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Introduction 

At present, bone is the only human organ that can be fully regenerated by exogenously 

applied bone morphogenetic proteins (BMPs) when physiological mechanisms of fracture 

repair fail. Since the identification of BMPs (Urist 1965; Sampath & Reddi 1981; Wozney et 

al, 1988; Ozkaynak et al, 1990; Chang et al, 1994), there have been many scientific 

discoveries and clinical reports on their use (reviewed by Vukicevic & Sampath, 2004). More 

than 340,000 patients worldwide have been successfully treated with recombinant BMPs for 

long-bone non-unions, acute fractures and spinal fusions. 

At the 6
th

 International Conference on Bone Morphogenetic Proteins, the role of BMPs in 

signal transduction, developmental biology, metabolic bone diseases, joint and cartilage 

repair, skeleton reconstruction, kidney regeneration and tumour biology were discussed by 

leading experts in the field.  

 

Signal transduction 

BMPs are dimeric molecules that induce signalling through a heterotetrameric receptor 

complex composed of two type I and two type II serine-threonine kinase receptors, known as 

BMP receptors (BMPRs). The mode of BMPR oligomerization determines the resulting 

BMPR signal. Binding of BMPs to preformed heteromeric receptor complexes activates the 

nuclear effector proteins known as Smads, whereas binding to the high-affinity type I receptor 

and recruitment of the low-affinity type II receptor induces a Smad-independent signalling 

pathway (Miyazono et al, 2005). After BMP-induced heterodimeric complex formation, the 

constitutively active type II receptor kinase phosphorylates the type I receptor and 

subsequently activates intracellular signalling by phosphorylating downstream components 

(Fig 1). The BMP ligand connects the receptors—which otherwise have no contact between 

their ectodomains— and induces allosteric changes. W. Sebald (Würzburg, Germany) showed 

that BMP2 acts as a rigid clamp, which brings type I and type II receptor chains together for 

transactivation, rather than changing the affinity of low-affinity receptors. Sebald has also 

deciphered the binding mode of many BMP-modulator proteins by extensive mutational 

analyses. H. Y. Lin (Boston, MA, USA) reported that haemojuvelin, which is involved in iron 

metabolism, is a new BMP co-receptor that regulates hepcidin expression. Haemojuvelin 

mutants associated with haemochromatosis owing to low levels of hepcidin have impaired 

BMP signalling ability.  

The internalization of BMPRs and its relationship to signalling were largely unexplored prior 

to the meeting. However, P. Knaus (Berlin, Germany) showed that both types of receptor 
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undergo constitutive endocytosis through clathrin-coated pits, whereas only BMPRII also 

undergoes caveolar-like internalization. BMP–Smad signalling is not mediated through 

caveolae, and Smad phosphorylation at the carboxyl terminus does not require endocytosis 

and can also take place at the plasma membrane. Smad-dependent signalling is initiated while 

the BMPRs are still at the plasma membrane. Continuation of this pathway—that is, 

translocation of activated Smads into the nucleus—requires endocytosis of the receptor 

complex through clathrin-coated vesicles. 

BMP downstream signalling molecules (Smads) can be divided into three distinct subclasses 

(Fig 1): signal-transducing receptorregulated Smads or R-Smads (Smad1, Smad5 and Smad8); 

common mediator Smad or Co-Smad (Smad4); and inhibitory Smads or I-Smads (Smad6 and 

Smad7). K. Miyazono (Tokyo, Japan) showed that Smad6 inhibits the activin receptor-like 

kinase 3 (ALK3)- mediated BMP signalling pathway more than the ALK2-mediated pathways 

and mapped four main amino acids in ALK3 that render this receptor highly sensitive to 

Smad6. Through mutational analyses, Miyazono identified a region at the amino terminus of 

the kinase of both receptors that is important for this specificity. The R-Smad– Co-Smad 

complex enters the nucleus and recruits other transcription factors, co-activators and co-

repressors to regulate the transcription of target genes by binding to specific DNA sequences, 

known as BMPresponsive elements (BREs; Fig 1). Y. Ohta (Osaka, Japan) showed that cyclic 

AMP (cAMP) accelerates BMP signalling by enhancing the transcriptional activity of BREs 

through a cAMP-responsive element. The activity of BMPs is tightly regulated by gene 

expression, by protein processing from their precursors and by binding to the naturally 

occurring secreted soluble BMP antagonists in the extracellular space (Fig 1). P. ten Dijke 

(Amsterdam, The Netherlands) showed that sclerostin, which is a BMP antagonist, abrogates 

BMPstimulated bone formation by antagonizing Wnt signalling, rather than by directly 

antagonizing BMP-induced Smad1–Smad5 phosphorylation and inhibiting direct BMP target 

genes, such as distalless homeobox 5 (DLX5) and muscle segment homeobox-like 2 (MSX2). 

