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Abstract   

Safe and successful bioapplications of metallic nanoparticles depend on their 

physicochemical characteristics, in particular their surface properties. This study aimed to 

investigate how different surface functionalization of silver nanoparticles (AgNP) affect their 

interaction with mammalian liver cells with regard to cytotoxicity, genotoxicity and 

mechanism of cellular uptake. Differentially coated AgNP were prepared by surface 

functionalization using sodium bis(2-ethylhexyl)-sulfosuccinate (AOTAgNP), 

cetyltrimethylammonium bromide (CTABAgNP), poly(vinylpyrrolidone) (PVPAgNP), poly-

L-lysine (PLLAgNP), and bovine serum albumin (BSAAgNP). Data showed varying toxic 

potential of differentially coated AgNP. All AgNP types demonstrated concentration 

dependent effects on cytotoxicity and genotoxicity in HepG2 cells. Cytotoxic potential of 

differentially coated AgNP followed the order of BSAAgNP > PLLAgNP > CTABAgNP > 

AOTAgNP > PVPAgNP. Exposure of HepG2 cells to non-cytotoxic concentrations (up to 10 

mg Ag/L) of AgNP for 24 hr induced primary DNA damage as evaluated by alkaline comet 

assay. The highest increase in both comet tail length and tail intensity was produced by 

PLLAgNP followed by AOTAgNP, while CTABAgNP appeared to be least damaging.  The 

main uptake mechanisms of AgNP were macropinocytosis and clathrin-mediated endocytosis. 

The study findings contribute to the criteria that should be considered in evaluating the 

biocompatibility and safety of novel nanomaterials. 

 

Key words: silver nanoparticles, surface functionalization, cytotoxicity, genotoxicity, cellular 

uptake, HepG2 cells 
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1. Introduction 

Given the progressive applications of silver nanoparticles (AgNP) in medicine and 

general consumer products, comprehensive understanding of nanoparticles (NP) interaction 

with living organisms is imperative (Kermanizadeh et al., 2016). There is ever growing 

concern over health impacts of a wide range of AgNP in usage including burns treatment, 

textiles, water purification devices, toothbrushes, shampoo, deodorants, and food packaging 

materials (Bondarenko et al., 2013). Metallic NP are known to induce oxidative stress by 

disruption of the electronic/ionic flux and affect antioxidant enzyme capacity (Toduka et al., 

2012; Sabella et al., 2014; Vinković Vrček et al., 2016; Milić et al. 2015). The in vitro toxic 

effects of AgNPs has been reported for a wide range of cell lines where increased oxidative 

stress, apoptosis and DNA damage have been found as the main cellular outcomes after 

treatment with AgNPs (Bondarenko et al., 2013; Gliga et al., 2014; Reidy et al., 2013). 

Biological consequences of interactions between living cells and NP strongly depend not only 

upon size, material, and surface characteristics, but also on the processes involved in cellular 

uptake of NP and their intracellular distribution (Liu et al., 2014; Toduka et al., 2012; Hsiao et 

al., 2014; Madani et al., 2011; Bannunah et al., 2014; Rothen-Rutishauser et al., 2014; Sabella 

et al., 2014; Vranic et al., 2013; Meindl et al., 2017; Verma and Stellacci, 2010). The 

internalization pathways of materials into cells are typically classified into clathrin- and 

caveolae-mediated endocytosis, phagocytosis, macropinocytosis, and pinocytosis (Liu et al., 

2014; Toduka et al., 2012; Hsiao et al., 2014; Madani et al., 2011; Bannunah et al., 2014; 

Rothen-Rutishauser et al., 2014; Sabella et al., 2014; Vranic et al., 2013; Meindl et al., 2017; 

Iversen et al., 2011). Receptor-mediated endocytosis, including clathrin- and caveolae-

mediated pathways, is the most important mechanism of internalization of nanoscale 

materials, including viruses and NP (Wang et al., 2012; Tomatis et al., 2010).  Phagocytosis is 

an actin-dependent process by which specialized phagocytic cells internalize materials larger 
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than 0.5 µm (Aderem and Underhill, 1999). Pinocytosis is important cell pathway for 

translocation of fluids and small NP, while macropinocytosis is process by which cells 

internalize fluids and particles together forming large vesicles (0.2–5 μm) (Geiser, 2010; Oh 

and Park, 2014; Dutta and Donaldson, 2012).  

Although numerous studies on cellular toxicity mediated by AgNP were conducted, 

there is still need to fill the knowledge gaps on mechanisms by which AgNP enter and affect 

cells (Verma and Stellacci, 2010; Landgraf et al., 2015; Geiser, 2010; Iversen et al., 2011; 

Sabella et al., 2014). At present, information regarding the role of surface-chemical properties 

on AgNP interactions with cells is still missing. Therefore, this study aimed (i) to investigate 

the impact of nanoparticle surface properties on cyto- and genotoxicity of AgNP in human 

hepatoma cells (HepG2) by assessing metabolic activity, cell viability and primary DNA 

damage, and (ii) to examine uptake mechanisms of AgNP by employing different inhibitors 

that block particular internalization routes. Differentially coated AgNP were prepared by 

surface functionalization using sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), 

cetyltrimethylammonium bromide (CTAB), poly(vinylpyrrolidone) (PVP), poly-L-lysine 

(PLL), and bovine serum albumin (BSA). The HepG2 cell line was selected as it retains many 

of the genotypic and phenotypic features of normal liver parenchymal cells, including an 

intrinsic metabolism such as synthesis and secretion of plasma proteins (Knasmüller et al., 

1998; Sussman et al., 2004). It has been already demonstrated that human hepatocellular cell 

lines may serve as good model for investigation of NP-induced responses in liver cells 

(Kermanizadeh et al., 2014; Kermanizadeh et al., 2016). Toxicity of different AgNP in 

HepG2 cells was determined by means of cell viability and DNA damage evaluation. Cellular 

uptake of different AgNP was quantified by flow cytometry. Uptake mechanism was 

evaluated in the presence of several pharmacologic inhibitors that disrupt specific uptake 

mechanism, i.e. phenylarsine oxide (PAO) as inhibitor of clathrin-mediated endocytosis, 
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cytochalasin D, nocodasole and amiloride as inhibitors of macropinocytosis, and filipin that 

inhibits caveolae-mediated endocytosis (Liu et al., 2014; Linares et al., 2014; Jiang et al., 

2013; Toduka et al., 2012; Hsiao et al., 2014; Madani et al., 2011; Bannunah et al., 2014; 

Rothen-Rutishauser et al., 2014; Sabella et al., 2014; Vranic et al., 2013; Meindl et al., 2017; 

Oh and Park, 2014; Dutta and Donaldson, 2012).  

