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Running head: Hormone therapy and Alzheimer’s disease 

Abstract 

Hormone therapy (HT) is prescribed during or after menopausal transition to replace the decline in 

estrogen and progesterone levels. While some studies indicate that estrogen and progesterone 

depletion in postmenopausal women might carry a significant risk for developing sporadic Alzheimer’s 

disease (sAD), which may be reduced by HT, recent clinical trials oppose this beneficial effect. This 

review points to possible reasons for these mixed data by considering the issues of both preclinical 

and clinical trials, in particular the representativeness of animal models, timing of HT initiation, type of 

HT (different types of estrogen compound, estrogen monotherapy versus estrogen- progesterone 

combined therapy), mode of drug delivery (subcutaneous, transdermal, oral or intramuscular) and 

hormone dosage used, as well as the heterogeneity of the postmenopausal population in clinical trials 

(particularly considering their sAD stage, anti-AD therapy and hysterectomy status). Careful planning 

of future preclinical and clinical HT interventional studies might help to elucidate the effect of HT on 

cognitive status in postmenopausal women with sAD, which will eventually contribute to more effective 

sAD prevention and treatment. 

 

Key points:  

• The influence of hormone therapy  (HT) on cognition in postmenopausal women with Alzheimer’s 

disease (AD)  is inconclusive mainly due to a translational gap based on inadequate animal models, 

clinical inter-/intra-group heterogeneity and often incomparable HT study design. 

• Cognitive outcomes in clinical trials are mostly influenced by HT composition, its dose, timing and 

route of administration, as well as by ApoE carrier status, co-morbidity and concomitant therapy. 

•Design of estrogen/progesterone modulators that would optimize cognitive benefits and tailored 

HT may lead to more successful prevention and treatment of AD in postmenopausal women. 

 

1 Introduction 
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Hormone therapy (HT) is prescribed during or after menopausal transition to replace the decline in 

estrogen and progesterone levels to help women deal with menopausal symptoms. The post-

menopausal period represents a distinctly different state of sex hormone homeostasis in which the 

main circulating estrogen is estrone. Estrone is less potent than 17β-estradiol (“estradiol” in further 

text) and due to insufficient estrogen activity such a condition consequently leads to manifestation of 

menopausal symptoms like flushing, mood disorders, osteoporosis, etc. [1], and is accompanied by a 

decrement in progesterone concentration [2-5]. This hormonal change has shown potential to 

additionally modulate neural processes and pathology linked to sporadic Alzheimer’s disease (sAD) [2-

5]. Some studies have shown that estrogen and progesterone depletion in postmenopausal women is 

a significant risk factor for development of sAD and that estrogen-based HT may reduce this risk [3, 6-

10]; however, more recent data argue against this beneficial effect [11-13].  

Considering the data from the basic research and epidemiological trials one could hypothesize that HT 

has a beneficial effect on cognition [3, 6-10,14] but a large, long-term double-blind randomized clinical 

trial known as the “Women’s Health Initiative Memory Study” (WHIMS) showed that in cognitively 

unimpaired women HT can increase the risk of cognitive decline [11, 12, 15,16]. Recently, a new 

clinical trial has emerged, “Kronos Early Estrogen Prevention Study” (KEEPS), whose sub-study 

“Cognitive and Affective Study” (KEEPS-Cog) reported that there is no beneficial effect of HT on 

cognition [13]. The reasons for such inconsistency in results are not clear and the question of whether 

HT has a beneficial or detrimental effect on cognition is still open. 

Bearing in mind the importance of both preclinical and clinical trials in testing the therapeutic strategy 

for any disease, this review aims to analyse why there is such inconsistency between the data from 

preclinical and clinical studies on cognitive outcome of HT in sAD women. The review discusses the 

issues of representativeness of animal models, as well as adequate timing of HT initiation, type of drug 

treatment (type of estrogen compound, treatment with estrogen alone or in combination with 

progesterone), mode of drug delivery (subcutaneous, transdermal, oral or intramuscular) and hormone 

dosage used both in animals and humans.  

2 Search methodology 

Data from preclinical and clinical trials were collected by searching the PubMed/MEDLINE database 

from 1997 to August 2016 using the terms: estrogen, Alzheimer’s disease and cognition. Data on 

basic research covering the mechanism of estrogen and progesterone action were collected from both 

original scientific papers and reviews by using the terms: ‘estrogen’, ‘progesterone’, ‘receptor’, 

‘mechanism of action’, and ‘brain’. Only articles published in English were considered 

Clinical data had to fulfil the following criteria: (i) double-blind, randomized controlled clinical trials 

investigating the effect of ≥2months of HT on cognitive function in postmenopausal women with AD 

(N=9 studies), (ii) ≥2.5 year randomized control trials investigating the effect of HT on cognition in 

cognitively unimpaired women (N=4 studies), and (iii) meta-analysis of HT therapy in perimenopausal 

and postmenopausal women (N=4 articles). The reviews from the reference list of meta-analysis 

studies were used as an additional source of data. 
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The preclinical data search included in vivo experiments on middle-aged and aged female animals that 

were modelled to mimic human menopause and AD-like cognitive decline, and cognitively tested after 

a sex hormone treatment. Only experiments done in the line with Animal Research: Reporting of In 

Vivo Experiments (ARRIVE) guidelines were included.  

3 Estrogen and progesterone mode of action and their effects on cognition 

3.1 Genomic effects 

Progesterone and estrogens act through the classic genomic mechanism, which includes activation of 

respective nuclear receptors highly expressed in brain areas associated with cognition and emotional 

processing such as amygdale and the limbic system [17, 18]. There are two major isoforms of 

estrogen and progesterone nuclear receptors: estrogen receptor-α and -β (ERα, ERβ), and 

progesterone receptor A and B (PR-A, PR-B) [19, 20].  

Estrogen binds with similar affinity to the ERα (Kd = 0.04 nM) and ERβ (Kd 0.11 nM), demonstrating 

similar potency (ED50 for ERα and ERβ is 0.017 nM and 0.068 nM, respectively) [21]. Activated 

ERα/β can either bind directly to their target DNA sequences in the nucleus or interact with other 

nuclear proteins to alter gene activation, and this genomic action occurs slowly (hours–days) [19].  

Basic research has showed that administration of ligands specific for ERβ, but not for ERα, has 

enhancing effects on hippocampal learning and memory processes similar to that of estrogen [22]. 

These effects are attenuated when ERβ expression is knocked down in transgenic models [16]. In line 

with that Zhao et al showed that oral treatment with a phyto-selective estrogen receptor modulator 

(phyto-β-SERM), which shows 83-fold higher binding selectivity towards ERβ over ERα, increases 

gene expression of apolipoprotein E (ApoE) and decreases expression of amyloid precursor protein 

(APP) and glycogen synthase kinase-3beta (GSK-3β) in comparison to soya extract diet (having both 

ERα/β acting phytoestrogens) [23]. The same experiment demonstrated increased expression of the 

insulin degrading enzyme (IDE) gene in both phyto-β-SERM- and soya extract-treated groups in 

comparison with ovariectomized (OVX) controls [23].  

On the other hand, ERα-knocked down mice exhibit impaired spatial memory, which has been 

improved by treatment with estradiol while ERβ-knock down mice have preserved cognition and 

estradiol treatment does not affect their memory [24, 25]. Additionally, activation of ERα is connected 

to amelioration of amyloid beta (Aβ)-induced glutamate excitotoxic injury [26]. These data suggest that 

it is likely that both ERβ/α contribute to neuroprotection against age- and AD-related changes but 

possibly through activation of transcription of different genes.  

Estrogen is also found to increase gene expression of nerve growth factor (NGF) and brain derived 

neurotrophic factor (BDNF), as well as of choline acetyltransferase (ChAT) in cholinergic neurons and 

to increase N-methyl-D-aspartate (NMDA) binding sites, all of which are connected to cognition [27-

30]. Experiments performed in cell culture and in samples of female rat brains have shown that 

estrogen protects neurons from Aβ peptide-induced toxicity by increasing the expression of Aβ 
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clearance factors including IDE, neprilysin, endothelin-converting enzyme 1 and 2, angiotensin-

converting enzyme, and transthyretin (31). Although progestogens (progesterone and progestins) bind 

with relatively high affinity to the PR A/B, they do not bind to the ER, and their affinities differ towards 

the androgen (AR), glucocorticoid (GR), and mineralocorticoid (MR) receptors [32].Regarding the 

neuroprotective effect of progestogens, progesterone increases the gene expression of BDNF and 

anti-apoptotic Bcl-2 protein. However, the most widely used progestin in HT, medroxyprogesterone 

acetate (MPA), has no basal effect on Bcl-2 gene expression and inhibits the one elicited by estrogen 

[33]. Additionally, progesterone reduces the expression of pro-inflammatory genes and lipid 

peroxidation, which result in reduction of cell death [34].   