High bone mass in sclerosteosis and van Buchem disease, which is caused by sclerostin 

deficiency, might therefore result from increased wingless-type (Wnt) signalling. 

 

Developmental biology 

The roles of individual BMPs have been studied through the identification of mutated genes 

in classic mouse mutants, and through conventional gene-targeting approaches, gene 

disruption and the overexpression of genes encoding BMPs, BMPRs and Smads. Collectively, 

these studies have confirmed that BMPs have important roles in the development of the 
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skeleton, nervous system, eye, kidney, heart and primordial germ cells (Vukicevic & 

Sampath, 2004).  

As BMP2 and BMP4 homozygous mutant mice show embryonic lethality, S. Harris (San 

Antonio, TX, USA) and colleagues reported on BMP2 and BMP4 conditional deletions in 

bone. BMP4 conditional knockout mice were smaller than wild-type mice by 20–50%, had a 

bend in the tail and their overall bone mineral density was reduced by 10–15%, with a 30% 

reduction in the spine density. Deletion of BMP2 in early osteoblasts led to a major decrease 

in trabecular number in the tibia and spine, with a 30–50% decrease in the cortical thickness. 

These studies imply that both BMP4 and BMP2 have their own selective functions in 

osteoblasts. Y. Mishina (Research Triangle Park, NC, USA) showed that the long bones of 

mice with an osteoblast-specific mutation in BMPR-IA (ALK3) had a reduced bone mass for 

up to three months after birth. However, by three months of age, the total bone mass in these 

mice was increased due to reduced bone resorption. Conversely, the mass of the calvarial 

bones increased from the embryonic period onwards. These results show that the BMP 

function in osteoblasts alters in an age-dependent manner, and might differ between 

endochondral and intramembranous bone formation. M. Okamoto (Osaka, Japan) reported 

that mice overexpressing the BMP4 inhibitor noggin frequently underwent fracture, but 

showed increased bone volume. This was due to a decreased number of osteoclasts resulting 

from a decrease in the activation frequency of bone-remodelling units, and from an imbalance 

between osteoclastic bone resorption and osteoblastic bone formation leading to bone gain. 

Conversely, transgenic mice overexpressing BMP4 showed severe osteopenia—low bone 

density—with markedly increased osteoclast number. Tight regulation of BMP expression is 

therefore required for maintaining the homeostasis between bone formation and resorption.  

Y. E. Zhang (Bethesda, MD, USA) reported on the increased bone mass in mice lacking the 

Smad ubiquitin regulatory factor, Smurf1. Interestingly, this was not caused by alterations in 

the Smad pathway, but by the accumulation of phosphorylated MAPK/ERK kinase kinase 2 

(MEKK2), which physically interacts with Smurf1. Despite the lack of phenotypic 

developmental abnormalities, Smurf1–/– mice display an age-dependent increase in bone 

mass, which might be due to the enhanced activity of osteoblasts that become more sensitized 

to BMPs in the absence of Smurf1. Surprisingly, this skeletal abnormality is not caused by an 

alteration in Smad-mediated BMP signalling, but by an increase in activator protein 1 (AP1) 

activity, the accumulation of phosphorylated MEKK2 and the activation of the downstream c-

Jun amino-terminal kinase ( JNK) signalling cascade, which together regulate the biological 

response to the BMP signal. R. Monteiro (Utrecht, The Netherlands) presented a reportergene 
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approach to study BMP signalling during vertebrate development. He generated transgenic 

green fluorescent protein (GFP) reporter mice carrying a Smad1–Smad5-specific response 

element, which displayed increased sensitivity compared with the previously developed LacZ 

reporter strain. The GFP approach can also be used to study BMP signalling in adult mice, 

whereas the LacZ reporter system is not suitable.  