 

2. Materials and methods 

 

2.1.Chemicals and materials  

Human Caucasian hepatocyte carcinoma (HepG2) cells from the European Collection 

of Cell Cultures (ECACC, Salisbury, UK) were used in this study. GIBCO® Minimum 

Essential Medium (MEM) was purchased from Thermo Fisher Scientific (Schwerte, 

Germany). Dulbecco’s Phosphate Buffered Saline (PBS) medium, fetal bovine serum (FBS), 

bovine serum albumin (BSA) (product number A-7906), penicillin and streptomycin were 

purchased from Sigma–Aldrich Chemie GmbH (Steinheim, Germany). The plastic and 

glassware used for chemical analysis were from Sarstedt (Germany). The 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay kit was purchased from 

Roche Diagnostics GmbH (Germany). Osmium tetroxide was purchased from Agar Scientific 

(Stansted, UK) and TAAB epoxy resin (medium hard) from Aldermaston (Berkshire, UK). 

All other analytical grade chemicals were obtained from Sigma (Germany) and Merck 

(Germany). All dilutions were made with high purity deionized water (18.2 Mcm), obtained 

from a Milli-Q® system (Merck Chemicals GmbH, Darmstadt, Germany). 
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2.2.Synthesis and characterization of AgNP 

Differentially coated AgNP were prepared by surface functionalization using sodium 

bis(2-ethylhexyl)-sulfosuccinate (AOT), cetyltrimethylammonium bromide (CTAB), 

poly(vinylpyrrolidone) (PVP), poly-L-lysine (PLL), and bovine serum albumin (BSA) 

following established procedures described elsewhere (Vinković Vrček et al., 2015).  

Characterization of AgNP was performed in both ultrapure water (UW) and cell 

culture medium (CCM), which was prepared as MEM supplemented with 10% (m/v) FBS. 

Total silver concentrations in AgNP were determined using an Agilent Technologies 7500cx 

inductively coupled plasma mass spectrometer (ICPMS) (Waldbronn, Germany) as described 

elsewhere (Vinković Vrček et al., 2015). The size and charge of AgNP were measured by 

dynamic (DLS) and electrophoretic light scattering (ELS), respectively, using Zetasizer Nano 

ZS (Malvern, UK). Visualization of AgNP and cells were conducted using a transmission 

electron microscope (TEM, Zeiss 902A, Oberkochen, Germany). TEM images were also used 

for confirmation of AgNP size obtained by DLS. Particles size was determined from the 

cross-sectional area of the particles which was converted to an equivalent spherical diameter 

by using Image J software. Primary particles were distinguished from AgNP aggregates by 

tracing it manually. 

The possible AgNP dissolution in UW and CCM was determined by determining the 

dissolved silver ions using centrifugal ultrafiltration (Millipore Amicon Ultra-4 3K) through a 

membrane with a nominal molecular weight limit of 3 kDa. Suspensions were centrifuged for 

30 min at 15000 × g (Eppendorf Microcentrifuge 5417R, Eppendorf AG, Hamburg, 

Germany). The Ag concentration in the filtrate as determined by ICPMS was related to the Ag 

concentration before ultrafiltration to calculate dissolved Ag fraction. 
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2.3.Cell culture  

HepG2 cells were cultured in MEM medium, supplemented with 10% (m/v) FBS, 20 

IU/ml penicillin and 20 g/ml streptomycin. The cells were seeded in 6-, 24- or 96-well plates 

and maintained at 37 C in a humidified atmosphere of 5% CO2 in air. The medium was 

replaced every 2-3 days. Upon reaching 80% adherent confluence, cells were treated with a 

range of concentrations of AgNP suspended in the cell culture media (CCM). In each 

experiment, stock AgNP suspensions were freshly diluted to appropriate concentrations in 

CCM. Controls without treatment were performed for each analysis.  

 

2.4.Cell viability assay  

Metabolic activity in treated compared to control HepG2 cells was determined using 

the MTT assay based on reduction of the yellow tetrazolium salt MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) to a purple MTT-formazan crystal 

(Mosmann, 1983). Viable cells with active metabolism are able to reduce MTT into formazan, 

while dying cells lose this ability (Riss et al. 2006). Thus, MTT assay was used in this study 

to quantify the number of viable cells. Cells were seeded in 96-well tissue culture plates 

(5×104 cells/ml growth medium) followed by an overnight incubation. Different AgNP were 

added to quintuplicate wells to a final concentration range of 0 - 100 mg/L and incubated for 

another 24 hr. Doses of AgNPs were chosen based on previously published results (Vinković 

Vrček et al., 2016). Negative controls were untreated HepG2 cell, while positive controls 

were cells treated with 10% dimethyl sulfoxide (DMSO). At the end of treatment, the medium 

from each well was removed by aspiration; cells were washed 3 times with 200 μl PBS/well 

to remove all AgNP that may interfere with MTT assay (Vinković Vrček et al., 2015). Then, 

50 μl of 1000 mg/L MTT solution was added to each well. After 4 hr incubation at 37 °C, the 
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MTT solution from each well was removed by aspiration. A volume of 50 μl DMSO was 

added and the plate was shaken to dissolve the MTT-formazan crystals. The optical density at 

595 nm was then determined for each well using a VictorTM multilabel reader (Perkin Elmer, 

Massachusetts, USA). In addition, control plates with the same concentration range of AgNP 

were prepared, and the background absorbance of AgNP was subtracted on a plate reader to 

avoid false positive results that may lead to an underestimation of NP-induced toxicity 

(Vinković Vrček et al., 2015).  

 

2.5.Flow cytometry experiments  

Flow cytometry experiments were performed for determination of AgNP effects on the 

number of live and dead HepG2 cells, AgNP uptake efficiency and mechanisms of AgNP 

internalization, using Attune acoustic focusing flow cytometer (Applied Biosystems, USA) 

with 488 nm laser. The cytometer was set up to measure FSC linearly and SSC 

logarithmically. The highest concentration of AgNP was run first to set the range for the 

maximum SSC signal. For the analysis on the flow cytometer, HepG2 cells were dissociated 

after each treatment using 0.05 % GibcoTM Trypsin-EDTA (Thermo Fisher Scientific) 

solution, washed with PBS, resuspended in PBS-based buffer containing 2% FBS and 2 mM 

EDTA (pH 7.4, filtered through 0,2 μM sterile filter) and passed through a 40 µm Falcon™ 

cell strainer (Thermo Fisher Scientific).  

Cell viability was evaluated using Molecular ProbesTM LIVE/DEADTM 

Viability/Cytotoxicity kit (Invitrogen, Fisher Scientific). For the experiment, HepG2 cells 

were seeded in 6 well plates at a density 2.5×105 cells/well. Forty-eight hr after HepG2 

plating, the culture medium was exchanged with a fresh one and increasing concentrations of 

AgNP added (1, 5 or 25 mg/L). Cells without AgNP treatment served as a negative control in 
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each experiment. Dissociated cells were incubated with 0.1 µM calcein acetoxymethyl ester 

(CAM) and 3 μM ethidium homodimer-1 (EthD), both supplied in the kit, for 15 min in the 

dark at the room temperature. Each experiment was repeated 3 times. CAM and EthD were 

measured using log amplifiers. The percentage of live HepG2 cells (CAM-positive and/or 

EthD-positive) was calculated using FCS Express 5 Flow Cytometry Software (De Novo 

Software, Glendale, USA).  

