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Abstract: 

Aims/Hypothesis: Better understanding of type 2 diabetes and its prevention is a pressing need. 

Changes in human plasma N-glycome are associated with many diseases and represent 

promising diagnostic and prognostic biomarkers. Variations in glucose metabolism directly 

affect glycosylation through the hexosamine pathway, but studies of plasma glycome in type 2 

diabetes are scarce. 

Methods: Using chromatographic approach, we analysed N-linked glycans from plasma proteins 

in two populations comprising individuals with registered hyperglycaemia during critical illness 

(increased risk for development of type 2 diabetes) and individuals who stayed normoglycaemic 

during the same condition -  AcuteInflammation (59 cases vs. 49 controls) and 

AcuteInflammation Replication (52 cases vs. 14 controls) populations. Additionally, N-glycome 

was also studied in individuals from FinRisk (37 incident cases of type 2 diabetes collected at 

baseline vs 37 controls), ORCADES (94 individuals with HbA1c > 6.5 % (47.5 mmol/mol) vs 

658 controls) and SABRE cohort studies (307 individuals with HbA1c > 6.5 % (47.5 mmol/mol) 

vs 307 controls). 

Results: Individuals with increased risk for diabetes type 2 development (AcuteInflammation 

and AcuteInflammation Replication populations), incident cases of type 2 diabetes collected at 

baseline (FinRisk population) and individuals with elevated HbA1c (ORCADES and SABRE 

populations) all presented increased branching, galactosylation and sialylation of plasma protein 

N-glycans and these changes were of similar magnitude. 

Conclusions/Interpretation: Increased complexity of plasma N-glycan structures is associated 

with higher risk of developing type 2 diabetes and poorer regulation of blood glucose levels. 
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Although further research is needed, this finding could offer a potential new approach for 

improvement in prevention of diabetes and its complications. 

 

Keywords: diabetes predisposition; hyperglycaemia; N-linked glycans; plasma N-glycome; type 

2 diabetes; 

 

Abbreviations 

2-AB - 2-aminobenzamide; ACN - acetonitrile; AI - AcuteInflammation; AI_R - 

AcuteInflammation Replication; BEH - bridged ethylene hybrid; BMI - Body Mass Index; CI - 

confidence interval; DMSO - dimethyl sulfoxide; FIN - FinRisk; G0 - agalactosylated; G1 - 

monogalactosylated; G2 - digalactosylated; G3 - trigalactosylated; G4 - tetragalactosylated; 

GlcNAc - N-acetylglucosamine; HB - high branching; HG - hyperglycaemia; HILIC - 

hydrophilic interaction liquid chromatography; ICU - intensive care unit; LB - low branching; 

OGTT - oral glucose tolerance test; ORK - ORKNEY; PNGase F - N-glycosidase F; RR - 

relative risk; S0 - not sialylated; S1 - monosialylated; S2 - disialylated; S3 - trisialylated, S4 - 

tetrasialylated; SAB - SABRE; SDS - sodium dodecyl sulfate; SE - standard error; UDP - uridine 

diphosphate; UPLC - ultra performance liquid chromatography;  
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Introduction 

Type 2 diabetes represents one of the major public health challenges globally, having a 

constantly growing prevalence with the global projection of 7.3 % for the year 2025 [1]. 

Intensive research in the past decades resulted in the introduction of new oral and parenteral 

medications that may improve the management of the disease. However, recognising individuals 

with increased risk of type 2 diabetes development is of equal importance, since many potential 

interventions are available which can postpone and maybe even prevent the disease onset.  

It has been recently shown that individuals without a history of diabetes, who developed 

hyperglycaemia (plasma glucose > 7.7 mmol/L) during critical illness are at significantly 

increased risk of developing type 2 diabetes [2, 3]. The relative risk (RR) of type 2 diabetes 

development during five years after the acute illness was 5.6 (95% confidence interval (CI) 3.1, 

10.2). The phenomenon probably arises from the fact that people who develop hyperglycaemia 

in critical illness already have a latent disorder in glycaemic control. This disorder cannot be 

detected with the usual screening tests, but manifests in the circumstances of severe acute illness 

due to inflammatory and stress mediators. Individuals without this latent disorder manage to 

overcome hyperglycaemic effects of stress, and inflammation and remain normoglycaemic.  