BMPs are involved in the development of most organs and tissues, including the somites, 

nervous system, lung, kidney, skin and gonads, as well as in crucial steps in the establishment 

of the basic embryonic body plan (Hogan, 1996). Model organisms used for studying the role 

of BMP pathways in embryogenesis include Xenopus, mice, chickens and zebrafish. D. 

Huylebroeck (Leuven, Belgium) has used a morpholino-based knockdown approach in 

Xenopus to study the function of the Smad-interacting protein Smicl in the regulation of the 

expression of chordin—a BMP antagonist— in the Spemann organizer. By using a similar 

approach in zebrafish, he has also shown that Sip Ttrap, which is a novel Alk-interacting and 

Smad-interacting protein, is essential for gastrulation movement and left–right asymmetry, 

and functions in an early Nodal–Smad3 pathway and presumably also in later BMP-controlled 

processes.  

A. Zwijsen (Leuven, Belgium) reported BMP gain-of-function defects in Smad5-knockout 

embryos. In the mouse, Smad5 is essential for primordial germ-cell development, the 

development of the allantois and closure of the amnion. These defects are consistent with a 

loss of BMP signalling. By contrast, the appearance of ectopic primordial germ-like cells, and 

regionalized ectopic vasculogenesis and haematopoiesis in the thickened Smad5–/– amnion 

are defects that have not been reported in other BMP loss-of-function mouse models. 

Injection of BMP4 into the exocoelom of wild-type embryos can induce thickening of the 

amnion, mimicking the early amnion pheno type in Smad5 mutants. Therefore, loss of Smad5 

paradoxically results in BMP gain-of-function defects in the amnion.  

S. Schulte-Merker (Utrecht, The Netherlands) exploited the fact that in zebrafish, osteoclasts 

are not active before 12 days postfertilization. Hence, osteo blast function screens can be 

performed without interference from the osteoclast. He analysed approximately 100 specific 

mutants, and found that 25% had increased bone mass. In addition, Stocksteif zebrafish 

mutants show ossification of the entire notochord with the centres of their vertebrae being 

fused, contrary to the wild type in which only vertebrae ossify. However, the appearance of 

their osteo blasts did not differ from those of wild-type embryos. This implies that classic 

osteoblasts might not be responsible for the (over)ossification around the notochord, raising 

the question of whether other cells could be involved in producing bone matrix in zebrafish.  
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Skeletal diseases  

F. Luyten (Leuven, Belgium) used genetic approaches in mice to show that BMP signalling is 

crucial in the homeostasis of post natal articular cartilage. Luyten also showed the presence of 

distinct BMPs, and their antagonists and target cells, in the synovium of arthritic patients. 

BMPs protect articular cartilage against inflammation-driven destruction in arthritis. In 

addition, by using a mouse model of ankylosing enthesitis, Luyten provided evidence for the 

crucial role of BMP signalling in both the initiation and progression of arthritic diseases.  

BMP gene mutations show positive linkages to different clinical syndromes (Hartung et al, 

2006). For example, Luyten showed that mutations in cartilage-derived morphogenetic 

protein 1 (CDMP1), which is also known as growth-differentiation factor 5 (GDF5), are 

implicated in two recessive chondrodysplasias: the Hunter–Thompson type and the Grebe 

type (Thomas et al, 1997). A recurrent mutation in the glycine–serine (GS) activation domain 

of ALK2, which is a BMPR-I, was reported by F. Kaplan and E. Shore (Philadelphia, PA, 

USA) in all sporadic and familial cases of classic fibrodysplasia ossificans progressiva (FOP). 

FOP is a serious disorder of heterotopic ossification in humans, which leads to the formation 

of a second skeleton. New therapies based on inhibiting a crucial nodal point in the BMP 

signalling pathway will open a new era in treating heterotopic ossifications in humans.  