To determine NP uptake efficiency, the % NP-labelled cells was determined using 

Attune acoustic focusing cytometer by measuring the increase of the side scattered light of the 

laser beam (SSC). The intensity of the SSC is proportional to the intracellular density and 

granularity (Zucker and Daniel 2012). Uptake of NP into cells increases the SSC intensity by 

enhancing the intracellular density. The % of positive cells (compared to the control) was 

determined with FCS Express 5 Flow Cytometry Software using Overton cumulative 

histogram subtraction method (Overton 1988).  

Mechanism of AgNP internalization in HepG2 cell was investigated using inhibitors 

that block specific cell uptake route. Before starting the investigation of uptake mechanism, 

the effect of inhibitors on HepG2 cell viability was tested in order to find a proper inhibitor 

dose. The dose of each inhibitor was chosen according to the previously published literature 

(Jiang et al., 2013; Gliga et al. 2014; Hsiao et al. 2014). All inhibitors exhibited negligible 

cytotoxicity at the dose 5 times higher than the dose selected for the study of uptake 

mechanism. Following inhibitors were applied: cytochalasin D at the dose of 0.3 μM as 

inhibitor for actin-dependent pathways, phenylarsine oxide (PAO) at the dose of 30 nM as 

inhibitor of clathrin-mediated endocytosis, nocodazole at the dose of 20 nM as inductor of 

microtubule disruption, filipin at the dose of 1.5 mg/L as inhibitor of caveolin-mediated 

endocytosis, and amiloride hydrochloride hydrate at the dose of 0.15 mM as inhibitor of 

macropinocytosis. All inhibitors were purchased from Sigma. HepG2 cells were pre-treated 
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with the above inhibitors for 30 min and then incubated with 5 mg/L AgNP for additional 4 hr 

in the presence of the inhibitor. Two control cells were used for final evaluation: (i) cells 

without inhibitors and without AgNP, and (ii) cells treated only with 5 mg/L AgNP but 

without pretreatment with inhibitors. The effect of inhibitors on cellular AgNP uptake was 

examined using Attune acoustic focusing cytometer. 

 

2.6.DNA damage evaluation 

DNA damage in HepG2 cells treated with different AgNP was assessed by alkaline 

comet assay (Singh et al., 1988; Tice et al., 2000). HepG2 cells were seeded in 24-well plates 

at a density 103 cells/ml, and maintained in the CCM at 37°C in a humidified atmosphere of 

5% CO2 in the air. The medium was replaced every 2-3 days. Upon reaching 70% confluence, 

the CCM was changed to MEM without FBS supplementation to gain cells synchronisation. 

After 12 hr, cells were treated for 24 hr with different concentrations of AgNP suspended in 

the CCM. Cells treated with the CCM were used as negative control, while cells treated with 

DMSO were used as positive control. All experiments have been performed in replicates. For 

each experiment, 2 slides per concentration were prepared. At the end of exposure period, the 

genotoxicity end points in the control and exposed single cells were evaluated using alkaline 

comet assay technique (Singh et al. 1988; Tice et al. 2000). The parameters selected for 

quantification of DNA damage were: a comet tail length (TL, in µm, calculated from the 

centre of the head of the comet) and tail intensity (TI, % DNA in comet tail). The extent of 

DNA damage, as recorded by the alkaline comet assay, was analysed considering the mean, 

standard deviation of the mean, median and range of the comet parameters measured. 

Experiments were done in duplicate and analysed for statistical differences compared to 

negative control. In total 220 comets were measured for each particle type and concentration. 
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2.7.Visualisation of HepG2 cells treated with AgNP  

After 24 hr treatment of HepG2 cells with 5 mg/L AgNP, cells were detached from the 

wells using trypsin for 7 min, washed once with CCM, separated by centrifugation and fixed 

overnight with 2% glutaraldehyde in 0.1 M phosphate buffer, post-fixed in 1% osmium 

tetroxide, and contrasted in 2% uranyl acetate in water.  Samples were dehydrated in acetone 

and embedded in Durcupan (Sigma-Aldrich, Germany). The ultrathin sections were cut on 

RMC Power Tome XL (Boeckeler Instruments, USA) ultramicrotome. TEM samples were 

prepared by depositing ultrathin sections on a Formvar® coated copper grid, contrasted with 

uranyl acetate and lead citrate and examined on transmission electron microscope Zeiss 902A 

(Oberkochen, Germany) operated in the bright field mode at an acceleration voltage of 80 kV. 

Images were recorded with Canon PowerShot S50 digital camera attached to the microscope. 

 

2.8.Statistical analysis 

Differences between measured variables were tested using simple and repeated 

measures ANOVA, followed by Fisher LSD post hoc test and level of significance set at P < 

0.05. Data were log transformed if required to meet assumptions of ANOVA, and 

homogeneity of variances was tested using the Levene’s test. In other cases, differences were 

tested using the Dunnett test (to assess differences versus a control), or Kruskal-Wallis 

ANOVA of ranks (non-parametric test used when assumptions of homogeneity of variances 

were not feasible). All statistical analyses were carried out using STATISTICA v9.0 (StatSoft, 

Inc., Tulsa, USA). 

  

 



 
 

13 
 

3. Results  

3.1.Characterization and stability evaluation of AgNP 

Evaluation of characteristics and dispersion behaviour of differently coated AgNP in 

both UW and CCM was performed using DLS, ELS, TEM and ICPMS techniques (Table 1 

and Figs. 1-2). DLS measurements and TEM evaluation in UW showed that size distributions 

were monomodal only for AOTAgNP, while other AgNP were characterized by bimodal 

volume-weighted size distributions (Table 1). Furthermore, CTABAgNP showed three size 

populations. In relation to size, most AgNP had hydrodynamic diameters (dH) in range 5 - 20 

nm. Visualization of the AgNP by TEM evidenced spherically shaped NPs (Fig. 1). The ELS 

data confirmed assumption that charge of coating agent determines also potential values of 

AgNP in UW (Fig. 2). Thus, functionalization with PLL and CTAB led to positively charged 

AgNP characterized by a potential of 24.2 ± 3.7 and 38.7 ± 4.2 mV, respectively. The use of 

negatively charged AOT resulted in potential of -28.1 ± 1.9 mV, while PVPAgNP and 

BSAAgNP were characterized by -18.9 ± 1.7 and -6.1 ± 0.7 mV, respectively. Negative 

potential of former can be explained by the use of borohydride during synthesis of 

PVPAgNP leading to adherence of the 
4

BH  anions to the NP surface.   