After the acute illness subsides, individuals who presented with hyperglycaemia become 

normoglycaemic again, but the underlying disorder in glucose metabolism apparently makes 

them prone to type 2 diabetes development.  

Glycosylation is the most frequent co- and post-translational modification of proteins, 

which in many cases modulates their function [4]. Contrary to glycation (which is a non-

enzymatic chemical reaction), this highly complex enzymatic process is strictly regulated by the 

network of many enzymes, transcriptional factors, sugar nucleotides and other molecules [5]. 
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Although proteins possess well defined glycosylation sites, a great heterogeneity of their glycans 

exists. Human plasma N-glycome is quite stable within the individual [6], but is extremely 

sensitive to pathophysiological processes, reflecting  the cell state from the time of protein 

secretion [7]. The main diagnostic deficit of glycans is in their low specificity, thus they are more 

frequently studied as prognostic and stratification markers. Their great variability within 

population, and the significant heritability rate, gives them a great potential in risk assessments. 

Changes in glycosylation of plasma proteins have been studied in many different diseases, 

including type 2 diabetes mellitus [8]. These changes have been confirmed in both patients with 

diabetes and db/db mice [9, 10]. Although many studies identified biantennary glycans with core 

fucose as structures of main interest, differences between cases and healthy population were 

never pronounced enough to have a diagnostic potential, probably as a result of relatively good 

glycaemic control in patients, administration of medicaments or existence of many different 

molecular mechanisms that lead to type 2 diabetes development.  

The aim of this study was to determine whether plasma protein N-glycome is changed in 

individuals who are at greater risk of developing type 2 diabetes, using three different 

populations: 

1. Two populations including individuals with registered hyperglycaemia in critical illness 

(increased risk for development of type 2 diabetes) and individuals with normoglycaemia 

in critical illness -  AcuteInflammation  and AcuteInflammation Replication populations; 

2. Individuals who developed type 2 diabetes during 10 years follow-up and those who 

remained normoglycaemic - FinRisk population.  

Also, to further confirm the connection of changes in N-glycome with glucose metabolism 

disruption, we used data from our previous plasma protein glycosylation analysis in two other 
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cohorts (ORCADES and SABRE), where we separated age- and sex-matched individuals into 

two subgroups differing in HbA1c status (HbA1c < 6.5 % (47.5 mmol/mol) and HbA1c > 6.5 % 

(47.5 mmol/mol)).  
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Study populations and methods 

Patients with/without hyperglycaemia during critical illness (AcuteInflammation and 

AcuteInflammation Replication populations) 

AcuteInflammation population - We included patients from a medical intensive care unit 

(ICU) at the University Hospital Centre Zagreb during a period of 6 months (February to July 

2013). Adult (>18 years old) patients with negative history of diabetes who were admitted to the 

ICU and discharged from the hospital alive were eligible for inclusion. Excluded were patients 

diagnosed with diabetes or impaired glucose tolerance and/or impaired fasting glucose before or 

during hospitalization, patients with documented gestational diabetes, pregnant patients and 

patients taking glucocorticoids during or 3 months before the admission. Informed consent 

process was conducted by a member of the study team at the discharge from the ICU or the 

hospital. Consenting patients were asked to attend a follow-up appointment, 6-8 weeks after the 

hospital discharge. At this visit inclusion/exclusion criteria were confirmed. Complete blood 

count and CRP were determined to exclude persisting inflammatory process. Patients with 

elevated markers of inflammation were retested after 2 weeks. All patients underwent oral 

glucose tolerance test (OGTT) and measurement of HbA1c to identify pre-existing diabetes. ADA 

criteria for diagnosis of diabetes were employed and patients diagnosed with existing pre-

diabetes or diabetes were excluded. Height, weight and BMI were recorded; family history of 

diabetes was documented. For all patients fasting blood samples for N-glycan profiling were 

collected in tubes with anticoagulants (both EDTA and citrate for each patient), plasma was 

separated immediately and stored at -20°C until the analysis. For each patient, samples were 

analysed in duplicates. In total, 108 patients were enrolled in the study. 