3.2 Non-genomic effects 

In addition to regulation of gene transcription, progesterone and estrogens can also elicit their effects 

through rapid non-genomic mechanisms, which include the activation of non-classic membrane-bound 

receptors found mostly in the hippocampus, hypothalamus, cortex and substantia nigra [35, 36]. This 

non-genomic effect can be accomplished also through ERα/β via its interaction with metabotropic 

receptors [19]. The estrogen membrane receptor was defined as a G-protein-coupled estrogen 

receptor (GPR30 or GPER1) and the progesterone receptor as a unique G-protein-coupled receptor 

that acts through cyclic adenosine monophosphate (cAMP) (7TMPR) [18, 37]. Downstream of these 

non-genomic transduction pathways, both sex hormones can activate multiple signalling pathways, 

including cAMP/protein kinase A  (PKA), mammalian target of rapamycin (mTOR), mitogen-activated 

protein kinase/extracellular signal-regulated kinases (MAPK/ERK) and protein kinase B (Akt/PKB), that 

are involved in synaptic plasticity and neuroprotection [38, 39]. As this is a new field of research, a 

recent finding that estradiol-elicited mTOR activation in the hippocampus was blocked by a very 

specific antagonist of GRP-30 and not by the antagonists of classical ERα/β, puts a totally different 

light on this type of receptor in the context of cognition [39]. 

In neurons, progesterone is converted to allopregnanolone, a neurosteroid that binds to the discrete 

site in the hydrophobic domain of the gamma-aminobutyric acid A (GABA-A) receptor, resulting in the 

potentiation of GABA-induced chloride conductance [40]. Additionally, GABA-induced chloride 

conductance can also result from activation of the signal transduction pathway, which consequently 

phosphorylates certain subunits of the GABA-A receptor [40]. As GABA can impair memory by 

inhibiting the induction phase of long-term potentiation (LTP) [41], allopregnanolone could have a 

negative influence on the learning process [42, 43]. On the other hand, GABA has a positive effect on 

cell survival in models of excitotoxicity [44].  

Another neurotransmitter involved in the process of learning is glutamate. Progesterone has been 

shown to suppress the excitatory glutamate response (in a dose-dependent manner) protecting the 

neurons from glutamate excitotoxicity, while estrogen has the opposite effect by facilitating glutamate 

transmission [45]. Therefore, the interaction between sex hormones and classic neurotransmitters is a 

complex one in which estrogen and progesterone can have protective as well as toxic effects. 
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In summary, the literature suggests that estrogen and progesterone may affect cognition at two levels 

(which cannot be strictly separated); fast ER/PR-independent (learning, acute response to injury) and 

slow ER/PR-dependent actions (neurogenesis, memory storage) in the brain areas connected to 

cognition. 

4 Problems related to preclinical HT testing 

4.1 Selection of the representative model 

4.1.1 Modelling of human menopause 

Before starting preclinical drug testing it has to be assured that an appropriate animal model will be 

used, resembling as much as possible the condition intended for treatment. Considering the HT effects 

on cognition, it would be important to first test the effects of sex hormone treatment in middle-aged or 

aged female animals, a model that more closely mimics the condition of hormone treatment during a 

physiological human menopause. Preclinical studies exploring this issue to date were typically 

performed on younger (3 month old) animals.  

Additionally, all animal HT preventive studies have been generally done in a condition of surgically 

induced menopause (ovariectomized model) (Table 1). This is not in line with the physiological human 

menopausal condition since natural depletion of sex hormones in women is more gradual and not as 

abrupt as in the ovariectomized animal model which, therefore, might be representative only for 

surgically-induced menopause in women.  

Our literature search revealed only one animal model with gradual sex hormone depletion, a 4-

vinylcyclohexene diepoxide rodent model of ovarian follicle depletion (VCD model) [46].  When this 

model was used to test the effect of conjugated equine estrogen (CEE), the most common HT in 

menopaused women, no beneficial effect was found regarding cognition [46] (Table 1). However, 

when CEE was tested on ovariectomized model, it had a protective effect on cognition [47] (Table 1), 

emphasizing the importance of mode of animal menopause induction in HT testing.  

The remaining preclinical research has been done on ovariectomized females treated with 17β-

estradiol with results showing the beneficial effect of estrogen on cognition (Table 1) [48-50]. Meta-

analyses of HT effect on cognition revealed that time-limited positive estrogen treatment effect was 

seen in women who had recently undergone surgical menopause [51]. Therefore, existing preclinical 

and clinical research agrees that estrogen treatment (17β-estradiol, CEE) has a beneficial effect in 

surgically-induced menopause. But to get to the bottom of the problem regarding HT and cognition in 

naturally menopaused women, experimental models that better mimic the gradual depletion of sex 

hormones should be used (e.g. VCD or non-human primate model) in order to improve data translation 

to humans.   

4.1.2 Modelling of Alzheimer’s disease 
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The modelling issue does not refer only to the modelling of hormonal depletion but also to the model 

of sAD used to test the beneficial effects of estrogen/progesterone therapy. There are just a few 

preclinical studies in which HT (estrogen and progesterone) was tested to treat experimental AD and 

they were performed on transgenic mouse models of AD [52, 53] (Table 2).  

Transgenic AD mice models are good for testing the effect of HT on the rare, familiar early-onset AD 

(fAD) since they express the gene mutations known to cause fAD in humans [54]. However, the most 

common form of dementia (>95% cases in the World) is sAD, which is of unknown cause and not 

connected to the gene mutation found in fAD [55]. Therefore, the existing transgenic mice AD models 

are not appropriate for testing therapies for sAD, including HT.  

Testing of the beneficial effects of drugs on cognitive impairment developed in non-transgenic models 

that more accurately represent sAD-like pathology might achieve better animal-to-human translational 

results. The general principle behind non-transgenic models is to inject a compound into the brain that 

causes changes that resemble those of sAD in humans. Existing non-transgenic models include: Aβ-

based models (Aβ 1-42, 1-40), cholinergic-based models (scopolamine, ibotenic acid, choline mustard 

aziridium), and insulin resistance-based models (streptozotocin); all applied into the brain by various 

protocols [56].  

Among them, streptozotocin intracerebroventriculary-treated rats (STZ-icv model) have been 

recognized as a model that shares major pathological similarities with the human sAD condition, in 

addition to cognitive decline [57]. Pathological changes found in this model are the consequence of 

oxidative stress and a brain insulin resistant state induced by icv administration of STZ [58], and an 

insulin resistant brain state has been proposed as the metabolic core in human sAD [59-61]. 

Neurochemical changes in insulin receptor signalling in the brain as well as cognitive decline in STZ-

icv rat model demonstrate a biphasic time pattern, while structural changes and Aβ and tau pathology 

develop and progress slowly in a linear manner [57, 58]. Such a staging scheme suggests that late 

changes might correspond to the symptomatic sAD phase in humans [57]. Therefore, the STZ-icv rat 

model might provide a good platform for both preventive and rescue HT therapy in sAD-like conditions.  

To date, only one study has tested the effect of estradiol (200 µg/day for 40 days) on learning and 

memory in the STZ-icv model [62]. The study found that administration of estradiol immediately after 

the STZ-icv treatment compensated for the decrease in energy metabolism in the brain and cognitive 

deficit caused by the STZ-icv treatment (Table 2).  

So far none of the rodent models described in this section have led to the discovery of novel useful 

drug(s) for sAD [63, 64] in humans but, at the current level of knowledge of AD pathophysiology, 

usage of these animal models is unavoidable in preclinical drug development. 

4.2 Type of memory that is tested 

In general, the first and most salient symptom to emerge in patients with sAD is difficulty in acquisition 

of new information. Episodic or autobiographical memory is predominantly affected, with early loss of 
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memory for everyday events. Language deficits and visuospatial deficits appear as the disease 

progresses [65, 66]. Cognitive domains that are frequently affected at an early stage of sAD are: 

episodic memory, executive functions, semantic memory and word finding [65, 66]. But, short term 

memory, assessed by the digit span, tends to be preserved early in sAD [65, 67].  

