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EMERGENCE OF MULTIDRUG-RESISTANT PROTEUS MIRABILIS IN A LONG-TERM 

CARE FACILITY IN CROATIA 

SUMMARY 

 

Purpose: An increased frequency of  Proteus mirabilis isolates resistant to expanded-

spectrum cephalosporins was observed recently in a long-term care facility in Zagreb 

(Godan). The aim of this study was the molecular characterization of resistance mechanisms 

to new cephalosporins in  P. mirabilis isolates from this nursing home.  

Methods: Thirty-eight isolates collected from 2013-2015 showing reduced susceptibility to 

ceftazidime were investigated. Antibiotic susceptibilities were determined by broth 

microdilution method. Inhibitor-based tests were performed to detect extended-spectrum 

(ESBLs) and AmpC β-lactamases.   AmpC β-lactamases were characterized by PCR followed 

by sequencing of blaampC genes. Quinolone resistance determinants (qnr genes) were 

characterized by PCR.  Genotyping of the isolates was performed by rep-PCR and PFGE 

(pulsed-field gel electrophoresis).  

Results:Presence of an AmpC β-lactamase was confirmed in all isolates by combined-disk test 

with phenylboronic acid. All isolates were resistant to amoxicillin alone and combined with 

clavulanate, cefotaxime, ceftriaxone, cefoxitin, and ciprofloxacin, but susceptible to cefepime, 

imipenem, and meropenem.  PCR followed by sequencing using primers targeting blaampc 

genes revealed CMY-16 β-lactamase in all but one strain. Blacmy-16  was carried by a non-

conjugative plasmid  which did not belong to any known plasmid-based replicon typing 

(PBRT) group. Rep-PCR identified one large clone consisting of 15 isolates, three pairs or 

related isolates, one triplet and four singletons. PFGE confirmed the clonality of the isolates.  

Conclusions: This is the first report of multidrug resistant P. mirabilis in a nursing home in 

Croatia. Cephalosporin resistance was due to plasmid-mediated AmpC β-lactamase CMY-16.  
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Introduction 

The rapid emergence of antibiotic resistance among Gram-negative bacteria is serious threat 

to the management of infectious diseases. β-lactam antibiotics are the most frequently used 

antimicrobials for empirical therapy [1]. Production of β-lactamases is one of the strategies 

adopted by bacteria to develop resistance to β-lactam class of antibiotics [1-2]. The 

development of highly stable expanded-spectrum cephalosporins at the beginning of 1980s 

was quickly followed by the emergence of extended-spectrum β-lactamases (ESBL) in 

Klebsiella pneumoniae and other Enterobacteriaceae [2].  These enzymes are usually 

plasmid-mediated and most frequently derived from parental TEM-1, TEM-2 and SHV-1 β-

lactamases by point mutation that alter the configuration of active site to expand their 

spectrum of activity [3]. AmpC enzymes hydrolyze first, second and third generation 

cephalosporins and cephamycins but spare cefepime and carbapenems. Unlike ESBLs they 

are not inhibited by clavulanic acid, sulbactam or tazobactam [4].  Proteus mirabilis is an 

emerging cause of nosocomial infections, particularly of wounds and the urinary tract. The 

various types of P. mirabilis infections are difficult to treat because of acquisition of various 

resistance mechanisms such as ESBLs or AmpC β-lactamases [5-6].  Recently, an increased 

frequency of multidrug-resistant P. mirabilis isolates was observed in a long-term care facility 

in Zagreb (Godan). The role of P. mirabilis as an important multidrug-resistant pathogen in 

long-term care facilities is not investigated yet. The previous reports on ESBLs in P. mirabilis 

in Croatia showed the clonal spread of TEM-52 β-lactamase producing P. mirabilis isolates in 

University Hospital Center Split [7-8]. Spread of multidrug-resistant P. mirabilis from 
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hospitals to nursing homes was observed recenty. This prompted us to conduct the molecular 

characterization of antibiotic resistance in P. mirabilis isolates from a nursing home in 

Zagreb.   