 

Tumour biology  

The role of BMPs in tumour biology is controversial. J. Langenfeld (New Brunswick, NJ, 

USA) showed that BMP2 and BMP4 have important roles in the regulation of lung and other 

carcinomas, by promoting tumour invasion and metastasis. BMP2 has also been shown to 

induce, in a self-autonomous manner, signalling pathways that promote malignant 

transformation. J. H. Clement ( Jena, Germany) reported that high levels of BMP2 at the 

invasion front enhance the migratory and invasive properties of breast cancer in a xenograft 

model, as well as promoting vascularization and tumour angiogenesis. A. Bosserhoff 

(Regensburg, Germany) showed that BMPs promote melanoma cell invasion, angiogenesis 

and vasculogenic mimicry, and therefore might have important roles in the progression of 

malignant melanoma. Conversely, C. Löwik (Leiden, The Netherlands) showed, for the first 

time, that systemically administered BMP7 inhibits breast and prostate cancer growth in the 

bone marrow, and that BMP7 is strongly downregulated in laser microdissected primary 

human prostate cancer compared with normal prostate luminal epithelium. BMP7 controls the 

epithelial homeostasis in the human mammary and prostate gland (Fig 2). Through inhibiting 
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transforming growth factor-β (TGF-β)-induced activation of Smad2–Smad3 through ALK5, 

and through inducing E-cadherin expression even in the presence of TGF-β, BMP7 preserves 

the epithelial phenotype. By counteracting the epithelial-to-mesenchymal transition, BMP7 

prevents the acquisition of an invasive metastatic phenotype (Fig 2). However, the exact role 

of BMPs in the development of tumours might be ambivalent and has yet to be fully explored.  

 

Tissue regeneration  

BMPs have been successfully tested in clinical trials and subsequently approved for treating 

skeletal defects (Vukicevic & Sampath, 2004). Their unique ability to transform muscle into 

bone (Urist, 1965; Yamaguchi et al, 1991) has been used to ‘pre-tailor’ cranio-facial bones in 

the back muscles of patients (Fig 3). BMPs inhibit myogenesis and promote the formation of 

new bone through activating the expression of inhibitor of differentiation–inhibitor of DNA 

binding (Id) genes. Id proteins then repress transcription by basic helix–loop– helix 

heterodimers containing myoD/myogenin, which results in the inhibition of myogenesis and 

leads to the formation of osteoblasts (Fig 3). H. Terheyden (Kiel, Germany) discussed three 

patients with huge mandibular and maxillary defects. Their bones were regrown in 

specifically modelled scaffolds loaded with BMP7 and bonemarrow aspirate, which were then 

placed into the latissimus dorsi muscle for six weeks. Newly formed and properly shaped 

bone with a new vascular network was then transplanted into the defect in the jaw. A. 

Westermark (Stockholm, Sweden) showed another example of bone formation from a muscle, 

in a patient with a defect in the frontal bone of the skull. A section of the latissimus dorsi 

muscle was dissected, impregnated with BMP2, transferred into the mould and then 

reinstalled in the patient’s back. After four months, newly formed bone was transferred to the 

frontal defect, which then healed (Fig 3). The efficacy of using BMPs in the regeneration of 

articular cartilage defects has been previously shown in animal models (Vukicevic & 

Sampath, 2004). Apart from the local application of BMPs for the regeneration of bone, 

BMPs have also been systemically used to increase the volume of the skeleton (Simic et al, 

2006), and to regenerate the kidney following acute and chronic failure in rats (Vukicevic et 

al, 1998; Simic & Vukicevic, 2005). K. Hruska (St Louis, MO, USA) showed diminished 

vascular calcification following systemic administration of BMP7 in a mouse model of 

chronic kidney disease induced by renal ablation. BMP2 stimulated the vascular expression of 

the osteoblast-specific transcription factor Cbfa1 and of the downstream osteoblast 

programme leading to increased mineralization. A. Celeste (Cambridge, MA, USA) revealed 

that the livers of mice treated systemically with BMP9 showed microvesicular changes and 
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necrosis, thereby questioning the potential of BMP9 for the treatment of diabetes, which has 

been suggested as a therapeutic option (Chen et al, 2003).  

 

Future therapeutic perspectives  

It is likely that advances made in the identification and characterization of the BMP signalling 

pathways and promoter sequences, and the regulation of BMP gene expression, will allow the 

development of small molecules for BMP endogenous upregulation in patients with systemic 

diseases, such as osteoporosis and chronic kidney failure. K. Nakagawa (Osaka, Japan) 

reported that the prostaglandin E2 receptor E4 agonist accelerates BMP-dependent 

osteoblastic differentiation through the protein kinase A signalling pathway. Concurrent local 

delivery of prostaglandin E2 receptor E4 agonist and BMP2 enhances spinal fusion in a rabbit 

model, as shown by T. Namikawa (Osaka, Japan). G. Mundy (Nashville, TN, USA) presented 

a series of chemically unrelated compounds that mimic the effect of BMP2. Statins, which are 

inhibitors of 3-hydroxy-3-methylglutaryl (HMG) CoA reductase, and proteasome inhibitors, 

such as bortezomib, are among the most powerful BMP2 mimetics that stimulate bone 

formation in vivo. Bortezomib is used clinically in myeloma patients as an antineoplastic 

agent, and has been shown to increase BMP2 expression and alkaline phosphatase activity. 