Estradiol levels were positively associated with benefits in episodic memory, semantic memory, verbal 

memory, and verbal learning in premenopausal females [68-72]. In another study progesterone 

concentrations were significantly positively associated with verbal memory and global cognition, and 

estradiol was significantly positively associated with semantic memory (naming scores) among women 

in an early postmenopausal group only [73]. A study in which pregnant women (having high 

progesterone level) were compared with controls found that both pregnant groups (early and late 

pregnancy stages) had reduced scores on immediate and delayed verbal memory tasks, but were 

unimpaired on visual and procedural memory tasks [74]. These findings demonstrate a relationship 

between progesterone, estradiol and cognitive performance that is dependent on the type of memory 

and the hormone concentration. It seems that the verbal part of memory is affected the most by sex 

hormones. In line with that, in randomized trials, as well as in meta-analyses, verbal memory is found 

to be positively affected by HT (Tables 3 and 4) [51]. 

 The prefrontal and temporal cortices in humans are the parts of the brain associated with semantic 

verbal memory [75]. Verbal fluency (i.e. generation of semantic category lists) was found to be 

impaired in sAD due to two major constraints: deterioration of semantic memory store, and variable 

difficulties in semantic search [75].  

As semantic memory in humans represents the memory of objects and words, it is a crucial point for 

performance in verbal and object recognition tests [75]. Considering animal studies, it is not possible 

to test verbal memory or to do verbal recall tests in animals but it is possible to test object recognition. 

The delayed response test (DR; involving the prefrontal cortex), delayed non-matching to sample test 

(DPNM; involving the medial temporal lobe) or the object recognition test (involving the perirhinal 

cortex) are the correlates of semantic memory testing in animals. Only a few animal studies with 

rhesus monkeys have used these tests to explore the effect of HT on cognition and found an 

improvement or no effect in semantic working memory depending on the HT type and administration 

regime (Table 1) [76, 77].  

On the other hand, episodic memory is the sum of cognitive processes involved in the acquisition, 

storage and recall of events that happened to the subject directly or just memories of events that 

happened around the subject [78, 48]. In an animal this can be translated using a what-where-when 

task to test spatial memory. For this purpose, spatial-delayed recognition span test (DRST), Morris-

water maze test (MWM) and different radial arm tests can be used and they are the most exploited 

tests in preclinical research of HT and cognition [78, 48].  

In clinical research, older studies used the Mini-Mental State Examination (MMSE), which is in fact 

only used as a screening test for dementia [79]. More recent clinical studies have used different 

cognitive tests that are not always comparable, so to avoid inconsistency between clinical trials, the 
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US National Institutes of Health have supported the development of a comprehensive assessment tool 

(NIH Toolbox For Assessment Of Neurological And Behavioural Function; http://www.nihtoolbox.org). 

The NIH Toolbox provides a specific cognition battery (NIH Toolbox Cognitive Function Battery) to test 

several cognitive domains (executive function, episodic memory, working memory, attention, 

processing speed and language) to be used in intervention studies.  

The same would be useful to implement for the preclinical test battery in animal models to avoid the 

syndrome “lost in translation”. Until then, when evaluating the effect of HT treatment in cognitive tests 

in animal models it would be useful to concentrate on the tests that represent semantic memory (DR, 

DPM or object recognition test) and that may be closest to verbal semantic memory in humans.  

5 Pharmacological problems related to HT  

5.1 Timing of the prevention therapy 

It might be important to keep in mind the “healthy cell bias theory” proposed by Brinton and colleagues 

according to whom estrogen is beneficial in healthy neurons (used in vitro) but can become 

deleterious in diseased neurons [80]. This might explain some of the differences observed between 

adult and aged rats after HT treatment (Table 1) [81, 82]. It could also be the base for the “critical 

window theory” which suggests that if the pause between starting HT and menopause is too long, 

hormone treatment can have negative or no effect on cognition [78, 83].  

On the other hand, a meta-analysis of clinical trials concluded that there is no connection between the 

time of starting the HT and its effect on cognition [51]. It could be hypothesized that health rather than 

absolute age per se could influence the interaction between HT and cognitive functions [84]. 

Randomized trials in patients with sAD have also showed that if sAD is at a later stage, the beneficial 

effect of HT is overwhelmed (Table 3) [85, 86]. In addition, total health status is very important for the 

metabolism of HT in the liver [87]. Animal studies with different hormone doses used in animals of 

different age have demonstrated that the concentration of estradiol is doubled in aged animals, 

probably due to aging-induced decrement in liver metabolism (Table 1) [81]. The same is observed in 

humans; Hembree et al. [87] found that the clearance of estrogen is slower in older compared to early 

postmenopausal women. This issue might account for some of the differences in the effect of HT seen 

in clinical, as well as in preclinical, studies.  

5.2 HT dose and route of administration  

Oral administration is the most common route of administration of HT in postmenopausal women [51, 

88, 89]. However, animal studies more commonly use subcutaneous pellets and silastic capsules to 

deliver HT (Tables 1 and 2) [49, 83, 78, 88, 90].  

The subcutaneous route of administration is associated with different drug pharmacokinetics than oral 

administration and avoids first pass metabolism of the hormone, which may result in different 

outcomes of HT [89]. Indeed, the only preclinical study in which estradiol was administered orally to 

middle-aged ovariectomized mice and where the effects on cognition were assessed, found that 
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animals had improved performance in the object recognition test, but had unaffected spatial working 

memory and impaired reference memory following estradiol treatment [50] (Table 1).  

There are few randomised double blind studies that use the transdermal route of administration in 

postmenopausal women with sAD (Tables 3 and 4) [51, 88, 89]. Therefore, it is important to evaluate 

the effects of HT in an animal model using a route of administration that is similar to the most common 

route used in the human population being studied.  

Additionally, animal models treated with different HT doses showed that the effect on cognition is 

dose-dependent; lower doses had a beneficial effect, which was not the case with higher doses (Table 

1) [38, 47, 83]. HT doses used in patients with AD were the same as those in healthy women 

experiencing menopausal symptoms and considering the animal studies, it seems that new clinical 

trials with different doses of HT are needed for the sAD population (Table 3).  

As mentioned before, it seems that the pharmacokinetics of estradiol is changed in older animals so 

that the same dose administered as silastic capsules to younger and older animals yield almost double 

concentrations of estradiol in the older animals [81].  

5.3 Type (composition) of HT  

The types of hormones prescribed to postmenopausal women are different from those that are most 

commonly studied in animal models. Conjugated equine estrogen (CEE), the estrogen that was used 

in the Women’s Health Initiative (WHI) [11], is the most commonly prescribed estrogen, but very few 

animal studies have evaluated the effects of this particular estrogen on cognition (Table 1) [88].  Basic 

research that found a beneficial effect of estrogen on cognition used estradiol with or without 

progesterone [78, 83] (Table 1). A recent study found that CEE administration to middle-aged female 

rats prevented overnight forgetting in the Morris water maze test only in the group with surgically-

induced menopause but not in VCD group (as mentioned before this model better resembles the 

naturally occurring menopause in women) [46].  

Furthermore, animal studies that have evaluated the effects of progestogens on cognition have used 

progesterone rather than MPA (the most commonly prescribed progestin in humans) (Table 1) 

[49,83,75,88,90]. MPA is a synthetic analogue of progesterone and acts like an agonist at 

progesterone receptors, but it also binds to androgen and glucocorticoid receptors, respectively [91, 

92]. A recent study found that MPA administered without estrogen impaired the performance of rats in 

the water radial arm maze and the spatial water maze tests [93].  

The impact of progestin on estrogen-induced neuroprotection depends on the type of progestin; it is 

synergized by progesterone and 19-norprogesterone and antagonized by MPA [33]. The WHIMS 

study used MPA, which could explain why HT worsened the cognition in postmenopausal women 

(Table 4) [11,15,16]. Formulations that contain a combination of CEE and MPA are commonly 

prescribed clinically for the relief of hot flashes and related symptoms [16, 51], but the effect of 

treatment on cognitive function in postmenopausal women remains controversial [10, 39].  
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So, both in preclinical and clinical trials it is important to test different combinations of hormones. One 

clinical study has found a beneficial effect of 19-norprogesterone, [94] which is in line with preclinical 

findings on cultured neurons [33]. Also, a beneficial effect of norethisterone in combination with 

estradiol has been found in randomized clinical trial in healthy as well as in sAD postmenopausal 

women [95, 96]. The KEEPS study used treatment with two types of estrogen (CEE orally and 17β-

estradiol in a transdermal patch with or without micronized progesterone (MP)) and did not find any 

beneficial effects on cognition [13] (Table 4). However, in a group of ApoE ε4 carriers treated with low 

concentrations of estradiol (50µg), lower levels of Aβ deposit were found in comparison to non-carriers 

[97].  