8 
 

AcuteInflammation Replication population - All cardiac surgical patients operated at the 

University Hospital Centre Zagreb (cardiac surgical procedures employing cardiopulmonary 

bypass) from October 2010 to February 2011 and discharged from the hospital alive were 

screened for the study. All individuals provided written informed consent. Excluded were 

patients diagnosed with diabetes or impaired glucose tolerance and/or impaired fasting glucose 

before or during hospitalization. In total, 66 patients were enrolled in the study and from all of 

them blood was drawn on the day of the surgery, before the surgical procedure. The blood 

samples were collected in tubes containing EDTA, plasma was separated and stored at -20°C 

until analysis.  

Relevant demographic data for both populations are summarized in Table 2. 

 

Individuals who did/did not develop T2D within 10 years from sampling (FinRisk study) 

Plasma samples, stored at - 70°C, collected through the study designed to investigate risk 

factors in Finland population [11] were used. Population data were searched for patients with 

incident type 2 diabetes after 10 years follow-up. Individuals who developed any autoimmune, 

malignant or other chronic disease were excluded. Thirty-seven individuals (aged 60 (34, 72)), 

who developed type 2 diabetes and no other chronic disease, were identified and included in this 

study. Thirty-seven age and sex matching controls (age 61 (35, 73)), who remained healthy 

during the follow-up period, were selected from the same population. 

 

Individuals with different HbA1c status (ORCADES and SABRE studies) 

Plasma samples from the Orkney Complex Disease Study (ORCADES), collected in 

Scottish archipelago of Orkney, between 2005 and 2011 [12] as well as fromSABRE population 
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were used [13]. Data on age, sex and HbA1c levels were included in the study. Glycan data for 

aforementioned population had been obtained for another purpose, but was used in this study to 

compare N-glycomes of individuals with HbA1c < 6.5 % (47.5 mmol/mol) and HbA1c > 6.5 % 

(47.5 mmol/mol). From Orkney population glycan and HbA1c data for 752 individuals aged 18 to 

100 years from a subgroup of ten islands were used for this analysis. Consecutively, 658 

individuals (aged 63 (18, 97)) were identified as having HbA1c < 6.5 % (47.5 mmol/mol) and 94 

(aged 63 (19, 88)) as having HbA1c > 6.5 % (47.5 mmol/mol). From SABRE population, data for 

307 individuals (aged 70 (60, 84)) with HbA1c < 6.5 % (47.5 mmol/mol) and 307 (aged 70 (60, 

84)) with HbA1c > 6.5 % (47.5 mmol/mol) were included. 

All studies are supported by written informed consent from all individuals and approvals 

from eligible local Ethics Committees.   

Glycan analysis 

Glycan release and labelling - Prior to analysis, all samples (cases and controls) have 

been randomized throughout the multi-well plates. For each plate 4 standards (pool of plasma 

samples) have been added to minimize the experimental error.  Each plasma sample (10 μL) was 

denatured with the addition of 20 μL of 2 % SDS (w/v) (Invitrogen, Carlsbad, CA, USA) and by 

incubation at 65 °C for 10 min. Subsequently, 10 μL of 4 % Igepal-CA630 (Sigma-Aldrich, St. 

Louis, MO, USA) and 1.25 mU PNGase F (ProZyme, Hayward, CA, USA) in 10 μL 5× PBS 

were added. The samples were incubated overnight at 37 °C for N-glycan release. The released 

N-glycans were labelled with 2-aminobenzamide (2-AB). The labelling mixture was freshly 

prepared by dissolving 2-AB (19.2 mg/mL, Sigma-Aldrich, St. Louis, MO, USA) and 2-picoline 

borane (44.8 mg/mL, Sigma-Aldrich, St. Louis, MO, USA) in DMSO (Sigma-Aldrich, St. Louis, 
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MO, USA) and glacial acetic acid (Merck, Darmstadt, Germany) mixture (70:30, v/v). Labelling 

mixture (25 μL) was added to each N-glycan sample in the 96-well plate, which was then sealed 

using adhesive seal. Mixing was achieved by shaking for 10 min, followed by two-hour 

incubation at 65 °C. Samples (in a volume of 75 μL) were brought to 80% ACN (v/v) by adding 