In the CCM, the presence of FBS stabilized AgNP as can be seen in Table 1. Although 

all AgNP types aggregated slightly upon immersion in CCM, observed size distribution 

diagrams did not show aggregates larger than 200 nm as reported for the cell-culture medium 

without proteins (Domazet Jurašin et al., 2016). Obtained DLS data were confirmed by TEM 

evaluation (Table 2). Measured ζ potentials in the CCM ranged from -10.2 to -14.3 mV, close 

to the ζ potential of serum albumin (~ -7 mV), one of the main component of FBS 

supplement, which indicated that protein coating provided stability to all AgNP types in the 

CCM.  
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Results on dissolution of AgNP in the UW and CCM, as evaluated by measuring total 

Ag content after filtration of AgNP through membranes of 3 kDa pore size, clearly show that 

Ag+ content was lower than 5% in all AgNP types (Table 1). The lowest dissolution was 

observed for PLLAgNP, i.e. ~ 1% in the UW and 0.7% in the CCM. The highest Ag+ content 

was observed for the BSAAgNP, i.e. 3.3 and 4.2% in the UW and CCM, respectively. AgNP 

coated with AOT, BSA, and CTAB had higher Ag+ level in the CCM compared to the UW, 

i.e. 0.2, 3.3 and 0.4% vs. 1.2, 4.2 and 1.1%, respectively. Only PVPAgNP showed lower Ag+ 

fraction in the CCM compared to the UW.  

 

3.2.Toxicity effects of different AgNP types 

Cytotoxicity of different AgNP types in HepG2 cells was assessed by means of cell 

metabolic activity corresponding to the cell viability (MTT assay), by evaluating the number 

of live and dead cells (LIVE/DEADTM Viability/Cytotoxicity) and by the extent of primary 

DNA damage (alkaline comet assay).  

The MTT assay was applied to demonstrate HepG2 viability. The non-treated cells 

were considered as negative control showing viable cells (Fig. 3). Dose-response decrease in 

metabolic activity was observed for all AgNP types. BSAAgNP showed the highest toxic 

effect and decreased cell viability by 50% already at the dose of 5 mg Ag/L. The effective 

concentrations for 50% of cell loose at 24 hr were calculated to be 25 mg Ag/L for both 

PLLAgNP and CTABAgNP (Fig. 3). Same concentrations of PVPAgNP and AOTAgNP 

decreased cell viability by 75 and 58%, respectively.  

The results obtained using LIVE/DEADTM Viability/Cytotoxicity assay was 

standardized on the number of stained cells showing consistently dose-response effects of 

AgNP (Fig. 4). Again, BSAAgNP induced highest cell mortality at the applied doses of 5 and 
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25 mg Ag/L compared to other types of AgNP, whereas percentages of live and dead cells 

were comparable for all others AgNP.  

The alkaline comet assay was used to determine the DNA damage due to the AgNP 

treatment. The exposure to up to 10 mg Ag/L of AgNP for 24 hr led to the primary DNA 

damage in HepG2 cells (Table 2). No significant increase in the percentage of DNA in the 

comet TL was observed after exposure to the lowest dose of AgNP (Table 2). However, 

significant increase in comet TI was measured at the lowest dose of PVPAgNP. At the highest 

applied dose (10 mg/L), the highest increase in both comet TL and TI was induced by 

PLLAgNP followed by AOTAgNP, while CTABAgNP appeared to induce the lowest extent 

in DNA damage in HepG2 cells.  

 

3.3.Visualisation of AgNP uptake by TEM 

TEM visualisation of treated HepG2 cells clearly indicated cellular uptake of AgNP. 

Fig. 5 showed that all AgNP types were found mainly within membrane-bound structure. The 

other cellular compartments such as nucleus, endoplasmatic reticulum or Golgi apparatus did 

not contain any of AgNP. PVP-, BSA- and CTABAgNP were observed as condense clusters 

inside membrane limited vesicles inside the cells (Fig. 5). It appears that BSAAgNP were 

capable of escaping from membrane-limited vesicles and reach mitochondria (Fig. 8f). In the 

case of PLL- and AOTAgNP, they were taken up by HepG2 cells not only as clusters, but also 

as individual particles.  

 

3.4.Cellular uptake of different AgNP types 

The quantification of the uptake of different AgNP by HepG2 cells was analyzed by 

flow cytometry measuring the increase of the side scattered light (SSC) of the laser beam. The 
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SSC intensity is proportional to the intracellular density, and therefore correlates with the 

AgNP uptake (Liu et al., 2014; Toduka et al., 2012). Currently, there are no standardized and 

validated methods for the undoubtful quantification of NP uptake into cells (Drasler et al., 

2017). Flow cytometry cannot distinguish AgNP internalized into the cell from those just 

attached to the cell surface, but this limitation may be compensated when flow cytometry is 

combined with microscopic techniques (Drasler et al., 2017). Indeed, TEM images 

demonstrated uptake of all AgNP by HepG2 cells (Fig. 5). Thus, flow cytometry data were 

discussed within this study in the context of semiquantitative analysis of AgNP cellular 

uptake.  

Internalization  of all AgNP types in HepG2 cells followed dose-response curve (Fig. 

6). Obtained results showed different cellular uptake for differently coated AgNP (Fig. 6). 

The most pronounced uptake was observed for PLLAgNP. At the highest applied dose of 25 

mg Ag/L, more than 80% of . Thus  cells internalized PLLAgNP. Uptake of CTAB-, PVP- 

and AOTAgNP was similar and somewhat weaker compared to the PLLAgNP, leading to the 

AgNP internalisation in ~ 50% HepG2 cells at the highest applied dose (Fig. 6). Only 

BSAAgNP showed the internalization lower than 30% (Fig. 6). Uptake of PLLAgNP was 

obviously promoted by interaction of positively charged PLL on the NP surface with 

negatively charged cell surface. 

The uptake mechanisms were analyzed by different inhibitors that block particular 

internalization route as previously described (Liu et al., 2014; Toduka et al., 2012; Hsiao et 

al., 2014; Madani et al., 2011; Bannunah et al., 2014; Rothen-Rutishauser et al., 2014; Sabella 

et al., 2014; Vranic et al., 2013; Meindl et al., 2017; Oh and Park, 2014; Dutta and Donaldson, 

2012). Nocodazole and filipine did not exhibit a significant change in the uptake of any AgNP 

type compared to the control cells. Next, pretreatment of HepG2 cells with the amiloride 

resulted in > 30% inhibition rate for PVP-, BSA- and CTABAgNP, while uptake of AOT- and 
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PLLAgNP was inhibited by < 30% by this inhibitor (Fig. 7). Cytochalasin D, inhibitor of 

actin dependent pathways, reduced the uptake rate by more than 50% for all AgNP types, 

while this inhibition rate was more than 75% for the AOT- and PVPAgNP (Fig. 7). Similar 

inhibition results were obtained when using PAO as inhibitor of clathrin-mediated 

endocytosis. Uptake of AOT-, PVP- and CTABAgNP were reduced by > 80%, while 

internalisation of BSA- and PLLAgNP were decreased by > 50% after pretreatment with 

PAO. According to these results, macropinocytosis and clathrin-mediated endocytosis are 

primary uptake pathways for all tested AgNP. 