 Material and methods 

 Bacteria 

Thirty-eight consecutive non-duplicate P. mirabilis isolates with reduced susceptibility to 

ceftazidime (zone diameter of ≤ 22mm) were isolated from urine samples during a period 

from April 29th  2013 until January 21st  2015 from a nursing home Godan in Zagreb, Croatia.  

The isolates were identified by conventional biochemical tests using standard recommended 

techniques. 

 Susceptibility testing 

The susceptibility testing to amoxicillin alone and combined with clavulanate, piperacillin 

alone and combined with tazobactam, cefazoline, cefuroxime, ceftazidime, cefotaxime, 

ceftriaxone, cefepime, cefoxitin, imipenem, meropenem,  gentamicin, and ciprofloxacin  was 

performed by a twofold microdilution technique according to CLSI standard procedures [9].  

Disk diffusion test was performed for all antibiotics which are routinely tested in our 

laboratory for diagnostic purposes (amoxycillin alone and combined with clavulanic acid, 

piperacillin alone and combined with tazobactam, cephalexin, cefuroxime, ceftazidime, 

cefotaxime, ceftriaxone, cefepime, cefoxitin,  gentamicin, netilmicin, amikacin, ciprofloxacin, 

norfloxacin, sulphametoxazole/trimethoprim and nitrofurantoin) prior to microdilution.  

Escherichia coli ATCC 25922 and K. pneumoniae ATCC 700603 were used as quality 

control isolate.  

Phenotypic detection of extended-spectrum β-lactamases (ESBLs) and plasmid-mediated 

AmpC β-lactamases 

A double-disk-synergy test (DDST) using the combination of amoxycillin/clavulanate with 
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cefotaxime, ceftriaxone, ceftazidime, and aztreonam [10]  and combined disk test using disks 

of ceftazidime, cefotaxime, ceftriaxone and cefepime with and without clavulanate (10 µgl) 

according to CLSI were performed to detect ESBLs [9]. Deformation of the inhibition zone 

around cephalosporin disks towards central disk with amoxicillin/clavulanate in DDST or 

augmentation of inhibition zone around cephalosporin disks for at least 5 mm in the presence 

of clavulanic acid compared to control disks without clavulanic acid in combined disk test 

indicated production of ESBL.  E. coli ATCC 25922 was used as negative and K. pneumoniae 

ATCC 700603 as positive control.  

Presumptive test for AmpC β-lactamases is considered positive if the inhibition zone for 

cefoxitin was ≤ 18 mm [9]. AmpC β-lactamases were phenotypically detected by combined 

disk test using disks of ceftazidime, cefotaxime and ceftriaxone with and without 3-amino-

phenyboronic acid (PBA). AmpC production was indicated by an increase in zone size of 5 

mm or more around cephalosporin disks containing PBA compared to control disks 

containing only cephalosporins [11].  

 Conjugation 

P. mirabilis isolates were investigated for the transferability of their resistance determinants. 

Conjugation experiments were set up employing plasmid-free and sodium azide-resistant E. 

coli A15 R- recipient strain [12].  Transconjugants were selected on the combined plates 

containing ceftazidime (1 mg/L) and sodium azide (100 mg/L).  The frequency of conjugation 

was expressed relatively to the number of donor cells.  

 Characterization of β-lactamases 

The presence of blaTEM, blaSHV, blaCTX-M, blaPER-1  and blaampC genes was investigated by 

polymerase chain reaction (PCR) using primers and conditions as described previously [13-

17). In order to amplifiy the whole coding sequence additional primers were used for 

amplification of blaCMY genes as described previously [18]. Template DNA was extracted by 
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boiling method. PCR mix (50 µl) contained 25 µl of master mix (Roche), 20 µl of ultrapure 

water, 1 µl of each primer (10 pmol) and 3 µl of template DNA.  Lysates from reference 

strains producing TEM-1, TEM-2, SHV-1, SHV-2, SHV-4, SHV-5, CTX-M-15, PER-1,  

CMY-4, MIR-1, DHA-1, FOX-1 and MOX-1 were used as positive controls for PCR. 