300 μL of ACN (J.T. Baker, Phillipsburg, NJ, USA). Free label and reducing agent were 

removed from the samples using HILIC-SPE. To each well of a 0.45 μm GHP filter plate (Pall 

Corporation, Ann Arbor, MI, USA) 200 μL of 0.1 g/mL suspension of microcrystalline cellulose 

(Merck, Darmstadt, Germany) in water was added. Solvent was removed by application of 

vacuum using a vacuum manifold (Millipore Corporation, Billerica, MA, USA). All wells were 

prewashed using 5× 200 μL of water, followed by equilibration using 3× 200 μL of 

acetonitrile/water (80:20, v/v). The samples were loaded to the wells, which were subsequently 

washed 7× using 200 μL of acetonitrile/water (80:20, v/v). Glycans were eluted 2× with 100 μL 

of water and combined eluates were stored at −20 °C until usage. 

Hydrophilic Interaction Chromatography (HILIC)-UPLC - Fluorescently labelled N-

glycans were separated by hydrophilic interaction chromatography on Waters Acquity ultra-

performance liquid chromatography (UPLC) instrument (Milford, MA, USA) consisting of a 

quaternary solvent manager, sample manager and a fluorescence detector set with excitation and 

emission wavelengths of 250 and 428 nm, respectively. The instrument was under the control of 

Empower 2 software, build 2145 (Waters, Milford, MA, USA). Labelled N-glycans were 

separated on a Waters bridged ethylene hybrid (BEH) Glycan chromatography column, 150 × 

2.1 mm, 1.7 μm BEH particles, with 100 mM ammonium formate, pH 4.4, as solvent A and 

acetonitrile as solvent B. The separation method used a linear gradient of 70–53% acetonitrile 

(v/v) at flow rate of 0.561 ml/min in a 25 min analytical run. Samples were maintained at 5 °C 
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before injection, and the separation temperature was 25 °C. The system was calibrated using an 

external standard of hydrolysed and 2-AB labelled glucose oligomers from which the retention 

times for the individual glycans were converted to glucose units. Data processing was performed 

using an automatic processing method with a traditional integration algorithm after which each 

chromatogram was manually corrected to maintain the same intervals of integration for all the 

samples. The chromatograms were all separated in the same manner into 46 peaks (GP1-GP46) 

and the amount of glycans in each peak was expressed as % of total integrated area (Fig 1). 

 

Statistical analysis 

In order to remove experimental variation from measurements, normalisation and batch 

correction were performed on UPLC glycan data. Also, normalisation by total area was 

performed in which the peak area of each glycan peak was divided by the total area of the 

corresponding chromatogram. Prior to batch correction, normalized glycan measurements were 

log-transformed due to right skewness of their distributions and the multiplicative nature of batch 

effects. Batch correction was performed on log-transformed measurements using the ComBat 

method, in which the technical source of variation (which sample was analysed on which plate) 

was modelled as a batch covariate. To get measurements corrected for experimental noise, 

estimated batch effects were subtracted from log-transformed measurements. 

From the 46 directly measured glycan traits, 12 derived traits were calculated (Table 1). 
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Table 1. Twelve derived glycan traits calculated from 46 directly measured glycan traits. 

Structural feature Formula 

low branching LB = GP1+GP2+GP3+GP4+GP5+GP6+GP7+GP8+GP9+GP10+GP11+GP12+GP13+GP14+GP15+GP16+GP17+ 

GP18+GP19+GP20+GP21+GP22+GP23+GP24+GP25+GP26+GP27+GP28 

high branching HB = 

GP29+GP30+GP31+GP32+GP33+GP34+GP35+GP36+GP37+GP38+GP39+GP40+GP41+GP42+GP43+GP44+GP45+G

P46 

agalactosylated G0 = GP1+GP2+GP4+GP5+GP6 

monogalactosylated G1 = GP3+GP7+GP8+GP9+GP10+GP16+GP17+GP18 

digalactosylated G2 = GP12+GP13+GP14+GP15+GP19+GP20+GP21+GP22+GP23+GP25+GP26+GP27+GP28 