Statins also increase bone formation systemically when given in large doses transdermally or 

locally at fractured rat bones. D. Bosukonda (Hopkinton, MA, USA) reported on a novel 

peptide agonist that binds specifically to BMPRs, thereby inducing Smad signalling and 

protecting the kidney against cisplatinum-induced nephrotoxicity.  

Autologous bone marrow-derived mesenchymal cells could be engineered in the surgical suite 

to deliver the BMP through ex vivo gene therapy with an appropriate carrier matrix to induce 

new bone formation. A. Hoffmann (Braunschweig, Germany) showed neo tendon formation 

induced by the manipulation of the Smad8 signalling pathway in mesenchymal stem cells. 

Adenovirally-modified murine mesenchymal progenitors expressing both Smad8 and BMP2 

generate entire ectopic tendon–bone insertions with an osteotendinous junction exhibiting a 

fibrocartilage enthesis.  

 

Closing remarks  

Although diverse actions of BMPs have been extensively investigated, their redundancy and 

specificity in the development and regeneration of various organs—including bone, kidney, 

joint cartilage, liver, muscle and brain—remain to be explored. We look forward to hearing 

more on these themes at the Seventh International Conference on BMPs, which will take 
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place in Lake Tahoe, California, from 10 to 14 July 2008, and will be organized by A. H. 

Reddi (Davis, CA, USA), J. Wozney (Boston, MA, USA) and T. K. Sampath (Framingham, 

MA, USA).  
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Figure legends 

 

Figure 1. Bone morphogenetic protein signalling. A member of the BMP family induces 

heterodimeric complex formation between two BMP receptors (BMPRs). The type II receptor 

kinase phosphorylates the type I receptor and subsequently activates intracellular signalling. 

On BMPR activation, Smad1–Smad5–Smad8 forms heterodimeric complexes with Smad4, 

which then translocate to the nucleus where they act directly and/or cooperate with other 

molecules to regulate the transcription of target genes. Inhibitory Smad6–Smad7 specifically 

inhibits BMP signalling. Antagonists, stimulatory and inhibitory co-receptors, and Smurfs are 

actively involved in maintaining the BMP tissue homeostasis and regulate cross-talk with 

other signalling pathways. ActR, activin receptor; ALK, activin receptor-like kinase; BAMBI, 

BMP and activin membrane-bound inhibitor; BMP, bone morphogenetic protein; c-kit, 

CD117, tyrosine kinase receptor; GPI, glycosylphosphatidyl inositol; HJV, haemojuvelin; P, 

phosphorylation; Ror2, receptor tyrosine kinase-like orphan receptor 2; Smurf, Smad 

ubiquitin regulatory factor; Tsg, twisted gastrulation; Tyr, tyrosine; USAG1, uterine 

sensitization-associated gene 1.  
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Figure 2. Role of bone morphogenetic proteins in tumour biology. Bone morphogenetic 

protein (BMP) 7 promotes the mesenchyme-to-epithelial transformation (MET), and 

specifically inhibits the transforming growth factor-β (TGF-β)-mediated epithelium-to-

mesenchyme transformation (EMT), both of which inhibit tumour metastasis and growth. 

Tumour metastatic cells release growth factors that promote bone resorption by osteoclasts. 

Osteoclasts then release BMPs from the bone matrix, which in turn inhibit tumour growth.   
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Figure 3. Bone morphogenetic proteins in tissue engineering. Bone morphogenetic proteins 

(BMPs) inhibit myogenesis, and promote formation of new bones through activating the 

expression of inhibitor of differentiation (Id) genes, which prevent activity of 

myoD/myogenin. Scaffolds filled with bone-marrow cells and BMPs are placed into the back 

muscle of a patient who is in need of a new bone, such as a frontal bone or mandible.  

 