Nucleotide sequences were determined directly on PCR products on both strands in 

Microgene DNA sequencing service. CMY and TEM amplicons were sequenced. Sequences 

were analyzed using BLAST program (NCBI). Designation of bla genes based on identified 

mutations was done according to Bush, Jacoby and Medeiros sheme. The presence of ISEcp1 

and IS26 in the region upstream of blaCMY genes was investigated by combining IS26 and 

ISEcp1 forward primers with reverse primers for blaCMY [19].   

 Detection of quinolone resistance determinants 

Plasmid borne quinolone resistance genes-qnrA, qnrB and qnrS were determined by PCR as 

described previously [20]. 

 Characterization of plasmids 

Plasmids were extracted with Macherey Nagel mini kit (Hilden, Germany) according to 

manufacturer's recommendations. Plasmids extractions were subjected to PCR-based replicon 

typing (PBRT) according to Carattoli et al [21] and to PCR with primers specific for TEM 

and CMY β-lactamases to determine the location of bla genes.  

 Genotyping of isolates 

Twenty-eight isolates were subjected to molecular typing by rep-PCR as described previously 

[22] DNA was isolated by Ultra-Clean microbial DNA isolation kit (Mo Bio Laboratories, 

Carlsbad, CA, USA), as recommended by the manufacturer. The DNA concentration was 

measured and set between 25 ng/L and 30 ng/L. Subsequently, the DNA was amplified using 

the Bacterial fingerprinting kit (Bacterial barcodes, bioMerieux, Athens, GA, USA), 

according to the manufacturer’s instructions. PCR was performed using the following 



6 

 

parameters: initial denaturation (94°C) for 2 min,and then 35 cycles of 30 s of denaturation 

(94°C), 30 s of annealing (60 C), and 90 s of extension (70°C), followed by 3 min of final 

extension (70°C) and ending at 4°C. The amplification products were separated 

with the Agilent B2100 bioanalyzer. Five microliters of DNA standard markers (used for 

normalization of sample runs) and 1 µl of the DNA product were used.  All data were entered 

in the DiversiLab software system. Cut-off value of 97% was used to define a clone.   

Pulsed-field genotyping of SfiI-digested genomic DNA was performed on 30 isolates with a 

CHEF-DRIII system (Bio-Rad); the images were processed using the Gel-Compar software, 

and a dendrogram was computed after band intensity correlation using global alignment with 

1.5% optimization and tolerance and UPGMA (unweighted pair-group method using 

arithmetical averages) clustering. The strains were considered to be clonally related if they 

showed more than 80% similarity of their PFGE patterns [23-24].  

 

Results 

Patients 

All patients were residents of Godan long term care facility. Since Godan nursing home is 

located close to University Hospital Center Zagreb where the urine samples were processed 

we found in hospital internet system that 23 patients of 38 patients were previously 

hospitalized in University Hospital Center at the intensive care unit, pulmonary unit, 

abdominal surgery,  haematology, ophtalmology, gastroenterology, cardiology and oncology.  

Three patients were only examined at the emergency room in order to change the urinary 

catheter or to obtain the blood transfusion but did not stay in the hospital.  They all had severe 

underlying diseases such as: coronary artery disease, myocardial infarction, adenocarcinoma 

ventriculi, pancreatic cancer, chronic lymphocytic or myelocytic leukemia, prostatic 

adenocarcinoma, respiratory insuficiency, kidney failure, megaloblastic and hypochromyc 
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anemia, Morbus Alzheimer, pulmonary embolia and diabetes mellitus. Two patients suffered 

from bronchopneumonia and were treated with azithromycine and ceftriaxone. All patients 

had urinary tract infection with >105 CFU/ml of P. mirabilis  and white blood cells in the 

urinary sediment. Ten patients had additional E. coli ESBL, three K. pneumoniae ESBL and 

eight E. faecalis.The majority of patients received cefuroxime or ciprofloxacin for the 

treatment of urinary infections prior to isolation of P. mirabilis.   