trigalactosylated G3 = GP29+GP31+GP32+GP33+GP34+GP35+GP36+GP37+GP40 

tetragalactosylated G4 = GP30+GP38+GP39+GP41+GP42+GP43+GP44+GP45+GP46 

neutral S0 = GP1+GP2+GP3+GP4+GP5+GP6+GP7+GP8+GP9+GP10+GP11+GP12+GP13+GP14+GP15 

monosialylated S1 = GP16+GP17+GP18+GP19+GP20+GP21+GP22+GP30 

disialylated S2 = GP23+GP25+GP26+GP27+GP28+GP29+GP31 

trisialylated S3 = GP32+GP33+GP34+GP35+GP36+GP37+GP38+GP39+GP40 

tetrasialylated S4 = GP41+GP42+GP43+GP44+GP45+GP46 

 

These derived traits average particular glycosylation features (branching, galactosylation, 

sialylation) across different individual glycan structures, and consequently they are more closely 

related to individual enzymatic activities and underlying genetic polymorphisms. As derived 

traits represent sums of directly measured glycans, they were calculated using normalized and 

batch-corrected glycan measurements after transformation to the proportions (exponential 

transformation of batch-corrected measurements). 

Analyses of associations between clinical trait of interest (AcuteInflammation and 

AcuteInflammation Replication - hyperglycaemia;  FinRisk Cohort - future onset of diabetes; 

ORCADES & SABRE Cohorts - HbA1C > 6.5 % (47.5 mmol/mol)) and glycan measurements 

were performed using a regression model with age and sex included as additional covariates. 

Prior to analyses, for each cohort separately, glycan variables were transformed to a standard 

normal distribution by inverse transformation of ranks to normality. Using rank-transformed 
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variables makes estimated effects of different glycans in different cohorts comparable, as 

transformed glycan variables have the same standardized variance. The false discovery rate 

(FDR) was controlled using the Benjamini-Hochberg procedure.  

Data were analysed and visualized using R programming language (version 3.0.1).  
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Results 

Analysis of plasma N-glycome composition in AcuteInflammation and AcuteInflammation 

Replication populations 

For each patient, N-glycans were released from plasma proteins, fluorescently labelled 

and analysed by HILIC-UPLC, a method that was demonstrated to be the best approach for 

reliable and reproducible quantitative glycan analysis [14]. This method separates plasma 

glycome into 46 chromatographic peaks, each containing a group of similar glycan structures. 

Individual glycan structures contained in each peak were characterized previously [15] and 

representative chromatogram with main structure present in each peak is shown in Fig 1.  

Next, we quantified each chromatographic peak (as % of the total N-glycome) and calculated 

derived traits (Table 1). These derived traits represent common biologically meaningful features 

(glycan branching, galactosylation and sialylation) shared among several measured glycans. 

Then we compared these traits between two groups of patients in two populations:  

1. Those who developed hyperglycaemia during ICU hospitalization due to acute condition 

and those who remained normoglycaemic during the same circumstances 

(AcuteInflammation population, Table 2) – for the analysis, plasma samples taken 6-8 

weeks after the hospital discharge were used, and meanwhile the absence of 

inflammatory process was also confirmed (acquired profiles thus represented basal N-

glycomes for each person); 

2. Those who developed hyperglycaemia after cardiac surgery due to acute inflammation 

and those who remained normoglycaemic after the surgery (AcuteInflammation 

Replication population, Table 2) – for the analysis, plasma samples taken on the day of 

the surgery, before the surgical procedure were used. 
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The development of hyperglycaemia during acute inflammation represents significantly 

higher risk for type 2 diabetes development [2, 3].  

Fig 2 and Table 3 show differences in abundance of derived structural features of plasma 

protein N-glycans in individuals who developed hyperglycaemia during acute condition and 

controls. Differences are shown as the effect sizes estimated based on logistic regression 

(logarithm of odds ratio). In AcuteInflammation population, six derived traits were significantly 

different between the two groups – patients who developed hyperglycaemia had decreased low 

branching (LB) and increased high branching (HB), increased tri- and tetragalactosylation (G3 

and G4), decreased neutral glycans (S0) and increased trisialylation (S3).  

