDH1 and the nuclear localization of
beta-catenin protein was found (Chi square = 5.25, df = 1. p < 0.022).

The results on E-cadherin in meningioma by other authors show similar patterns of expression.
Schwechheimer et al. [110] found that E-cadherin’s expression was absent from the majority of
malignant meningiomas they examined and Utsuki et al. [111] also reported on negative E-cadherin
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immunostaining of their meningioma sample. Brunner et al. [112] believe that it is unlikely that loss
of NF2 expression is associated with loss of the proper localization of beta-catenin and E-cadherin
in meningiomas. Saydam et al. [113] evidenced that miR-200a has a role in meningioma growth via
E-cadherin and Wnt/beta-catenin signalling pathway. Downregulated miR-200a in meningiomas
promoted tumour growth by reducing E-cadherin and activating the Wnt pathway. A direct correlation
between the downregulation of MiR-200a and the upregulation of beta-catenin was demonstrated in
this study.

Recently a concomitant expression of beta-catenin and p53 was investigated [63]. The involvement
of two signalling pathways in meningioma was questioned and analysed by their main effector
molecules; beta-catenin for Wnt signalling and p53 for p53 signalling. An interconnection between the
Wnt and p53 pathways in cancer has previously been suggested [114]. Our analyses showed that 47.5%
of the total sample demonstrated loss of expression of p53 protein while beta-catenin was upregulated
in 71.2% of meningiomas. The levels of the two proteins were significantly strong, negatively correlated
in the analysed meningiomas (p = 0.002). This indicates that meningiomas with lost p53 upregulate
beta-catenin and activate Wnt signalling. Similarly, Sadot et al. [115] demonstrated the dose-dependent
reciprocal relationship between beta-catenin and p53 expression in the H1299 cells. The summary
of the molecular findings of the differentially expressed genes of Wnt signalling pathway found in
meningiomas is shown in the following Table 2.
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Table 2. Differentially expressed genes of Wnt signalling pathway found in meningiomas.

Gene Locus Product Function Deregulation Meningioma Effect Citation

FZD2 17q21.1 Frizzled class receptor 2 receptor for Wnt signaling proteins upregulation tumorigenesis [78]

FZD7 2q33 Frizzled class receptor 7 receptor for Wnt signaling proteins upregulation [44,73]

CSNK1A1 5q32 Casein kinase 1, alpha 1 transferring phosphorus-containing
groups protein tyrosine kinase activity upregulation tumorigenesis [77]

APC 5q22.2 Adenomatous polyposis coli negative regulator of Wnt signaling
tumor suppressor loss of heterozygosity tumorigenesis [106]

AXIN1 16q13.3 Axin1 negative regulator of Wnt signaling
tumor suppressor

gross deletions,
downregulation, MSI cell growth and tumor progression [107,108]

CTNNB1 3p22.1 β-catenin
key downstream component of the
canonical Wnt signaling
transcription cofactor

upregulation
cell growth and tumor progression
associated to complex
karyotype meningiomas

[1,63,73,102,114,115]

PPP2CA 4q24 Serine/threonine protein
phosphatase 2B

negative control of cell growth
and division downregulation tumorigenesis [77]

TCF3 19p13.3 Transcription factor 3 (T cell factor 3) transcription factor upregulation tumorigenesis [44,73]

CCND1 11q13.3 Cyclin D1 regulator (progression through) of
cell cycle upregulation cell growth and tumor progression [28,102]

ENC1 5q13.3 Ectodermal-neural cortex 1 role in the oxidative stress response a
role in malignant transformation upregulation cell growth and tumor progression [102]

FRZB (SFRP3) 2q32.1 Secreted frizzled-related protein 3 modulator of Wnt signaling upregulation tumorigenesis [44]