 Detection of ESBLs and susceptibility testing 

The isolates were resistant to amoxicillin alone and combined with clavulanic acid, 

piperacillin, cefuroxime, cefoxitin, gentamicin, and ciprofloxacin, but susceptible to 

cefepime,  imipenem, and meropenem with MICs of imipenem being slightly higher than 

those of meropenem according to microdilution test (Table 1). There were variable 

susceptibility/resistance patterns to ceftazidime, cefotaxime,  ceftriaxone and to combination 

of  piperacillin with tazobactam as shown in Table 1. Meropenem was the most potent 

antibiotic with MIC90 of 0.06 mg/L.  In disk-diffusion test all isolates were resistant to 

sulfametoxazole/trimethoprim (cotrimoxazole) and norfloxacin. The phenotype of resistance 

including resistance or reduced susceptibility to expanded-spectrum cephalosporins 

(ceftazidime, cefotaxime, ceftriaxone), cefoxitin and amoxicillin/clavulante but preserved 

susceptibility to cefepime was consistent with production of plasmid-mediated AmpC β-

lactamase which was confirmed by inhibitor based test. An augmentation of the inhibition 

zones around cephalosporin disks of at least 5 mm was seen with PBA but not with clavulanic 

acid. All isolates tested phenotypically positive for AmpC but negative for ESBLs.  

 Conjugation 

The isolates did not transfer ceftazidime resistance to E. coli recipient strain.  

 Characterization of β-lactamases 

All 38 P. mirabilis strains yielded an amplicon of 1432 bp with primers specific for CMY- β-
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lactamase genes. Sequencing of amplicons revealed the blacmy16 β-lactamase allele in all 

strains except of the strain 12 which was found to produce CMY-112.  The isolates were 

positive for blaTEM-1, but negative for blaSHV,  blaCTX-M , and blaPER-1 genes. ISEcp1 was 

identified 110 bp upstream of  blaCMY-16 starting codon.  

 Characterization of plasmids 

Plasmid encoding CMY-16 did not belong to any known PBRT.  The plasmid extractions 

were positive for blaTEM and blaCMY genes.  

 Detection of quinolone resistance determinants 

Plasmid borne quinolone resistance genes-qnrA, qnrB and qnrS were  not found. 

 Genotyping of the isolates 

Rep-PCR of 28 isolates identified one large clone consisting of 15 isolates (8, 2, 19, 14, 7, 4, 

3, 20, 15, 22, 24, 26, 12, 16, 5)  but a certain degree of diversification was observed within the 

clone with seven subclusters containing two or three identical isolates as shown in Fig 1.   

The  first one with strains 2,  8,  and 19,  the second one with strains 7 and 14, the third with 

strains 3 and 4, the fourth one with strains 22,  24 and 26,   and the fifth one with strains 5 and 

16.  

Three pairs of related  isolates (13 and 9, 23 and 25, and  38 and 35) and  one triplet (28, 30, 31)  were 

identified  (Fig. 1).  Four isolates were singletons: 6, 17, 18 and 36.  

PFGE identified one large clone with 19  isolates out of 30  (isolates  15, 8, 20, 19, 16, 13, 11, 10, 9, 7, 

4, 12, 14, 38, 36, 25, 34, 28, 30) , one small cluster with three strains (1, 23, 29) , two  pairs (37, 33 

and 27 and 31)  and) and four singletons (6, 18,  32, 35) as shown in Fig. 2.   

Rep-PCR showed better discriminatory effect because it identified subcluster among the large 

clone and this could explain small discrepancies between two genotyping methods.  
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DISCUSSION 

Previous studies found TEM-52 and PER-1 ESBLs to be dominant resistance determinants to 

expanded-spectrum cephalosporins in P. mirabilis [6]. This study demonstrated predominance 

of plasmid-mediated AmpC β-lactamase CMY-16 among tested isolates. AmpC β-lactamases 

detection is not routinely carried out in many microbiology laboratories. This could be 

attributed to lack of awareness or lack of resources and facilities to conduct β-lactamase 

identification. Currently available tests for detection of plasmid-mediated AmpC β-lactamases 

are inconvenient, subjective and lack sensitivity and specificity [4,11]. AmpC β-lactamases 

are inhibited by PBA and cloxacillin. There are severeal inhibitor-based tests for 

identification of AmpC β-lactamases including disk test and E-test [25].  The production of 