The differences found in AcuteInflammation Replication population showed the same trend 

and similar magnitude of changes, as found in the AcuteInflammation population for almost all 

derived traits, except for digalactosylation (G2). However, none of them reached statistical 

significance. 

 

Analysis of plasma N-glycome composition in FinRisk populations 

Differences in plasma protein N-glycome between individuals who will or will not 

develop type 2 diabetes was further valuated in the FinRisk study cohort, in which plasma 

samples were collected more than 10 years ago and biobanked. The 10-year follow-up has been 

performed to note the incidence of type 2 diabetes. Thirty-seven individuals who developed type 

2 diabetes and no other chronic disease and 37 age and sex matching controls, who remained 

healthy during follow-up period, were identified and included in the study. Plasma N-glycome 

was analysed in the same way as for the previous two populations.  
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Individuals who developed type 2 diabetes had significantly decreased LB and increased 

HB, decreased agalactosylation and monogalactosylation (G0 and G1), decreased neutral glycans 

(S0) and increased di- and tri-sialylation (S2 and S3), compared to individuals who remained 

normoglycaemic (Fig 2 and Table 3). For all derived glycan traits, differences found in FinRisk 

were in the same direction and of similar magnitude, as found in AcuteInflammation population. 

Analysis of plasma N-glycome composition in ORCADES and SABRE populations 

To further prove the connection of N-glycome with glucose metabolism disruption, we 

used data from our previous analysis of plasma protein glycosylation in two other cohorts 

(ORCADES and SABRE), where we separated age- and sex-matched individuals into two 

subgroups differing in HbA1c status (HbA1c < 6.5 % (47.5 mmol/mol) and HbA1c > 6.5 % (47.5 

mmol/mol)). 

We compared the differences between the two subgroups in the same way as in the 

previous populations.  Levels of the majority of glycan features were significantly different 

between the studied subgroups (10 for ORCADES and 7 for SABRE) (Fig 2 and Table 3). Main 

differences were the same as in the previous populations - higher levels of branching, 

galactosylation and sialylation in their plasma protein N-glycomes. 

 

Conclusions 

Our results indicate that plasma protein N-glycome is changed in individuals with 

increased risk for type 2 diabetes development (AcuteInflammation and AcuteInflammation 

Replication populations), incident cases of type 2 diabetes collected at baseline (FinRisk 

population) and people with increased HbA1c (ORCADES and SABRE populations). Differences 

in plasma N-glycomes were the same in all three populations and included higher levels of 
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branching, galactosylation and sialylation. This suggests that the increased complexity of glycan 

structures represents the greater chance for diabetes type 2 development and is also associated 

with poorer regulation of blood glucose levels.   

One can only speculate whether these differences in plasma glycome are inborn and 

genetically conditioned, or glycosylation is affected by the pathophysiological mechanisms that 

occur very early at diabetes onset and manifest themselves in the changes of the plasma glycome 

composition due to high susceptibility of glycans to changes in the cell metabolism. A possible 

explanation for this higher branching could be that higher glycaemia leads to altered flux through 

the hexosamine pathway, which produces UDP-GlcNAc, the substrate for N-linked glycosylation 

[16]. Recently, it has also been shown that the hexosamine biosynthesis and GlcNAc salvage 

pathways contribute to glucose homeostasis through N-glycan branching on glucagon receptor 

[17]. 

Previous studies showed that multi-branched and highly sialylated N-glycans were also 

elevated in response to inflammatory diseases, such as ulcerative colitis [18], chronic pancreatitis 

[19] and rheumatoid arthritis [20]. It is also well known that individuals with the metabolic 

syndrome and type 2 diabetes suffer from chronic low-grade inflammation [21]. Therefore, the 

N-glycan changes that were observed in this study may also reflect the chronic inflammatory 

processes. Additional support for this hypothesis comes from our recent study of a NMR 

biomarker GlycA and total plasma protein N-glycome. GlycA is a signal that measures N-

acetylglucosamines attached to the plasma proteins and it has been shown to correlate with wide 

spectra of inflammatory diseases, including incident type 2 diabetes mellitus [22, 23]. In that 

study we found that GlycA signal was positively related to highly branched structures, as well as 

tri- and tetragalactosylated and tri- and tetrasialylated structures, while low branched glycans, 
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agalactosylated, monogalactosylated, asialylated and monosialylated structures were negatively 

associated with GlycA signal [24]. These changes are practically the same as found herein, 

which suggests that the changes in plasma protein N-glycome could indicate the start of chronic 

inflammation and the susceptibility for developing the metabolic syndrome. This could also 

explain why the differences in derived glycan traits between the cases and controls in 

AcuteInflammation Replication population did not reach the threshold of significance – all 

individuals from this population had cardiovascular diseases and underwent cardiac surgery. 