 

4. Discussion 

4.1. Stability of AgNP in cell culture media  

Data presented in Table 1 and Fig. 1 indicate that coating agent determine the nature of 

AgNP colloidal system. Not all coating agent are capable to stabilize AgNP accurately 

enough for the preparation of monodisperse NP system. In this study, we applied the classical 

bottom-up synthetic approach using sodium borohydride to reduce AgNO3 that was described 

in numerous publications as simple preparatory procedure for monodisperse AgNP system 

(Evanoff and George, 2005; Tejamaya et al., 2012; Solomon et al., 2007; Lee and Meisel, 

1982; Nallathamby et al., 2008; Nallathamby and Xu, 2010). However, our results clearly 

show that the selection of coating agent is critical step during AgNP synthesis. Different 

coating agent may affect size and shape of NP either by changing the relative growth rates of 

NP seeds to nanocrystals or by performing different coverage density on the AgNP surface.  

Prior to any investigation of biological effects induced by NP, careful characterization 

and stability evaluation of nanomaterials should be performed under relevant experimental 

condition (Domazet Jurašin et al., 2016; Kerminazideh et al., 2016). Forces between NP and 
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components in biological media strongly influence aggregation behaviour of nanomaterial 

leading to completely different behaviour of aggregated or agglomerated NPs within 

biological systems compared to single NP (Domazet Jurašin et al., 2016). In addition, NP 

surface chemistry is in dynamic interaction with various biomolecules present in biological 

solutions, such as blood, saliva, and cell culture media (Sharma et al., 2014; Zook et al. 2011). 

The proteins covering the nanoparticle surface further prevent the individual NP from 

aggregation or agglomeration (Treuel et al., 2014).  

As we already reported for behaviour of the same types of AgNP in the cell culture 

media supplemented with 0.1% (m/v) bovine serum albumin (Domazet Jurašin et al., 2016), 

the presence of proteins in the CCM prevented massive agglomeration of AgNP. Although all 

AgNP types aggregated slightly upon immersion in the CCM (Table 1), observed size 

distribution diagrams did not show aggregates larger than 200 nm as reported for the cell-

culture medium without proteins (Domazet Jurašin et al., 2016). All AgNP showed similar 

hydrodynamic radii upon suspension in the CCM, ranging from 47 to 87 nm (Table 1). This is 

clear indication of protein corona formation on the surface of AgNP which leaded to the 

increased dH compared to the UW. Only PLLAgNP showed the significant amount of 200 

nm-sized clusters in the CCM. However, TEM values for PLLAgNP clearly demonstrated 

that these are not real NP aggregates, rather assembles of protein covered AgNP and free PLL 

in the CCM. As evidenced by the TEM values for the AgNP diameter (Table 1), all AgNP 

showed decreased size of the metal core in the CCM compared to the UW. Thus, protein 

corona obviously prevented aggregation of all AgNP types in the CCM.   

Surface functionalisation significantly influenced dissolution behaviour of all AgNP 

types except for PLLAgNP (Table 1). Increased level of Ag+ in the CCM compared to the 

UW was found for AOT-, BSA-, and CTABAgNP, whereas suspension of PVPAgNP in the 
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CCM inhibited dissolution compared to the UW. The highest Ag+ content was observed for 

the BSAAgNP. 

 

4.2.Cyto- and genotoxicity of different AgNP 

Obtained results clearly showed different toxic potential of AgNP having different 

surface functionalization. This corresponded well with recent observation in animal models 

where citrate-coated AgNP induced significantly higher histopathological alterations in fish 

gill compared to PVP-coated AgNP (Hawkins et al., 2015). All AgNP types showed dose 

dependent effects on HepG2 cells. As measured by LIVE/DEADTM and MTT assays, toxic 

potential of differently coated AgNP followed the order of BSAAgNP > PLLAgNP > 

CTABAgNP > AOTAgNP > PVPAgNP. However, flow cytometry experiments using  

LIVE/DEADTM assay indicated lower survival rate than what could be assumed from the 

results obtained by MTT. The reason for these differences could be residual interference 

which may be induced by the presence of not removed NP during MTT assay. Thus, lower 

cell survival measured by flow cytometry can indicate that MTT assay could be biased toward 

more positive results than the real viability (Vinković Vrček et al., 2015). The interference 

issues and the proper combinations of in vitro assessment techniques were already proven as 

extremely important for cytotoxicity evaluations of NPs (Vinković Vrček et al., 2015). 

Positively charged compared to negatively charged AgNP showed significantly higher 

toxicity as measured by LIVE/DEADTM and MTT assays. The reason may be the differences 

in more efficient electrostatic interaction between the positively charged NP and negatively 

charged cell membranes (Bannunah et al., 2014). Interestingly, the most “to-be-

biocompatibile” NP – BSAAgNP – were shown as the most “aggressive” for survival rate and 

cellular viability of HepG2 cells. This may be explained by the highest rate of dissolution 

behaviour found for BSAAgNP. The obtained results are consistent with previously reported 
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observation in mammalian liver cells (Vinković Vrček et al., 2016; de Lima et al. 2012; Arora 

et al., 2009; Avalos et al., 2014).  

Genotoxicity evaluation of different AgNP types using the alkaline comet assay 

showed primary DNA damage in HepG2 cells due to the exposure to non-cytotoxic 

concentrations of AgNP. In all treated cells, the amount of DNA damage followed dose-

response pattern. Highest extent in the primary DNA damage was found in HepG2 cells 

treated with PLLAgNP, while CTABAgNP showed the lowest genotoxic potential. It is 

important to stress that TL and TI parameters showed similar dynamics of DNA damage as 

induced by AgNP. 

In spite of numerous studies on AgNP effects on mammalian cells and tissues, there is 

still debate about “Trojan horse” effect as the main reason of AgNP biological effects (Gliga 

et al., 2014). Thus, it is still not clearly established whether nanoparticles per se induced 

toxicity or Ag+ ions that could be released from the AgNP surface in certain biological media. 