CMY β-lactamase was associated with resistance or reduced susceptibility to 3rd generation 

cephalosporins and combination of amoxicillin with clavulanic acid. The isolates showed 

variable levels of susceptibility/resistance to piperacillin/tazobactam which would lead to 

conclusion that this combination is less affected by production of AmpC β-lactamase 

compared to amoxicillin/clavulanate. This could be attributed to better intrinsic activity of 

piperacillin against P. mirabilis compared to amoxicillin.  The susceptibility to cefepime and 

carbapenems was maintained with meropenem having slightly lower MICs.  Ceftazidime 

resistance was not transferred by conjugation to E. coli recipient isolate indicating that CMY 

genes were encoded on non-transferable plasmids. P. mirabilis lacks ampC gene and thus 

AmpC β-lactamases are always plasmid mediated in this species although some studies found 

inocorporation of blaCMY gene in the chromosome [26].  In our study  the plasmid extract did 

not belong to any known PBRT but yielded amplicon with primers specific for TEM and 

CMY β-lactamases. However, it is not possible to exclude the possibility of chromosomal 

contamination of plasmid extract and chromosomal location of the blaampC gene. Fifteen of the 

isolates were found to be clonally related but three pairs, one triplet and four singleton isolates 
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were observed.  This finding points out to clonal dissemination of related isolates within the 

nursing home probably due to the contamined urinary catheters, but horizontal spread of 

blaCMY gene also occurred most likely mediated by ISEcp1 insertion sequence upstream of the 

gene. All the patients had severe underlying diseases and were previously hospitalized in one 

of the large hospital centers in Zagreb (University Hospital Center Zagreb, Sisters of Mercy 

University Hospital and University Hospital Merkur) and there is a possibility that they were 

colonized with multiresistant P. mirabilis during the stay in the hospital, thus raising the 

possiblity of multiple independent introduction of AmpC-positive P. mirabilis into the long-

term care facility. The first plasmid-mediated AmpC β-lactamase reported in Croatia was 

DHA-1 identified in E. coli  in 2003 [27]. The recent studies found plasmid-mediated AmpC 

β-lactamases of CMY family among hospital P. mirabilis isolates from Split [28] and among 

E. coli isolates from companion animals in Croatia [29]. Moreover, CMY-4 was identified as 

additional β-lactamase in Enterobacteriacea producing VIM or NDM metallo-β-lactamases 

[30]. In the present study, we found an alarming number of AmpC-producing P. mirabilis in a 

nursing home in Zagreb. CMY β-lactamases originate from chromosomal AmpC β-

lactamases of Citrobacter freundii [26].  The acquired  blaCMY genes have escaped from the 

chromosome of C. freundii following mobilization mediated by ISEcp1, IS26 or ISCR1.  

CMY-1, CMY-12 and CMY-16 were found to be the most prevalent variants of plasmid-

mediated AmpC β-lactamases in Europe [26]. In addition, mobile insertion sequences such as 

IS26 and/or ISEcp1, which can be found upstream of blaAmpC genes, can facilitate their 

mobilization. Similar genetic context with ISEcp1 preceding blaCMY-16 was previously 

reported [31]. Simultaneous production of ESBLs and AmpC β-lactamases was also reported 

in P. mirabilis in recent studies [5]. CMY-16 was previously reported in P. mirabilis  from a 

long-term care facility in Italy [32]. In their study TEM-92 which is an ESBL and plasmid-

mediated AmpC β-lactamase CMY-16 were found. Similarily as in our study CMY-16 
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producing organisms were clonally related unlike those possessing ESBL [32].  The 

production of additional TEM-1 β-lactamase could increase the level of resistance to 

amoxycillin combined with clavulanate.  