Therefore, it is possible that most of them (both cases and controls) already had some kind of 

chronic inflammation. The other possible reason for this could be that the control group was too 

small (14 individuals). 

Despite the fact that we measured the whole plasma protein N-glycome, which is 

comprised of different glycans originating from many different glycoproteins, we managed to 

find differences in glycan traits between the controls and seemingly healthy individuals, who 

have a higher chance or will develop type 2 diabetes mellitus.  The same changes were also 

associated with poorer regulation of blood glucose. Identifying the exact glycoproteins which 

contribute to these differences would probably help to develop stratification methods that could 

reliably distinguish individuals who are at risk of type 2 diabetes development and improve the 

prevention of this widespread disease and its complications.   
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Figure legends 

 

 

Figure 1. HILIC-UPLC profile of N-linked glycans released from plasma proteins and 

fluorescently labelled with 2-aminobezamide. Glycans presented are the most abundant 

structures in each peak. Structural schemes: square, N-acetylglucosamine; triangle, fucose; dark 

grey circle, mannose; light grey circle, galactose; diamond, N-acetylneuraminic acid. 

 

 



21 
 

 

 

 

 

Figure 2. Differences in abundance of structural features of plasma protein N-glycans in 

individuals who developed hyperglycaemia during acute condition (AcuteInflammation and 

AcuteInflammation Replication populations - black and dark grey bars, respectively); in 

individuals from FinRisk population who developed type 2 diabetes during 10-year follow-up 

(light grey bars); in individuals from ORKNEY population (bars with horizontal stripes) and 

SABRE population (white bars) divided according to HbA1c level (< or > 6.5 % (47.5 

mmol/mol)). Pronounced differences were observed between cases and controls in all cohorts for 

several derived glycan structural features. Differences in derived glycan traits are shown as bar 

plots where height of bars represents the size of effects estimated based on logistic regression 

(logarithm of odds ratio) and error bars represent 95 % confidence intervals of estimated effects. 

(LB - low branching, sum of monoantennary and biantennary glycans, see Methods section; HB - 

high branching, sum of triantennary and tetraantennary glycans; G0 - sum of glycans with no 

galactose; G1 - sum of glycans with one galactose; G2 - sum of glycans with two galactoses; G3 
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- sum of glycans with three galactoses; G4 - sum of glycans with four galactoses; S0 - sum of 

glycans with no sialic acid; S1 - sum of glycans with one sialic acid; S2 - sum of glycans with 

two sialic acids; S3 - sum of glycans with three sialic acids; S4 - sum of glycans with four sialic 

acids; AI - AcuteInflammation; AI_R - AcuteInflammation Replication; FIN - FinRisk; ORK - 

ORKNEY; SAB - SABRE).  
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Tables 

Table 2. The demographic characteristics of AcuteInflammation and AcuteInflammation 

Replication populations. 

  All patients HG during acute illness No HG during acute illness  P value (HG vs. no HG)a 

Population AI AI_R  AI AI_R  AI AI_R  AI AI_R 

Number of patients (N) 108 66 59 52 49 14     

Age (y) 55 (18, 79) 67 (21, 81) 58 (25, 79) 68 (41, 81) 54 (18, 75) 62 (21, 78) 0.388 0.121 

Female sex (N,%) 32 (29.6%) 19 (28.8%) 18 (30.5%)  15 (28.8%) 14 (28.6%) 4 (28.6%) 0.826 0.984 

BMI (kg/m2) 23.7±4.0 28.2±3.5 24.2±4.1 28.5±3.4 23.1±3.9 27.2±3.8 0.734 0.342 

Family history of diabetes (N,%) 27 (25.0%) NA 19 (32.2%) NA 8 (16.3%) NA 0.039 NA 

 

(AI - AcuteInflammation; AI_R - AcuteInflammation Replication; HG - hyperglycaemia; BMI - body mass index; a P values 

were calculated using Mann-Whitney U test (significance level α=0.05) and for categorical variables Chi-square test was used)
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Table 3. Differences in derived structural features of plasma protein N-glycans between the cases and the controls in all five populations. Differences are shown as effects estimated based on 

logistic regression (logarithm of odds ratio).  