SFRP1 8p11.21 Secreted frizzled-related protein 1 tumor suppressor downregulation, recurrence
[28,41,44,73,102,103]

upregulation when AKT1E17K mutation is present

CDH1 16q22.1 E-cadherin regulator of cell-cell adhesions Downregulation loss of
function, gross deletion, MSI cell growth and tumor progression [65,73,78,110–113]

NDRG2 14q11.2 N-myc downstream regulator 2 transcription factor tumor suppressor Downregulation, promoter
hyperventilation cell growth and tumor progression [6,25,61,62]

CDK5R1 17q11.2 Cyclin-dependent kinase 5,
regulatory subunit 1

G1/S transition of mitotic cell cycle,
development of the central
nervous system

upregulation cell growth and tumor progression [73,102]
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6. Epithelial-to-Mesenchymal Transduction

Wnt signalling is strongly involved in epithelial-to-mesenchymal transition. This process
is essential for embryogenesis where EMT enables controlled and precise movement of cells in
gastrulation and neural crest formation. Cells that are till then closely held together acquire
fibroblast resemblance and start to move individually. When cells gain such migratory mesenchymal
phenotype they become plastic and able to perform conversions between epithelial-to-mesenchymal
and mesenchymal-to-epithelial transitions (MET). In embryonic development cells undergo many
rounds of EMT and MET.

Similar to embryonic development EMT takes place during tumour progression and metastasis.
Here loss of tissue integrity leads to local invasion where previously noninvasive tumour cells acquire
motility, leave the tissue parenchyma, enter the systemic circulations and ultimately disseminate to
distant organs. The reverse process of MET enables the migratory cells to acquire epithelial phenotype
once they reach their destination in order to form metastasis.

Although extremely uncommon it has been reported that meningiomas can metastasize.
Metastatic dissemination of malignant meningiomas can be intra-cranial or to distant organs. Similar
to other malignant neoplasms, malignant meningiomas can also infiltrate neighbouring tissues and
form metastatic deposits [4]. It has been reported that extracranial meningiomas (0.1% of cases) can
metastasize to lungs, liver, pleura, bone and kidney locations. The lung is the most frequently involved
site. Brain invasion and intra-cranial dissemination can also occur and could be explained by molecular
mechanisms of EMT. Although metastatic spread of meningioma is more likely to occur in WHO
grades II and III, grade I lesions can also metastasize [4].

The molecular mechanisms driving meningioma invasion are still not well understood. It is
hypothesised that the events of EMT may play role in it. Meningiomas display both mesenchymal
and epithelial characteristics [116]. The meninges at the skull base are derived from the mesoderm,
and the telencephalic meninges are derived from the neural crest [9]. One of the known functions of
arachnoidal cap cells is the production of collagen and fibroblast-like ECM proteins. Kida et al. [117]
have shown the presence of tight junctions in arachnoid cells lining the arachnoid granulations.
The expression of E-cadherin in the arachnoid membrane, arachnoid granulations and meningioma
has been confirmed by IHC [3]. The most prominent feature of EMT is the loss of expression of
the cell-cell adhesion molecule E-cadherin and it has been observed in many carcinomas [118]. It is
known that E-cadherin can be inactivated through many different mechanisms including deletions and
mutation, transcriptional repression as well as its promoter hypermethylation. The mechanism that
keeps adherens junctons strength is the amount of cadherin molecules present at the cell membrane.

The phenomenon that happens in EMT during normal development, the so called cadherin
switch, has been known to happen in meningiomas too. In this phenomenon, E-cadherin is replaced
by N-cadherin and in tumours it is regarded as a sign of invasive behaviour. Therefore E-cadherin is
considered as an invasion suppressor gene. Another important molecular event involved in EMT is
beta-catenin’s translocation to the nucleus [119–121]. The stabilization and nuclear accumulation of
beta-catenin can induce EMT because it can enhance the expression of two transcriptional repressors
SNAIL1 and SNAIL2 (also known as SLUG). It has been demonstrated that SNAIL1 and SNAIL2 can
bind to E-cadherin promoter region and repress its expression, thus weakening adherens junctions
and inducing EMT [122–124]. As discussed in the previous paragraphs beta-catenin was progressively
upregulated and transferred to the nucleus in our study on meningiomas.