A meta-analysis of randomized trials that assessed the cognitive effect of HT in menopausal women 

showed that adding progestogens to estrogen therapy negatively affected the outcome [84]. 

Interestingly, 9 out of 13 clinical trials used MPA as the add-on progestin [84]. There are also studies 

that have used a synthetic partial agonist of the estrogen receptor, raloxifene; raloxifene administered 

to animals improves memory [98, 99], but clinic research has reported mixed findings (beneficial effect 

in some [100, 101] and no effect in others [102,103]).  

From these data one could speculate that different types of estrogen and progesterone independently 

and interactively regulate AD-like neuropathology, suggesting that tailored and optimized HT may be 

more successful in reducing the risk of AD in postmenopausal women. Also future efforts should 

concentrate on finding new selective modulators that have the beneficial effect on cognition and no 

adverse effects on the periphery, and possibly to combine them with a proper progestogen compound. 

6 Problems related to design of HT clinical trials 

6.1 Randomised interventional clinical trials in women with unimpaired cognition 

According to the four meta-analyses published during the past twenty years, the findings of previous 

observational clinical studies have not been consistent;  three meta-analysis estimated that the risk of 

dementia was reduced by 29%-44% [51, 104] while the fourth one showed no risk reduction [105].  

Data from large randomised clinical trials have also been mixed. On one hand there is WHIMS, and 

the Women's Health Initiative Memory Study of cognitive aging (WHIMSCA) reporting a negative effect 

of HT on cognition. [11, 15, 16] On the other hand, the Women's Health Initiative Memory Study/young 

(WHIMS-Y) and KEEPS-Cog showed no beneficial effectn cognition (Table 4) [13, 106] . 

6.1.1. Choosing the right population 

WHIMS, which was the largest multicenter, randomized, double-blind, placebo-controlled clinical trial 

designed to assess the effects of HT on the risk of dementia and mild cognitive impairment, found that 

continuous HT use (CEE with or without MPA /the latter in hysterectomised women/) was associated 

with an overall significant increase in dementia risk (Table 4) [11, 15, 16]. However, in spite of the 

valuable findings that came out of this study, there are some limitations that should be considered. 

First, the women enrolled were aged 65 years or older, which could have been associated with an 
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increased risk of cardiovascular and/or cerebrovascular diseases, so it could not be excluded that the 

high risk of dementia was attributed to the concomitant vascular disease (Table 4). As reported in the 

WHI study, women on HT have an increased risk for cardiovascular disease and those with higher 

levels of low-density lipoprotein cholesterol at the beginning of the study were associated with an 

excess risk of CHD among HT users [107]. Second, there was no baseline cognitive testing and thus 

the results were based only on a cross-sectional analysis performed at the end of the study. Third, all 

types of dementia were classified in the same category without subdivision into AD, vascular 

dementia, Parkinson‘s dementia, frontotemporal dementia, etc. [11, 15, 16].  

To address some of these limitations, the WHIMS-Y study was designed as a sub-trial of the WHI that 

enrolled only younger postmenopausal women aged 50-55 years but found no effect of HT on 

cognition (Table 4) [106]. However, apart from age and dementia status at enrolment, the other 

limitations remained the same in the WHIMS-Y study [106].  

The WHIMSCA study, on the other hand, enrolled older women (mean age 74 years) and found that 

CEE alone had no effect on verbal and figural memory, but in combination with MPA, verbal memory 

declined and figural memory improved [108, 109].  

In  summary, it seems that if one has an increased risk for cardiovascular disease and is on HT 

(CEE+/- MPA)  then one has increased risk for developing all-cause dementia, but any effect remains 

unknown in healthy women.  

Additionally, a recent large randomised, double-blind study, KEEPS-Cog, showed no effect of estradiol 

and MP on cognition but rather beneficial effect of estradiol on amyloid deposits in ApoE ε4 carriers 

(Table 4) [13, 97]. This study enrolled a large sample of recently postmenopausal women, aged 42 to 

58 years, without high cardiovascular risk (normal blood pressure, mean body mass index 26.3, 

normal lipid levels), with a mean MMSE of 29.1 (cut off ˂23) and naturally occurring menopause. In 

comparison to WHIMS, KEEPS-Cog study used different type and dose of hormones (low dose CEE,  

estradiol and MP vs high dose CEE and MPA in WHIMS) and two routes of hormone administration 

(oral and transdermal) [13]. This study also pointed to the importance of the ApoE ε4 carrier status and 

a need for patient stratification in this regard. 

Findings from KEEP-Cog and WHIMS-Y showed that high or low dose CEE and progestogens (MPA, 

MP) have no protective effect on cognition in recently postmenopausal women. There may be a little 

spark of hope that unopposed estradiol given transdermally could have a postponed protective effect 

on cognition but only in ApoEε4 carriers [97]. So, it is important to consider all risks and benefits that 

HT could bring, depending on an individual’s risk profile. Further research should be designed to 

clarify the effect of other types of HT (both regarding the hormone compound and the pharmaceutical 

formulation) on cognition in recently postmenopausal women.  

6.2. Randomised interventional clinical trials in women with Alzheimer’s disease  
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Since 1997 nine randomized, double blind, controlled trials of HT women with AD have been 

conducted, among which six had primarily positive results (improved visual and verbal memory [96, 

110-114] while in three there was no effect on memory [86,115,116] (Table 3).  

6.2.1 Trials with <50 patients    

Most studies had less than 50 patients [74, 78-80, 82, 92, 93] and were of short duration (8-28 weeks) 

[110, 111, 113, 115, 116] or 9-15 months [96,112,114]). The two of them with the smallest number of 

participants (12 and 20) and with shortest duration (13 and 16 weeks) were conducted by the same 

investigational team [110,111]. Both included women with mild to moderate sAD, with natural or 

surgical menopause, who were treated with an unopposed transdermal formulation of estradiol that 

was reported to have beneficial effect on verbal and visual memory [110, 111]. In both studies ApoE 

status was not assessed and duration of sAD from diagnosis until HT was 2.2-5 years. In both of the 

studies no effects were found in MMSE and Blessed memory information and concentration test 

(BMICT) representing global cognitive function [78, 79]. A positive effect was reported on verbal and 

attentional memory (Table 3). In the third study done by the same team, women were treated with 

estrogen plus MPA, and no positive effect was found on verbal memory, but positive effects were seen 

on semantic and episodic visual memory [112]. 

ApoE status. As mentioned previously, ApoE ε4 status is an important factor that can change the way 

that HT affects cognition in healthy perimenopausal women. The study done by Valen-Sendstad et al. 

[96] on women with sAD  demonstrated that only women who were ApoE ε4 negative showed better 

performance on verbal memory task (Table 3) [96]. The other randomised studies did not stratify 

women regarding their ApoE status (Table 3).  Future studies should pay attention to whether or not 

women are ApoE4 carriers. 

6.2.2 Trials with >100 patients 

Among nine studies in AD postmenopausal women, only two had more than 50 patients but their 

number hardly exceeded 100 (120 [86] and 117 [115]). However, there are certain facts that may be 

pointed out in these studies as possible influencing factors on cognitive outcomes.   

Concomitant drug therapy. The largest was the study conducted by Rigaud et al [115] on 117 

patients who were all on concomitant therapy with acetylcholinesterase (AchE) inhibitor rivastigmine. 

Advantage of this study is that all patients were diagnosed to have sAD for approximately 1.7 year 

before entering the study but no particularly comorbidity was reported [115]. The results of this study 

indicated that transdermal estradiol opposed with progesterone had no effect on cognition [115]. In 

other studies the AchE inhibitors were omitted 2-3 months prior the beginning of the study [96,110-

114,116] except in The Alzheimer's Disease Cooperative Study (ADCS) [86] where 24% of women in 

CEE group and 13% in placebo stayed on donepezil therapy (Table 3) [86,96,110-114,116]. Bearing in 

mind that estradiol enhances cholinergic-mediated cognitive performance [117-119] and that 

combination of estrogen and cholinergic treatment may improve cognitive performance in animals as 

well as in humans [84-86], it becomes a problem to compare the results of these studies. Additionally, 
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in the ADSC study 5 patients were on donepezil in placebo group in comparison to 10 and 9 patients 

in estrogen-treated groups (Table3) [86].  