 

  AcuteInflammation AcuteInflammation_R FinRisk ORCADES SABRE 

derived 

 glycan trait 
effect SE P value adj. P value effect SE P value adj. P value effect SE P value adj. P value effect SE P value adj. P value effect SE P value adj. P value 

LB -0.480 0.179 0.006 0.016* -0.344 0.342 0.281 0.393 -0.517 0.230 0.022 0.040* -0.384 0.119 0.001 0.002** -0.284 0.077 0.000 0.001** 

HB 0.448 0.180 0.010 0.024* 0.344 0.342 0.281 0.393 0.517 0.230 0.022 0.040* 0.388 0.119 0.001 0.002** 0.339 0.077 0.000 0.000*** 

G0 -0.186 0.154 0.209 0.276 -0.023 0.327 0.940 0.956 -0.447 0.206 0.027 0.045* -0.276 0.113 0.014 0.019* -0.052 0.080 0.511 0.558 

G1 -0.359 0.184 0.044 0.068 -0.257 0.326 0.399 0.498 -0.603 0.225 0.007 0.017* -0.611 0.119 0.000 0.000*** -0.440 0.074 0.000 0.000*** 

G2 0.027 0.182 0.878 0.878 -0.312 0.332 0.314 0.428 0.250 0.217 0.236 0.290 0.036 0.118 0.759 0.759 0.097 0.079 0.213 0.276 

G3 0.399 0.163 0.011 0.024* 0.458 0.343 0.153 0.236 0.459 0.230 0.041 0.066 0.403 0.118 0.001 0.002** 0.403 0.076 0.000 0.000*** 

G4 0.406 0.190 0.027 0.045* 0.099 0.335 0.750 0.818 0.198 0.234 0.381 0.446 0.276 0.120 0.021 0.025* 0.024 0.079 0.756 0.789 

S0 -0.413 0.167 0.011 0.024* -0.271 0.332 0.380 0.487 -0.630 0.221 0.004 0.012* -0.455 0.119 0.000 0.001*** -0.297 0.077 0.000 0.001*** 

S1 -0.091 0.196 0.627 0.669 -0.581 0.310 0.047 0.083 -0.171 0.224 0.429 0.478 -0.354 0.120 0.003 0.005** -0.096 0.080 0.230 0.290 

S2 0.298 0.174 0.077 0.111 0.468 0.329 0.129 0.204 0.565 0.226 0.011 0.024* 0.547 0.120 0.000 0.000*** 0.327 0.077 0.000 0.000*** 

S3 0.517 0.181 0.003 0.010* 0.252 0.341 0.428 0.514 0.525 0.230 0.020 0.039* 0.358 0.121 0.003 0.005** 0.319 0.077 0.000 0.000*** 

S4 0.331 0.204 0.093 0.128 0.038 0.333 0.902 0.933 0.209 0.229 0.347 0.416 0.195 0.122 0.106 0.115 0.063 0.079 0.424 0.478 

 

(LB - low branching, sum of monoantennary and biantennary glycans, see Methods section; HB - high branching, sum of triantennary and tetraantennary glycans; G0 - sum of glycans with no galactose; G1 - sum of glycans with one galactose; G2 - sum of 

glycans with two galactoses; G3 - sum of glycans with three galactoses; G4 - sum of glycans with four galactoses; S0 - sum of glycans with no sialic acid; S1 - sum of glycans with one sialic acid; S2 - sum of glycans with two sialic acids; S3 - sum of 

glycans with three sialic acids; S4 - sum of glycans with four sialic acids; SE - standard error; adj. P value – P value corrected for multiple measures using Benjamini-Hochberg procedure; *P < 0.05, **P < 0.01, ***P < 0.001) 