In previous study, we showed that the effective concentrations of ionic Ag for 50% HepG2 

cell loss at 24 hr (EC50 values), as measured by the MTT assay, were calculated as 0.5 mg/L, 

while 1 mg/L of Ag+ decreased cell viability by 62% (Vinković Vrček et al., 2016). As ionic 

Ag exhibited such strong cytotoxicity in HepG2 cells, dissolution behaviour of each AgNP 

used in this study was evaluated (Table 1). If we assume that AgNP dissolve the same amount 

of Ag+ inside the cells and in the CCM above the cells, as it was observed in the CCM 

supplemented with 10% (m/v) FBS, then cytotoxicity effects observed for AOT-, PVP- and 

BSAAgNP may be partially explained by release of ionic Ag from their surface (Table 1 and 

Figure 3). However, for the CTAB- and PLLAgNP, magnitude of cytotoxic effects was 

significantly higher than what can be expected from released Ag+. Thus, nanoparticulate form 

should account for observed toxicity, particularly in the case of positively charged AgNP.  
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4.3.Uptake mechanism of differentially coated AgNP 

In order to determine if different cytotoxic response of HepG2 cells could be due to 

the differences in cellular uptake of AgNP, flow cytometry and TEM imaging techniques 

were applied. This combination may provide better analysis for determination of uptake 

mechanism and localisation of NP inside the cells (Drasler et al., 2017). All techniques that 

can be used to evaluate NP cellular uptake have inherent limitation that it is not possible to 

differentiate between NP that are inside cells or on the cell surface (Drasler et al., 2017). 

Compared to image analysis, flow cytometry has advantage due to a rapid, easy and high-

volume analysis of cells, while transmission electron microscopy may be used to approve NP 

in endosomes. Thus, inherent limitation of flow cytometry may be counterbalanced when it is 

combined with the TEM analysis (Drasler et al., 2017).  

As for cytotoxicity effects, dose response was also observed for cellular uptake of 

different AgNP (Fig. 6). The uptake was more promoted for positively charged AgNP due to 

electrostatic interaction with negatively charged cell surface. Although the neutral and 

negative functional groups may prevent NP–biological interactions (Verma and Stellacci, 

2010), uptake of PVP- and AOTAgNP were similar. The reason may arise from nonspecific 

binding of proteins from the CCM to surfaces of both AgNP types leading to favourable 

interaction with cell membrane and their active transport inside the cells. It has been already 

shown that uptake of negatively charged NPs is successful despite the unfavourable 

electrostatic interaction with negatively charged cell membrane (Verma and Stellacci, 2010; 

Bannunah et al., 2014). The lowest internalization observed for BSAAgNP could be explained 

by weak ability of HepG2 cells for receptor-mediated endocytosis (Christensen and Birn, 

2002).   

Uptake of AgNP may be also discussed in terms of their aggregation behaviour. 

However, all AgNP had similar dH in the CCM (Table 1) caused by the protein corona 
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formation, which finally governed their interaction with cells. Only PLLAgNP showed in the 

CCM significant amount of NP population bigger than 100 nm. Indeed, the highest uptake 

rate of PLLAgNP may be explained be the observed aggregation behaviour. The rapid settling 

of aggregated PLLAgNP may increase their local concentration close to the cell surface 

enhancing their uptake into the HepG2 cells. Thus, aggregation behaviour of NP should be 

always taken into account during investigation of their uptake or interaction with cells. 

The uptake mechanism of different AgNP types was investigated by using 

pharmacologic inhibitors. Use of inhibitors that suppress specific endocytic pathway is well 

described approach to elucidate the endocytic mechanisms;  amiloride inhibits the Na+/H+ 

exchange required for macropinocytosis, cytochalasin D inhibits macropinocytosis by 

blocking actin polymerization avoiding microfilaments action, PAO affects clathrin-mediated 

endocytosis by decreasing membrane fluidity, filipine blocks caveolin-mediated endocytosis 

by binding on cholesterol in the membrane and inhibiting the formation of caveolae rafts in 

cholesterol-rich regions, nocodazole disrupts microtubule participation in the uptake (Liu et 

al., 2014; Toduka et al., 2012; Hsiao et al., 2014; Madani et al., 2011; Bannunah et al., 2014; 

Rothen-Rutishauser et al., 2014; Sabella et al., 2014; Vranic et al., 2013; Meindl et al., 2017). 

To determine mechanism of AgNP uptake using different inhibitors, the uptake was measured 

only after short exposure time (4 hr), since blocking of one uptake pathway can result in 

activation of other mechanisms, which may confound the overall result (Verma and Stellacci, 

2010; Liu et al., 2014; Rothen-Rutishauser et al., 2014; Sabella et al., 2014; Vranic et al., 

2013). Thus, it was critical to find the sufficient time for both, the detectible NP amount 

inside the cells and blocking of endocytosis by inhibitors applied. Another important factor 

was concentration of inhibitor which should be adequate for blocking action, but not enough 

to induce cell toxicity.   
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Results obtained using different inhibitors clearly showed that all AgNP types were 

taken by HepG2 cells by a combination of different active mechanisms (Fig. 8) including 

clathrin-mediated, actin-dependent endocytosis, macropinocytosis (Koivusalo et al., 2010; 

Nam et al., 2009; Oh and Park, 2014; Dutta and Donaldson, 2012; Liu et al., 2014; Gliga et al. 

2014). Neither nocodazole, which disrupts microtubule participation, nor filipine, which binds 

on cholesterol in the membrane and inhibits the formation of caveolae rafts in cholesterol-rich 

regions, exhibited any significant change in the uptake of any of the AgNP type studied here 

compared to the control cells. Thus, caveolae-associated endocytosis and microtubule 

participation were not involved in the uptake of studied AgNP by HepG2 cells. However, the 

absence of caveosomes are already reported in the literature for the HepG2 cells (Jiang et al. 

2013), which could be the main reason why we could not observe any caveolae-mediated 

pathway. Interestingly, microfilaments action through actin polymerisation and clathrin-

coated vesicles obviously have important role in internalisation of all studied AgNP as 

demonstrated by inhibitory effects of cytochalasin D and PAO, respectively. Inhibition of 

Na+/H+ exchange required for macropinocytosis was observed for the PVP-, BSA and 

CTABAgNP treated cells after pretreatment with amiloride. Interestingely, the incubation of 

cells with negatively charged AOT- and positively charged PLLAgNP showed similar uptake 

behaviour (Fig. 7). The uptake of these two AgNP were inhibited only by pretreatment of 

HepG2 cells with cytochalasin D and PAO, which suggested a clathrin- and 

macropinocytosis-dependent mechanisms (Fig. 7). Internalization of BSAAgNP was 

decreased by amiloride to a much lesser extent compared to pretreatment with cytochalasin D 

and PAO, implying more pronounced macropinocytosis compared to endocytosis. 

Macropinocytosis was the most important pathway for PVPAgNP, where amiloride, an 

inhibitor of macropinocytosis, and cytochalasin D, inhibitor of actin polymerisation, 

decreased their uptake much more than in the case of other AgNP. For AOTAgNP, 
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pretreatment with PAO induced almost complete inhibition of this clathrin-mediated uptake, 

indicating that specific NP-cell interactions played pronounced role for the negatively charged 

AgNP. As surface charge showed no clear trend, polydispersity and agglomeration state 

together with the protein corona formation on the AgNP surface affected the internalization 

pattern of AgNP by HepG2 cells. Indeed, relative cellular uptake was similar for negatively 

and positively charged AgNP, while pronounced aggregation behaviour of PLLAgNP in the 

CCM might affect their transfer into the cells. Highest % of relative uptake of PLLAgNP as 

measured by flow cytometry may be artefact, as the increase in the SSC intensity may be also 

induced by the NP attached to the cell surface.  