However, it cannot be excluded that possible chronic concomitant drug therapy other than anti-AD one 

could have influenced cognitive outcomes in these studies. This might be important particularly 

regarding the drugs used to treat diseases of cardiovascular system and diabetes mellitus whose 

influence on dementia has been investigated in AD population (e.g. calcium channel blockers 

[121,122], statins [123,124], metformin [125], insulin [126], rosiglitazone [122, 125, 127] etc.). 

Unfortunately, such concomitant therapy has been explicitly mentioned in inclusion/exclusion criteria in 

several studies only [96,110,111] (Table 3), while no data have been provided for comorbidity of 

diabetes mellitus (Table 3), a disease which itself carries a risk for AD development [128, 129].    

Duration of sAD before HT treatment. It is also important to consider the issue of duration of sAD 

condition prior the HT (Table3). Usually the patients have mild to moderate sAD with similar scores on 

cognitive tests (MMSE as inclusion criteria) but if one considers healthy bias theory and appropriate 

time to start HT, then it would be useful to know the duration of disease before starting the therapy 

and, if possible, which part of the brain has been affected at that stage. This seems to be important 

considering the preclinical results showing that a choline acetyltransferase (ChAT) protein level is 

altered in a site-specific manner after the treatment with estradiol [120]. This research demonstrated 

that estradiol treatment initiated immediately after ovariectomy significantly increased ChAT levels in 

the middle-aged rat hippocampus but not in the prefrontal cortex while the vice-verse effect was 

induced by estradiol treatment initiated 5 months after ovariectomy; it increased ChAT levels in the 

prefrontal cortex, but not in the hippocampus [120]. Having this in mind and looking back into the 

ADSC study, there is a higher percentage of patients with mild sAD (74%) in placebo group in 

comparison to similar sAD-staged patients in the estrogen-treated groups (55%), while other patient in 

both groups had moderate sAD (26% in placebo and 45% in estrogen-treated group) [86]. This may 

indicate that at the beginning of the study the participants in estrogen group were in disadvantage 

regarding the timing of HT in comparison to placebo group. 

Baseline serum estradiol level.  The ADCS study (120 patients enrolled) found no effect on 

cognition in surgically-induced postmenopausal women but the mean baseline serum estradiol levels 

were 5.4 pg/ml in placebo group (N=35), 48.0 pg/ml in the low-dosed estrogen group (N=42, 

concomitant treatment with 0.625 mg of CEE per day), and 58.4 pg/ml in the high-dosed estrogen 

group (n=39, concomitant treatment with 1.25 mg of CEE per day) [86] (Table 3). It can only be 

speculated that the reason for such a huge difference in the mean baseline serum estradiol levels 

between the groups was due to previous estrogen-based treatment or because a large inter-group age 

range (55-91 years). 

Pharmacokinetics and pharmacodynamics of HT. Another methodological inconsistency between 

the clinical studies can be looked for in the pharmacological aspects; the type of HT (estrogen 

compound), route of hormone administration (pharmaceutical formulation), opposed or unopposed 

with progestogens, and inter-individual differences in hormone levels achieved following HT (not 
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assessed in any of the studies) (Table 3). Some trials tested oral CEE while in others transdermal 

estradiol was used (Table 3) which might be a source of biotransformation-related differences; as 

women become older the pharmacokinetics of sex hormones is changed and estradiol is metabolized 

more rapidly in the early versus late stage of menopause [87]. Timing of cognitive testing following the 

HT initiation seems to be very important as well. The largest randomized study conducted by Kantor et 

al that lasted for 38 months has reported that beneficial effect of CEE treatment in sAD patients begins 

between 6 and 9 months after the HT initiation and lasts until 12 months of the therapy while after that, 

the test scores decline [65]. This observation suggests that CEE therapy may improve cognition at its 

beginning but eventually disease progression overwhelms the beneficial effect of HT.  

To summarize, considering the design of clinical trials, in particular intra- and inter-group heterogeneity 

in sAD stage, concomitant AchE inhibitor or other drug therapy, comorbidity, patient age and 

hysterectomy status seem to have a large impact on inconsistency in the results of HT clinical trials in 

postmenopausal women with sAD which might be further complicated by different sensitivity of 

cognitive tests used to measure the primary outcome. 

Although this review may have some limitations related to a single data base used as a source of 

information and particular inclusion criteria used in search (time frame, article type, etc), preclinical 

and clinical trials that have been critically evaluated as the results of such search seem to provide a 

rather representative sample of a larger number of similar studies dealing with the issue of HT 

influence on cognition. 

7 Conclusion 

While there are studies showing that estrogen and progesterone depletion in postmenopausal women 

carries a significant risk for developing AD which may be reduced by estrogen-based HT, data from 

recent clinical trials oppose this beneficial effect. Possible reasons for such inconsistency might be 

found both in preclinical and clinical trials as well as in the HT itself: 

1. Inappropriate animal model (incorrect translation of animal-to-human or human-to-animal 

condition of sex hormones depletion; abrupt/surgical or gonadal/physiological, widely exploited 

models represent rare familiar but not the prevailing sporadic AD) 

2. Heterogeneous postmenopausal women groups in clinical trials (particularly regarding the 

sAD stage, anti-AD therapy, hysterectomy status, possible co-morbidity and concomitant drug 

therapy) 

3. Incomparable HT treatment design (different estrogen/progestogen composition as well as 

dose androute of administration, pharmaceutical formulation, timing of treatment initiation as 

well as of cognitive testing) 

In line with that further research is needed both in humans and animals that will be focused on other 

types of estrogen and progestogen compounds including other progestins besides MPA (e.g. 

norprogesterons, levonogestrel and others) and selective modulators of estrogens receptors. It is 
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essential to have randomized, controlled double-blind studies in population with uniformed early stage 

of AD and patient groups that are more homogeneous regarding the AchE inhibitor therapy (or other 

anti-AD therapy), age and hysterectomy status as well as co-morbidity condition and ApoE carrier 

status, to elucidate and define the therapeutic role of different HT for postmenopausal women with AD. 

As we go deeper in understanding of mechanisms underlying estradiol and progesterone effect and 

their pharmacokinetics, we are getting closer to the design of estrogen/progesterone modulators that 

would optimize cognitive benefits for possible prevention and treatment of AD and minimize 

associated side effects. 
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 Table 1: Experiments in cognitively unimpaired animals subjected to sex hormone therapy. 

Reference Animal/ 
Age 

HT 
 
 

type/dose   administration  duration    

Blood 
c (E2)/ 
pg/ml 

Length of hormone 
deprivation after 

ovariectomy  

Results of cognitive testing 

Type of test / Outcome Factors that 
affected/might have 
affected or had no 
influence on the 
results 

COGNITION IMPROVED   

Daniel et al 
2006 [78] 

Rat/12m 
and 17m 

E2 (25%) sc sil.cap.        5m            
 

15 -25                                     
 

0m 
5m 
 

RAM Only rats with 0m of 

hormone deprivation showed 
enhanced working memory  

-Dependent on post-
OVX time 
 
-Single test used 

Frick et al 
2002 [48] 

Mouse/ 
27–28m 

E2-3-
benzoate
/1 or 5μg 

sc injection      11 d 
(cyclic)  
 

 
  ND 

Intact  
gonades 

MWM Only 5 μg of E2 benzoate 

significantly improved spatial 
learning and memory  

-Dependent on E2 
dose  
 
-Single test used 

Talboom et 
al 2008 
[81] 

Rat/ 
2m  
14m 
21m 

E2/0.25 
or 0.50 
mg 

sc pellets          60d     
 
 

14m/0.25=57 
14m/0.50=44 
2m/0.25=77 
2m/0.50=49. 
21m/0.25=104 

  1m MWM only 21m-Ovx +E2 had 

better platform acquisition. 
14m-Ovx +E2 exhibited faster 
learning  

-Dependent on animal 
age  
 
-Single test used 

NO EFFECT ON COGNITION   

Baxter et al  
2013 
[77] 

Rhesus 
monkey/ 
17.7–25.7 
y 

E2/150 
pg/ml 
+/- P4/ 
100mg  
 
estradiol 
cypionate/
100 μg+ 
P4/100mg 

sil. implant       16m 
 
oral 
d/cyclic 
 
 
 im injection         
 (cyclic)  