The migratory mesenchymal cells when having reached their target destinations have the
genetic potential to revert to their original epithelial phenotype through a process known as MET.
The incitement of the mechanisms of MET in invasive or metastasing cells is a tempting idea for the
therapeutic approaches in cancer, including aggressive meningioma.



Cancers 2016, 8, 67 16 of 22

7. Conclusions and Future Perspectives

The identification of molecular markers of meningioma recurrence is essential for clinical
phenotype determination as well as patient outcome.

The synthesis of knowledge on genetics, cellular signalling pathways, histopathological
phenotypes and clinical parameters will lead to the classification of individual patient’s tumour
according to signature alterations, with a final goal of subsequent development of novel and successful
treatment options in the dawn of personalized and precision medicine. The observed pathways
involved in meningioma etiology will provide opportunities to improve prognostic markers for
meningioma and predict clinical behaviour, recurrence and response to therapy.

New research indicates that alongside other well-known signalling pathways also stands the Wnt
pathway with important roles in meningioma formation and progression.
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97. Kafka, A.; Bašić-Kinda, S.; Pećina-Šlaus, N. The cellular story of dishevelleds. Croat. Med. J. 2014, 55, 459–467.
[CrossRef] [PubMed]

98. Hart, M.J.; de los Santos, R.; Albert, I.N.; Rubinfeld, B.; Polakis, P. Downregulation of β-catenin by human
Axin and its association with the APC tumor suppressor, β-catenin and GSK-3β. Curr. Biol. 1998, 8, 573–581.
[CrossRef]

99. Cliffe, A.; Hamada, F.; Bienz, M. A role of Dishevelled in relocating Axin to the plasma membrane during
wingless signaling. Curr. Biol. 2003, 13, 960–966. [CrossRef]

100. Polakis, P. Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol. 2012. [CrossRef] [PubMed]
101. Fagotto, F. Looking beyond the Wnt pathway for the deep nature of β-catenin. EMBO Rep. 2013, 14, 422–433.

[CrossRef] [PubMed]
102. Wrobel, G.; Roerig, P.; Kokocinski, F.; Neben, K.; Hahn, M.; Reifenberger, G.; Lichter, P. Microarray-based

gene expression profiling of benign, atypical and anaplastic meningiomas identified novel genes associated
with meningioma progression. Int. J. Cancer 2005, 114, 249–256. [CrossRef] [PubMed]

103. Pérez-Magán, E.; Rodríguez de Lope, A.; Ribalta, T.; Ruano, Y.; Campos-Martín, Y.; Pérez-Bautista, G.;
García, J.F.; García-Claver, A.; Fiaño, C.; Hernández-Moneo, J.-L.; et al. Differential expression profiling
analyses identifies downregulation of 1p, 6q, and 14q genes and overexpression of 6p histone cluster 1 genes
as markers of recurrence in meningiomas. Neuro-Oncology 2010, 12, 1278–1290. [CrossRef] [PubMed]

104. Pećina-Šlaus, N.; Kafka, A.; Varošanec, A.M.; Marković, L.; Krsnik, Ž.; Njiric, N.; Mrak, G. Expression
patterns of Wnt signaling component sFRP3 in astrocytoma and glioblastoma. Mol. Med. Rep. 2016, 13,
4245–4251. [CrossRef] [PubMed]

105. Ludwig, N.; Kim, Y.J.; Mueller, S.C.; Backes, C.; Werner, T.V.; Galata, V.; Sartorius, E.; Bohle, R.M.; Keller, A.;
Meese, E. Posttranscriptional deregulation of signaling pathways in meningioma subtypes by differential
expression of miRNAs. Neuro-Oncology 2015, 17, 1250–1260. [CrossRef] [PubMed]
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