TEM visualization evidenced that all AgNP types were taken up and contained mainly 

within endosomes and lysosomes (Fig. 5). TEM images also demonstrated that all AgNP 

types may interact with the cell membrane in the form of clusters which were endocytosed by 

the cells. Surface functionalization was again found as important factor which defines 

intracellular localization and trafficking of AgNP. Although all techniques that can be used to 

study uptake mechanism of NP are limited by the fact that it is not possible to undoubtly 

distinct between taken and plasma membrane attached NP, images presented in Fig. 5 clearly 

show that all AgNP types were found within membrane-bound cellular structures. Thus, we 

may discuss only about the right quantity of AgNP taken up in HepG2 cells as measured by 

flow cytometry. Our results are well in agreement with recent studies showing that all NP use 

multiple pathways to enter into mammalian cells (Bannunah et al., 2014).  

 

5. Conclusion 

As demonstrated in this study, AgNP had the capacity to interact with the mammalian 

cells and enter them easily by different energy driven internalisation pathways (Fig. 8). The 
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main uptake mechanisms of AgNP coated with PVP, AOT, PLL, CTAB and BSA were 

macropinocytosis and clathrin-mediated endocytosis. None of the pharmacological treatments 

could fully inhibit NP uptake indicating that AgNP entered into mammalian cells by multiple 

pathways. Surface functionalization was demonstrated to be the important factor determining 

the toxicity and mechanism of AgNP uptake.  However, the agglomeration state, the presence 

of specific receptors on cell surface, the composition of protein corona on NP surface, should 

be also taken into account when elucidating the mechanism of NP internalisation. The results 

clearly indicated the importance of careful analysis and individual interpretation for each cell-

NP system in further development of nanotechnological applications. 

 

Notes: The authors declare no competing financial interest. 
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Table 1. Size and dissolution behaviour of different silver nanoparticles (AgNP) in ultrapure 

water (UW) and cell-culture medium (CCM) supplemented with 10% (m/v) fetal bovine 

serum after 1 hr at 25 oC as measured by DLS, TEM and ICPMS. AgNP were functionalised 

with sodium bis(2-ethylhexyl)-sulfosuccinate (AOTAgNP), poly(vinylpyrrolidone) 

(PVPAgNP), bovine serum albumin (BSAAgNP), poly-L-lysine (PLLAgNP), and 

cetyltrimethylammonium bromide (CTABAgNP). TEM values indicate diameter size (d in 

nm) of AgNP, while DLS values indicated hydrodynamic diameter (dH in nm) obtained from 

size distributions by volume. Dissolved Ag+ fraction is given in % of total Ag content in 

AgNP suspensions. 

NPs type UW CCM 

dH, nm 

(% mean 

volume) 

d, nm 

(% total 

population) 

Ag+,

% 

dH, nm 

(% mean 

volume) 

d, nm 

(% total 

population) 

Ag+, 

% 

AOTAgNP 

19.9 ± 0.5 

(99.4) 11.3 ± 0.6 

(100) 
0.21 

47.8 ± 8.9  

(99.7) 
29.4 ± 1.4 

(100) 
1.17 

  

PVPAgNP 

4.9 ± 1.7 

(98.7) 

3.8 ± 0.7 

(76.5) 

37.6 ± 5.2 

(23.5)  

2.72 

59.6 ± 11.4 

(99.8) 

 9.6 ± 1.7 

(21.4) 

29.8 ± 6.4 

(78.6) 

0.85 
33.5 ± 4.0 

(1.2) 

 

BSAAgNP 

12.8 ± 8.1 

(89.8) 

1.6 ± 0.4 

(26.3) 

8.7 ± 1.2 

(73.7) 

3.34 

86.5 ± 17.5 

(99.8) 18.4 ± 2.1 

(100) 
4.21 

65.7 ± 26.1 

(8.7) 

 

PLLAgNP 

7.4 ± 1.3 

(96.2) 
5.8 ± 0.9 

(31.4) 

21.7 ± 3.8 

(68.6) 

0.99 

85.6 ± 17.6 

(41.2) 8.6 ± 1.6 

(100) 

 

0.72 
55.7 ± 13.4 

(3.7) 

208.4 ± 14.8 

(56.7) 

CTABAgNP 

17.4 ± 5.4 

(88.1) 
6.4 ± 1.2 

(18.7) 

21.9 ± 3.8 

(22.5) 

63.7 ± 12.4 

(58.8) 

0.44 

71.8 ± 6.4 

(98.9) 

4.8 ± 0.7 

(10.8) 

27.8 ± 5.4 

(72.6) 

71.2 ± 15.1 

(16.6) 

1.14 81.5 ± 7.6 

(2.9) 

 

193.6 ± 36.8 

(8.7) 
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Table 2. Evaluation of primary DNA damage in HepG2 cells following 24 hr exposure to 

silver nanoparticles functionalized with sodium bis(2-ethylhexyl)-sulfosuccinate 

(AOTAgNP), poly(vinylpyrrolidone) (PVPAgNP), bovine serum albumin (BSAAgNP), poly-

L-lysine (PLLAgNP), and cetyltrimethylammonium bromide (CTABAgNP). Parameters of 

the alkaline comet assay were estimated on 110 comets per cell. Significant differences (P < 

0.05) are denoted with * as compared to negative control.  

Treatment 
Tail length Tail intensity 

 Mean ± SD  Median (range) Mean ± SD      Median (range) 

Negative control 17.20 ± 2.42 16.67 (13.33-24.58) 0.14 ± 0.41 0.03 (0-3.76) 

Positive control 23.32 ± 3.78* 23.33 (15.83-33.33) 2.73 ± 4.21* 0.69 (0-27.08) 

AOT 

AgNP 

1 mg/L 

5 mg/L 

10 mg/L 

 17.96 ± 3.18 

21.56 ± 6.30* 

32.48 ± 15.2* 

17.08 (13.33-30.00) 

19.17 (13.33-48.75) 

27.08 (15.42-85.00) 

0.35 ± 1.01 

  2.15 ± 3.35* 

   4.12 ± 5.7* 

  0.05 (0-8.26) 

  0.70 (0-18.80) 

  1.85  (0-30.62) 

PVP 

AgNP 

1 mg/L 

5 mg/L 

10 mg/L 

16.79 ± 1.61 

21.08 ± 4.55* 

25.56 ± 8.24* 

16.25 (14.58-23.75) 

19.58 (15.42-38.33) 

 24.17 (15-53.33) 

 1.21 ± 2.27* 

1.57 ± 0.99* 

 2.31 ± 3.25* 

  0.14 (0-12.36) 