E(150 pg/ml):                           
99.45–337.55 
80.17–449.28 
91.08–248.96 
 
P oral: 
2.84–3.40 
 
P4cyclic: 
1.45–7.00 
 
E (100 μg): 
50.46–155.82 
 
P: 2.61–5.08 

6-12w DP  No effect  
 
DPNM No effect 
 
OR No effect 

 
Independent of:  
-cognitive test 
- E2 formulation and   
dose 
- E2+/-P4 composition 

COGNITIVE TEST - DEPENDENT EFFECT ON COGNITION   

Fernandez 
and Frick, 

Mouse/16-
17m 

E2/ 70, 
80,110μg

 oral                    6w 10-40                     1w WRAM  No effect 
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2004 
[50] 

/kg OR improved cognition Independent of E2 

dose and test 

Rapp PR 
et al., 2003 
[76] 

Rhesus 
monkey/ 
22y+/-7m 
5.2y+/-7m 

cyclic 
estradiol 
cypionate
/100 μg 
/1 ml 

Im injection       6w 
 

≈290(1
st
day  

of injection 
≈150(2

nd
day) 

≈90 (3
rd

 day) 

30+/-1.7 w DP Improved spatial working 

memory in 22y old monkeys 
only. 
   
DPNM No effect  

-Dependent on age 
 
 
 
-Independent of age 

Engler-
Chiurazzi 
et al 2012 
[47] 

Rat/13m CEE(Pre
marin) 
12,24,36 
μg 

 
osmotic  
pump                44d 
 

Estron: ≈7. 
            ≈20 
            ≈ 17 
E2: ≈3.5 
       ≈6.5 
      ≈ 8.0 
 

0d WRAM  Only Ovx+CEE (36 

μg) group exhibited better 
performance compared to the 
control one. 
MWM  No effect  except in 

 low-dose CEE group which 
showed impaired learning 
DPM plus maze No effect  

except   low-dose CEE group 
which showed impaired 
learning  

 
 
 
Dependent on  
estrogen dose 
regardless the test 

ESTROGEN+/-PROGESTOGENE -DEPENDENT EFFECT 
ON COGNITION 

  

Bimonte-
Nelson et 
al 2006 
[49] 

Rat/12m E2 +/-P4/ 
(25%E2) 
 
E2 10 
μg+/- P4/ 

sc sil.cap.            3m 
 
 
sc injection 
(cyclic)                 3m   

         20 
 
 

         40 
 

c(P4) 12ng/ml 

3w MWM Low-dose (20 pg/ml)  

and cyclic estradiol (dose of 10 
μg) treatments improved 
spatial reference memory  
-addition of progesterone  
significantly reversed these 
benefits  

 
 
-P4-dependent 
worsening 
 
-Single test used  

Lowry et al 
2010 
[90] 

Rat/10-
12m 

E2/47μg/
kg+/-P4 
 
+/-MPA/ 
41.7 
μg/kg 

 sc sil.cap. 
                                      
                            6m  
sc sil.cap. 

 
 
 

        ND 

0m MWM No effect  

E2+ MPA resulted in worse 
performance in comparison to 
other groups receiving HT but 
not to the control one. 

-MPA-dependent 
worsening 
 
-Single test used 

Gibbs et al 
2000 [83] 

Rat/13m E2/.(25%
E2) 
 
E2+P4  

  sc sil.cap.      1.5m                                  
                           7m  
 
sc injection         7m 

      15 -25 
 

          
        50 

3m 
10m 

DPM- Only E2+P4 sc 

treatment (3m of hormone 
deprivation) significantly 
enhanced acquisition of the 
DMP task 

-P4-dependent 
improvement 
 
-Dependent on  post-
OVX time 
 
-Single test used 

NATURAL / SURGICAL HORMONE DEPLETION -   
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All experiments had a control group with sham surgery.  

m-month, w-week, y-year, d-day, c- concentration, sil cap-- silastic capsulae, HT-hormone therapy, E2-17-β estradiol, P4-progesterone, CEE- conjugated 

equine estrogen, MPA- medroxyprogesterone acetate, sc- subcutaneous, im.-intramuscular, RAM- radial arm maze, OR- object recognition, DP-delayed 

response (prefrontal cortex), DPM-delayed matching to sample test, DPNM-delayed nonmatching to sample test (medial temporal lobes), MWM- Morris water 

maze test (spatial reference memory and working memory), WRAM-8-arm radial arm maze (spatial working and reference memory), OVX- ovariectomized, 

VCD- 4-vinylcyclohexene diepoxide rodent model of ovarian follicle depletion ND-no data 

 

DEPENDENT EFFECT ON COGNITION 

Acosta et 
al 2009 
[46] 

Rat/7m 
OVX 
VCD  

CEE/ 30 
μg/ 

sc njection        2m 
(cyclic) 

       ND 
 
 
 
 
      

18+/-1d WRAM CEE treatment 

impaired spatial working and 
reference memory in 
VCD+CEE group but enhanced 
it in OVX+CEE animals  
DPM enhanced performance in 

OVX animals but not in VCD 
group. 
MWM CEE enhanced 

performance in OVX animals 
(p = 0.05), but not in VCD (3

rd
 

test day only) 

 
 
 
OVX-dependent 
improvement 
regardless the test 
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  Table 2: Experiments in cognitively impaired and ovariectomized animal models for Alzheimer’s disease subjected to sex hormone therapy. 

AD 

mo

del 

Reference Animals / 

Age of HT 

treatment  

initiation  

                  HT  Blood 

c(E2)/pg/ml 

Length of 

hormone 

deprivation      

Results of cognitive testing 

dose/type   administration     duration    Type of test/ Outcome Factors that affected/might 

have affected or has no 

influence on the results 

TR
A

N
SG

EN
IC

 M
IC

E 
M

O
D

EL
S 

 

  PROGESTOGENE ADD-ON-DEPENDENT EFFECT ON COGNITION 

 Carroll JC 

et al 2007 

[131] 

 

3xTg AD 

mouse/ 3m 

WT 

mouse/6m 

 E2/0.025 mg         sil.cap               3m                                        

 +/-P4/25 mg         oral 

 

   104±28 0m  

 

Y-maze-E2+/-P4  

improved performance 

only in 3xTg AD mice  

WT mice-No effect 

-Dependent on age (AD<WT) 

-Familiar AD model used 

-Single test used 

-Independent of P4 add-on 

Carroll JC 

et al 2010 

[52] 

3xTg AD 

mouse/3m 

WT 

mouse/4-6m 

 E2/ 0.025 mg        sil.cap          3m in 3xTg         ND 

 +/- P4 /25 mg        oral                1m in WT 

 cyclic or  

continuous 

0m Y-maze E2 +/-cyclic P4 

improved performance in 

3xTg AD mice 

WT mice –No effect 

-Cyclic P4-dependent   

improvement 

-Dependent on  treatment 

duration (WT<AD)  

- Familiar AD model used  

-Single test used 

  COGNITIVE TEST -DEPENDENT EFFECT ON COGNITION 

Heikkinen 

T et al 

2003 

APPsw/PS1 

mouse /3-

E2 /0.18mg               sc pellet            3m                  ND     0m MWM-No effect 

T maze- improved 

performance only in 9-

-Dependent on age 

 -Dependent on test 
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[53] 

 

12m 12m old mice 

RAM-No effect on working 

memory and improvement 

in reference memory only 

in 6 m old animals 

 - Familiar AD model used  

 

  NO EFFECT ON COGNITION 

Palm R et 

al 2014 

[132] 

3xTgAD 

mouse/ 18m 

E2 1.1 ng/day            sc pump             3m                 12-58     0m   MWM –No effect                       - Familiar AD model used  

-Single test used 

N
O

N
 –

TR
A

N
SG

EN
IC

  M
O

D
EL

 

 

  POSITIVE EFFECT ON COGNITION 

Lannert H 

et al 1998 

    [62] 

STZ-icv 

rat/12m 

E2 200µg/d           sc injection               40d                  ND             0m Holeboard test- STZ+E2 

group performed better 

than STZ  

PA test-improvement in 

STZ +E2 group  

 - Sporadic AD model used  

 

Savonenk

o et al 

2003  

[130] 