From the therapeutic point of view, it is important to distinguish between ESBLs and AmpC 

β-lactamases because infections caused by AmpC positive isolates can be effectively treated 

with cefepime and cefpirome. On the other hand uncomplicated urinary tract infections due to 

ESBL positive organisms can be treated with β-lactam/inhibitor combinations which are not 

recommended for AmpC producing organisms [33] although our isolates demonstrated in 

vitro susceptibility to piperacillin/tazobactam. Some authorities recommend all expanded-

spectrum cephalosporins to be reported as resistant if the isolate produces plasmid-mediated 

AmpC β-lactamase regardless of the in vitro susceptibility results to avoid therapeutic failures 

[33]. CLSI has yet to establish a testing and reporting algorithm specifically for organisms 

containing AmpC β-lactamases. Identification of AmpC β-lactamases in E. coli, P. mirabilis 

and Klebsiella spp can increase the accuracy of antimicrobial testing reports for expanded-

spectrum cephalosporins if the results were used to modify the interpretations of 

cephalosporin results [33]. Recent studies demonstrated a high rate of clinical failure among 

patients who were infected in the bloodstream with AmpC-producing organisms and who 

received cephalosporin treatment [33-34]. There are no data on efficacy of cephalosporin 

therapy for urinary tract infections associated  with AmpC-producing organisms.  The spread 

of AmpC producing P. mirabilis in Europe pose a serious laboratory and therapeutic 

challenge [34]. Recently P. mirabilis has demonstrated great capacity to accumulate 

resistance genes such as those encoding ESBLs, plasmid-mediated AmpC β-lactamases, 

carbapenemases and fluoroquinolone resistance genes.  

Considering the gravity of the implication of wrong therapy in cronically ill and debilitated 

patients in long-term care facilities, looking for AmpC β-lactamases must be mandatory in all 
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microbiogical laboratories and clinicians should be educated on the importance of ESBLs and 

AmpC β-lactamases and therapeutic challenges that they pose [33-34].  
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FIGURE LEGEND 

 

Fig 1. Rep-PCR of P. mirabilis isolates. Cut of value of 97% was applied to define a 

clone. Date of isolation is shown.  
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Fig. 2. PFGE dendrogram of P. mirabilis isolates. Cut of value of 80% was applied to 

define a clone. Date of isolation is shown.  
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Table 1. 
 Minimum inhibitory concentrations and β-lactamase content of mutidrug-resistant Proteus mirabilis.  
 
 
Strain no Protocol  

number 
specimen date ESBL AmpC BL AMX AMC PIP TZP CXM CZ CAZ CTX CRO FEP FOX IMI MEM CIP GM 