  0.15 (0-5.88) 

  0.92 (0-19.32) 

BSA 

AgNP 

1 mg/L 

5 mg/L 

10 mg/L 

17.91 ± 2.49 

23.31 ± 7.06* 

24.67 ± 5.52* 

17.08 (13.33-25.83) 

22.08 (14.58-59.58) 

24.38 (16.25-47.50) 

0.22 ± 0.39 

 1.03 ± 1.55* 

 1.36 ± 1.71* 

   0.02 (0-2.01) 

   0.32 (0-6.92) 

   0.75 (0-8.10) 

PLL 

AgNP 

1 mg/L 

5 mg/L 

10 mg/L 

16.44 ± 2.43 

19.86 ± 4.34* 

46.53 ± 22.7* 

15.83 (12.08-25.83) 

17.08 (14.17-40.00) 

40.00 (16.25-106.3) 

  0.45 ± 0.76 

 0.84 ± 1.10* 

  11.64 ± 13.1* 

  0.10 (0-4.34) 

  0.34 (0-6.41) 

  7.54 (0.01-72.0) 

CTAB 

AgNP 

1 mg/L 

5 mg/L 

10 mg/L 

17.79 ± 2.24 

19.82 ± 3.33* 

21.78 ± 5.76* 

17.08 (14.17-25.83) 

18.75 (15.42-29.58) 

20.21 (14.17-59.58) 

0.26 ± 0.50 

0.23 ± 0.37 

0.67 ± 1.97* 

  0.04 (0-3.99) 

  0.08 ( 0-3.50) 

  0.16 (0-22.16) 
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Fig. 1. Transmission electron micrographs (TEM) of different silver nanoparticles coated 

sodium bis(2-ethylhexyl)-sulfosuccinate (AOTAgNP), poly(vinylpyrrolidone) (PVPAgNP), 

bovine serum albumin (BSAAgNP), poly-L-lysine (PLLAgNP), and cetyl 

trimethylammonium bromide (CTABAgNP) in ultrapure water (UW) and cell-culture 

medium supplemented with 10% (m/v) fetal bovine serum albumin (CCM) after 1 hr at 25 oC. 

Scale bars are in 100 nm. 

 

 

Fig. 2. Surface charge of different silver nanoparticles (AgNP) in ultrapure water (UW) and 

cell-culture medium supplemented with 10% (m/v) foetal bovine serum (CCM) after 1 hr at 

25 oC as measured by ELS. AgNP were functionalised with sodium bis(2-ethylhexyl)-

sulfosuccinate (AOTAgNP), poly(vinylpyrrolidone) (PVPAgNP), bovine serum albumin 

(BSAAgNP), poly-L-lysine (PLLAgNP), and cetyltrimethylammonium bromide 

(CTABAgNP). 
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Fig. 3. Effect of different silver nanoparticles (AgNP) on the cell viability measured by the 

MTT assay. AgNP were functionalized with sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), 

poly(vinylpyrrolidone) (PVP), bovine serum albumin (BSA), poly-L-lysine (PLL), and cetyl 

trimethylammonium bromide (CTAB). HepG2 cells were exposed to different concentrations, 

given in mg/L, of AgNP for 24 hr. Control cells were cultivated in NPs-free exposure media 

(negative controls) or treated with DMSO (positive controls). The data for cell viability, 

expressed as the mean of three independent experiments conducted in five replicates, were 

calculated as percentages of the values measured in control cells. Error bars represent 

standard deviations. 
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Fig. 4. Cell survival of HepG2 cells treated with different silver nanoparticles (AgNP) for 24 

hr. AgNP were functionalized with sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), 

poly(vinylpyrrolidone) (PVP), bovine serum albumin (BSA), poly-L-lysine (PLL), and cetyl 

trimethylammonium bromide (CTAB). The percentage of live (EthD-negative, CAM-

positive) and dead (EthD-positive, CAM-positive or negative) HepG2 cells was determined 

by the flow cytometry. Control cells were cultivated in NPs-free exposure media. Results, 

expressed as the mean of three independent experiments conducted in five replicates, were 

calculated as percentages of the values measured in control cells. Error bars represent 

standard deviations.  
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Fig. 5. Intracellular localization of different AgNP (indicated by blak arrows) in HepG2 cells 

investigated by TEM. (a, b) TEM images of untreated HepG2 cells with no morphological 

changes. (c) AOTAgNP found in large endosome after 24 hr exposure. (d) Process of 



 
 

40 
 

internalization of AOTAgNP in HepG2 cells. (e) Agglomerates of PVPAgNP found in 

membrane-bound structure. (f) BSAAgNP found in mitochondria of HepG2 cells. (g) 

Aggregates and single particles of PLLAgNP in lysosomes. (h) CTABAgNP found in 

lysosomes.  

 

 

Fig. 6. Uptake of different silver nanoparticles (AgNP) by HepG2 cells analysed by the flow 

cytometry. AgNP were functionalized with sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), 

poly(vinylpyrrolidone) (PVP), bovine serum albumin (BSA), poly-L-lysine (PLL), and 

cetyltrimethylammonium bromide (CTAB). HepG2 cells were exposed to different 

concentrations of AgNPs, given in mg/L, for 24 hr. Control cells were cultivated in NPs-free 

exposure media (negative controls). The percentage of relative uptake, calculated as 

percentages of the increase of the side scattered light of the laser beam (SSC) relative to 
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control cells, is expressed as the mean of three independent experiments conducted in five 

replicates. Error bars represent standard deviations.  

 

 

Fig. 7. Mechanism of uptake of different silver nanoparticles – functionalized with sodium 

bis(2-ethylhexyl)-sulfosuccinate (AOTAgNP), poly(vinylpyrrolidone) (PVPAgNP), bovine 

serum albumin (BSAAgNP), poly-L-lysine (PLLAgNP), and cetyltrimethylammonium 

bromide (CTABAgNP) - by HepG2 cells analyzed by the flow cytometry. After treatment 

with different inhibitors: phenylarsine oxide (PAO), cytochalasin D, nocodazole, amiloride 

and filipin for 30 min, HepG2 cells were exposed to 5 mg/L AgNP for 4 hr. Control cells 

were cultivated in NPs-free exposure media (negative controls). The percentage of relative 

uptake, calculated as percentages of the increase of the side scattered light of the laser beam 

(SSC) relative to control cells, is expressed as the mean of three independent experiments 

conducted in five replicates. Error bars represent standard deviations.  
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Fig. 8. Schematic presentation of endocytic pathways of different silver nanoparticles – 

functionalized with sodium bis(2-ethylhexyl)-sulfosuccinate (AOTAgNP), 

poly(vinylpyrrolidone) (PVPAgNP), bovine serum albumin (BSAAgNP), poly-L-lysine 

(PLLAgNP), and cetyltrimethylammonium bromide (CTABAgNP) - in HepG2 cells. 

 

 