Rat/12-

13m and 20 

m + /-

scopalamin 

   E2(25%)               sil.cap.             ND              0m T-maze active avoidance-

improvement only  in 

scopalamin 12-13 m +E2 

group 

-Dementia model used  

-Single test used 

-Dependent on age  

m-month, d-day, HT-Hormone therapy, E2-17 beta estradiol, P4-progesterone, sc- subcutaneous, sil.cap.- silastic capsulae, , AD-Alzheimer disease, STZ-icv- 

streptozotocin intracerebroventriculary treated rats, APPsw -Tg2576 mice which express human APP with the Swedish double mutation, WT-wiled type, 

RAM-radial arm maze, MWM-Morris water maze, PA-passive avoidance test ND-no data 
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Table 3 Randomized double-blind, placebo-controlled trials in postmenopausal women with sporadic Alzheimer’s disease subjected 

to hormone therapy 

Reference n Age  
(years) 

 HT  Type of  
menopause 

Cognitive outcome/Test              Factors that might have influenced cognitive 
outcome 

 

     inclusion/exclusion criteria            miscellaneous 
     specification              

 

  dose/type  administra
tion 

duration 

Asthana et 
al., 1999 

[110] 

12 66-89 0.05 mg E2     TD   8w+5w 
follow 

up 

Natural No effect BS: MMSE, BMICT, 

BNT, VR, PR, TMT, Verbal 
fluency, Token test  
 
Positive effect BS: verbal 

memory  (BSRT) and attention 
(SCWIT)  
Positive effect declined after E2 
discontinuation ( E2 concentration 
correlated with cognitive decline) 

-Comorbidity: ND 
-DM-ND 
-Concomitant drug therapy: 
antihypertensive (except β 
blockers) 
-Exclusion criteria: depression, 
Hachinski score >4, neurogical 
diseases, psychiatric disease 
 

-Untreated dementia or 
AD therapy withdrawn 
3m before E2  
 
-Only 6 patients per 
group 
 
-Mixed mild + moderate 
sAD (MMSE 17-25, 
BMICT 18-30) 
 
- ApoE status: ND 
 
-Time between AD 
diagnosis and HT 
initiation unspecified 
 
-Gradual menopause 

Wang et. 
al., 2000 

[116 ] 

50 72.6+
/-9.1 

1.25 mg CEE  po 12w Natural No effect BS: MMES, CDR, 

CASI, BEHAVE-AD 
 

-Comorbidity: ND 
-DM-ND 
-Exclusion criteria: Hachinski 
score˃4, uncontrolled DM or  

hypertension, endometrial/ 
breast Ca 
 

-Mixed mild + moderate 

sAD (MMES 10-26; CDR 

1-2) 
 
-AD therapy withdrawn 
during CEE  
 
- ApoE status: ND 
 
-Time between AD 
diagnosis and HT 
initiation unspecified 
 
-Gradual menopause 
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Valen-
Sendstad 

et al., 2010 
[96] 

55 65-89 
 

1mg E2+ 
0.5 mg norethisterone  

(most usual HT in 
Europe) 

po+ 
po 

16 m Natural No effect BS DRS,CERAD-

MMSE,WLM,CERAD-BNT,CP, 
TMT,  WAIS DSC 
Positive effect BS: Only APOE4 

negative group showed  better 
performance in WLM (verbal 
memory)   
Regardless of ApoE, HT reduced 
the cognitive decline (GDS) in 
women with a level of 
education≥9. 

-Comorbidity: ND 
-Concomitant drug therapy: 
antihypertensive, statins, 
aspirin, sedatives, 
vitaminB12,antidepressants 
-Exclusion criteria-AF, IHD,      
thromboembolic events, 
neurological disease, MCI, 
HDT, uncontrolled DM or  
hypertension, major 
depression 
 

-Untreated dementia 
 
-BS analysis only 
 
-Mixed mild + moderate 
sAD (mean MMES 22+/-
4) 
 
- ApoE status used as: 
stratification factor 
 
-Gradual menopause 
 
 

Mulnard et 
al., 2000 

[86] 

120 56-91 0.625 and 1.25 mg 
CEE  

po 15 m Surgical No effect BS (0.625+1.25 vs 
placebo): ADAS-CGIC, ADAS-

Cog, MMSE, NDT, TMT, CF, LF, 
EFRT  
Worsening BS (0.625+1.25 vs 

placebo): CDR, CF, FTT  

Worsening BS (0,625 vs 1.25 vs 
placebo): CDR in both E groups 

and FTT only in low dose CEE 

-Comorbidity: ND 
-DM-ND 
-Concomitant drug therapy: 
neuroleptics, anxiolytics, 
sedatives, hypnotics, stable 
use of donepezil or tacrin  
-Exclusion criteria: MI, 
thromboembolic disease, 
hyperlipidemia, major 
depressive disorder 
 
 
 

-Mild sAD only 55% in E 
group vs 74% in placebo    
 
 -Moderate sAD 45% in E 
group vs only 26% in 
placebo  
 
-Donepezil 24% in E 
group vs only 13% in 
placebo  
 
- ApoE status: ND 
 
 -Basal E value 48 pg/ml 
in E group vs only  22.7 
in placebo 
 
-Time between AD 
diagnosis and HT 
initiation unspecified 
 
-Abrupt menopause 

Henderson 
et al., 2000 

[113] 

40 78 1.25mg CEE +/-10 
mg MPA for 14 days  

Po+ 
po 
 

16w Surgical+ 
Natural 

 No  effect BS:  ADAS-Cog, 
ADAS- CGIC WMS, BNT Token 
test, VR, LMS 
 
Positive effect BS: in TMT 4w 

after treatment 

-Comorbidity: ND 
-DM-ND 
-Concomitant drug therapy: 
ND 
 

-Mixed mild + moderate 
sAD (MMS 19-20 +/-1) 
 
- ApoE status: ND 
 
-MPA cyclic only in 9/20 
subjects 
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-BMI ≥35 
 
-4 years from AD 
diagnosis 
 
-Mixed gradual + abrupt 
menopause  

Asthana et 
al., 2001 

[111] 

20 61-90  0.10 mg E2 
 

TD 8w+8
w of 

follow 
up 

Surgical+ 
Natural 

No effect BS: MMSE, BMICT, 

BNT, TMT, Story recall, TVS, 
SCWIT, VP,OMDR 
Positive effect BS: recent verbal 

memory in BSRT(p=0.049) when 
one good preforming subject was 
omitted from E group (p=0.07) and 
recent visual memory (p=0.03) in 
Figure Copy /memory test 
 
No effect WS  

-Comorbidity: ND 
-DM-ND 
-Concomitant drug therapy: 
antihypertensive(except 
βblockers), Gingko, Vitamine 
E,  
-Exclusion criteria: depression, 
Hachinski score >4, neurogical 
disease 
 
 

-AD therapy withdrawn 
2m before E2 
 
-Mixed mild + moderate 
sAD (MMSE 10-29) 
 
- ApoE status: ND 
 
-5/10 patient in E2 and 
3/10 in placebo group 
were on HT before 
entering the study 
 
-Only 10 patients per 
group 
 
-2-5.5 years from AD 
diagnose 
 
-Mixed gradual + abrupt  
menopause  

Rigaud et 
al., 2003 

[115] 

117 
(-
33) 
 84 

75.8  
(SD 
6.5)  

 0.025 mg E2+ 
100 mg P  

TD+ 
po 

28w Surgical+ 
Natural 

No effect BS: ADAS-Cog, MMES, 

GDS  
 

-Comorbidity: ND 
-Concomitant drug therapy: 
rivastigmin  
-Exclusion criteria ND 
 
 
 

-BS analysis only 
 
-0.7(SD1) years from AD 
diagnosis   
 
-MMES 10-26 
 
- ApoE status: ND 
 
-Mixed gradual + abrupt 
menopause  
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Wharton et 
al., 2011 

[112] 

43 
(-

20) 
23 

55-85 50 or 100 μg E2  +/- 
2.5 mg MPA  

TD+ 
po 

15m 
 

Surgical+ 
Natural 

Results only after 3m 
No effect BS: MMSE, BMICT, 

CFT, VPA, PR TMT, SCWIT  
 
Positive effect BS: on semantic 

memory (BNT) in E2+/-MPA, 
positive effect on episodic visual 
memory (FMT) was more 
pronounced in E2+MPA. 

-Comorbidity: ND 
-Concomitant drug therapy: 
ND  
-Exclusion criteria: Hachinski 
score >4, Hamilton depression 
scale >14, Ca of endometria or 
breast  
 

Mixed mild + moderate 
sAD (MMSE 
placebo:21.8 SD6.4, 
E:23.5 SD 3.9) 
 
-BS analysis only 
 
-Mixed gradual + abrupt 
menopause  
 
-ApoE/+ status in 70% 
E2+/-MPA vs 71% in 
placebo group 

Birge et al., 
1997 
[114] 

20 ≥70 0.625 mg CEE 
(daily)+ 5mg MPA  

(13d every 3m)  

po+ 
  po 

9m ND     Positive effect WS: CIBIC (8/10 

sub), also improvement in 
orientation and concentration 
memory, TMT, paired associate 
learning.  
Controls: 5/10 declined on CIBC, 
none improved 

-Comorbidity: ND 
-Concomitant drug: ND  
-Exclusion criteria: other forms 
of dementia, depression 
 
 

-Only mild sAD (CDR ˂2) 
 
- ApoE status: ND 
 
-Cycled  MPA 
 
-Type of menopause 
unspecified 
 
 

m-months, w-weeks,  sub-subjects, n-number, E2-17 β estradiol, CEE- conjugated equinon estron, P-progesterone, MPA- medroxyprogesterone acetate, po-

oral, TD-transdermal, WS- within subjects (versus baseline), BS –between subjects, HT-hormone therapy, MI-Miocardial infraction, CIBIC- Clinical Interview-

Based Impression of Change, TMT-trial making test,  APOE4- apolipoprotein E, BMICT-Blessed Memory Information and Concentration Test, BNT-Boston 

Naming Test, BSRT-Buschke selective reminding test, MMSE-Mini-Mental State Examination, ADAS-Cog- Alzheimer disease assessment scale, ADAS-

CGIC-  Alzheimer’s  disease cooperative study version of the clinical global impression of change scale, WLM- Word list memory, CP- Constructional praxis, 

WMS- Wechsler Memory scale, WAIS DSC-Wechsler Adult Intelligence Scale–Digit Symbol-Coding, DRS-Dementia Rating Scale, CDR- Clinical Dementia 

Rating Scale SCWIT- Stroop color word interference test, VR- Visual reproduction, TVS- Treisman visual search, AF-atrial fibrillation, IHD-ischemic heart 

disease, MCI-mild cognitive impairment, HDT-hormone dependant tumors,  LMS-logical memory subtest, NDT-New dot test, CF-category fluency, LT-Letter 

fluency, EFRT-Emotional face recognition est, FTT-Finger taping test, CASI-Cognitive abilities screening instrument, BEHAVE-AD- Behavioral pathology in 

Alzheimer’s disease, PR-paragraph recall, VPA-visual paired associates, CFT-Complex figure test, FMT- figural memory test, GDS- global deterioration scale, 
OMDR-Oculomotor delayed response, CERAD- consortium to establish a registry for Alzheimer's disease, DM- Diabetes mellitus, ND-no data 
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Table 4. Large long-lasting, double-blind, placebo-controlled, randomized clinical trials in cognitively unimpaired postmenopausal 

women subjected to hormone therapy 

Study/ 

Reference 

n Age (y)  HT 

 

Type of 

menopause 

Cognitive outcome Factors that might have influenced 

or had no influence on cognitive 

outcome 

dose/type administr

ation 

duration test/ 

all- cause dementia  

 MCI inclusion/exclusion 

criteria specification 

miscellaneous 

WHIMS/ 

Shumaker 

et.al.2003 

[15]; 

Rapp et. 

al.2003[16];  

Espeland 

et.al., 

2004[11]; 

4532 

 

65-79 

 

 

-0.625 mg 

CEE/d  

-0.625 mg 

CEE+2.5 

mg MPA/d 

-oral 

 

-oral 

 

5 y 

 

 

Mixed 

natural or 

surgical  

MMSE, ADAS-Cog  

-Higher risk for 

developing 

dementia (CEE +/- 

MPA) 

 

 

No effect  

(CEE+/-

MPA)    

-Co-morbidity: ND      

-DM: ND 

-Concomitant drug 

therapy: ND 

-Baseline cognitive 

status: ND 

-Postmenopausal 

period: ND 

-No dementia 

subtype 

differentiation 

-Advanced age 

-BMI˃35 

-ApoE status: 

ND 

WHISCA/ 

Resnick et 

al., 2006  

[108] 

Resnick et 

al.2009 

[109] 

 

 

 

1416 

 

 

 

          

88 

Mean 74 

 

 

 

 

 

 

 

0.625 mg 

CEE+2.5 

mg MPA/d 

 

0.625 mg 

CEE/d 

 

 oral 

 

 

 

oral 

2.7y  

Mixed 

natural or 

surgica 

 

 

 

Surgicall 

CVLT, VF, BVRT, 

DF,DB,  

-Verbal learning 

decline, figural 

memory improved 

(CEE +MPA) 

 

-No effect on verbal 

and figural memory 

(CEE) 

 

 

 

ND 

-Co-morbidity: 

Hypertension 

(55%), DM, (5%) 

-Concomitant drug 

therapy: ND 

-Baseline cognitive 

status on word list 

and geometric 

figures 

-Postmenopausal 
period: ND  

-Advanced age 

 

-ApoE status:  

ND 
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WHIMS-Y/ 

Espeland 

MA et al., 

2013 

[106] 

 

 

 

1326 50-55 

 

 

-0.625 mg 

CEE/d  

-0.625 mg 

CEE+2.5 

mg MPA/d 

-oral 

 

-oral 

 

 5 y 

 

 

 

Mixed 

natural or 

surgical  

EBMT, OTMT, VF, 

DS 

-No effect (CEE +/- 

MPA vs placebo)  

-VF-A (semantic 

memory) improved 

in MPA+CEE vs 

CEE 

  

 

 

No effect 

(CEE +/- 

MPA) 

 

-Co-morbidity: 

hypertension 

21%,cardiovascular 

risk 78%, DM-ND 

-Concomitant drug 

therapy: ND 

-Baseline cognitive 

status. ND 

-Postmenopausal 

period: 1-12y  

-No dementia 

subtype 

differentiation 

 

-ApoE status: 

ND 

 

-BMI 20-35 

KEEPS-

Cog/ 

Gleason 

CE et al., 

2015 

[13] 

 

693 

 

42-58  

 

-0.45 mg/d 

CEE+200 

mg/d MP 

-50μg 

E2+200 

mg/d MP 

 

 

 

-oral 

 

-TD 

 

4y 

Natural  

MMSE-modified, 

CVLT, WMS, SCWI, 

TMT,CF,WAIS-

3,BVRT, PF,DS, PR 

-No effect 

 

ND 

-Co-morbidity: mild 

mood disorders 

allowed,  

-DM-ND 

-Inclusion criteria: 

normal BP and lipid 

profile, BMI 20-34,  

-Concomitant drug 

therapy: 

antidepresives  

-Baseline cognitive 

status: inclusion 

criteria MMSE 24-

30 

-Postmenopausal 

period: 1.4y 

 

High degree of 

inter/intra-group 

homogeneity 

(high education, 

perimenopausal 

age, health and 

ApoE status, 

21.5% past use 

of HT) 
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n-number, y-year, d-day, HT- Hormone therapy , MP-micronized progesterone, MPA- medroxyprogesterone acetat E2-estradiol, CEE- conjugated equine 

estrogen, TD-transdermal, KEEPS –Kronos early estrogen prevention study, WHISCA- The Women's Health Initiative study of cognitive aging, WHIMS-The 

Women's Health Initiative Memory Study, WHIMS-Y-The Women's Health Initiative Memory Study/young, MCI-mild cognitive deficit, ADAS-Cog- Alzheimer 

disease assessment scale, MMSE-Mini Mental State exam, CVLT- California verbal learning test, DF-digits forward, DB-digits backward, FTD-finger tapping 

dom, FTN-finger tapping nondom, WMS- Wechsler Memory scale, WAIS-3. Wechsler adult intelligence scale 3 rd edition, SCWI-Stroop color word 

interference test, TMT- trial making test, CF-category fluency, BVRT-Benton visual retention test, VF-verbal fluency, PF- Phonemoc fluency, PR-Paragraph 

recall, OTMT-Oral trail making test, DS-Digiti span, EBMT-East Boston memory test, BP-blood pressure, DM- Diabetes mellitus, BMI-body mass index, 

ApoE- Apolipoproteine E, ND-no data. 

 