1 77005 Urine (catheter) 29.04. 2013 - + CMY-16, TEM-1- >128 64 >128 8 >128 >128 16 32 16 1 >128 0.12 0.06 8 16 
2 77008 urine 29.04.2013. - + CMY-16, TEM-1- >128 64 >128 8 >128 >128 32 64 16 1 >128 0.12 0.06 8 64 
3 77889 Urine 30.04.2013.  - + CMY-16, TEM-1- >128 64 >128 8 >128 >128 32 64 8 2 >128 0.5 0.06 16 32 
4 77896 Urine (catheter) 30.04.2013.  - + CMY-16, TEM-1- >128 64 >128 16 >128 >128 32 32 32 0.5 >128 0.5 0.06 32 32 
5 77018 urine 29.04. 2013.  - + CMY,-16 TEM-1- >128 64 >128 8 >128 >128 64 32 32 0.25 >128 0.5 0.06 4 32 
6 77005 Urine (catheter) 29.04.2013. - + CMY,-16 TEM-1- >128 64 >128 4 >128 >128 32 64 64 0.5 >128 0.5 0.06 16 4 
7 77896 Urine (catheter) 30.04. 2013.  - + CMY-16, TEM-1- >128 64 >128 2 >128 >128 32 64 32 0.5 >128 0.5 0.06 32 32 
8 87894 Urine (catheter) 16.05.2014. - + CMY-16 TEM-1-1 >128 64 >128 2 >128 >128 16 64 32 1 >128 0.5 0.06 8 16 
9  50452 Urine (catheter) 06.09. 2013.  - + CMY-16, TEM-1- >128 64 >128 4 >128 >128 32 64 32 1 >128 0.5 0.06 16 64 
10 62950 Urine (catheter) 27.09. 2013.  - + CMY-16, TEM-1- >128 64 >128 32 >128 >128 16 64 32 8 >128 1 0.06 >128 64 
11 64004 Urine (catheter) 30.09.2013. - + CMY-16 TEM-1-1 >128 64 >128 64 >128 >128 16 >128 64 1 >128 1 0.06 >128 64 
12 68478 urine 07.10.2013.  - + CMY-112,, TEM-1 >128 64 >128 32 >128 >128 >128 >128 64 0.5 >128 0.5 0.06 32 64 
13 85073 Urine (catheter) 04.11.2013. - + CMY-16, TEM-1- >128 64 >128 8 >128 >128 >128 >128 32 0.5 >128 2 0.06 32 64 
14 85058 Urine (catheter) 04.11.2013. - + CMY-16, TEM-1- >128 32 >128 16 >128 >128 >128 >128 32 1 >128 2 0.06 32 64 
15  85109 Urine 04.11.2013. - + CMY-16, TEM-1- >128 32 >128 16 >128 >128 >128 >128 64 2 >128 2 0.06 32 64 
16 206382 Urine (catheter) 9.12.2013. - + CMY-16, TEM-1- >128 64 >128 32 >128 >128 >128 >128 16 0.5 >128 2 0.06 32 64 
17 401916 Urine (catheter) 19.08.2013. - + CMY-16 TEM-1 >128 64 >128 16 >128 >128 >128 >128 32 16 >128 2 0.06 32 64 
18 026852 urine 18.02. 2014 - + CMY-16, TEM-1- >128 64 >128 4 >128 >128 32 16 16 0.5 >128 2 0.06 32 64 
19 079495 Urine (catheter) 19.05.2014. - + CMY-16, TEM-1- >128 64 >128 64 >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 
20 77841 urine 15.05.2014 - + CMY-16, TEM-1- >128 64 >128 16 >128 >128 >128 >128 >128 0.5 >128 1 0.06 32 64 
21 108998 Urine (catheter) 8.07. 2014 - + CMY-16, TEM-1- >128 64 >128 64 >128 >128 64 64 >128 0.5 >128 1 0.06 64 64 
22 127717 Urine 13.08.2014.  - + CMY-16, TEM-1- >128 64 >128 16 >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 
23 33110 Urine 25.08.2014.  - + CMY-16, TEM-1- >128 64 >128 16 >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 
24 134135 

 
Urine 26.08. 2014 - + CMY-16, TEM-1- >128 64 >128 8 >128 >128 64 64 >128 0.5 >128 1 0.06 64 64 

25 96701 urine 19.12. 2014.   + CMY-16, TEM-1- >128 >128 >128 4 >128 >128 >128 32 >128 0.5 >128 1 0.06 64 64 
26 205122 Urine (catheter) 15.12.2014 - + CMY-16, TEM-1- >128 >128 >128 16                                                                                                           >128 >128 >128 64 >128 0.5 >128 1 0.06 64 64 
27 2014057567 Urine (catheter) 09.04. 2014 - + CMY-16, TEM-1- >128 >128 >128 32                                                                                                           >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 
28 2014063818 Urine (catheter) 22.04. 2014.  - + CMY-16, TEM-1- >128 >128 >128 32                                                                                                           >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 
29 2014064696 urine 23. 04. 2014. - + CMY-16, TEM-1- >128 >128 >128 32                                                                                                           >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 
30 79495 Urine 21.05. 2014  + CMY-16, TEM-1- >128 >128 >128 4 >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 
31 2014084499 urine 27.05. 2014.  - + CMY-16, TEM-1- >128 >128 >128 32                                                                                                           >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 
32 2014084497 Urine (catheter) 27.05. 2024 - + CMY-16, TEM-1- >128 >128 >128 64 >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 
33 201462795 Urine (catheter) 13.10. 2014 - + CMY-16, TEM-1- >128 >128 >128 32                                                                                                           >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 
34 2014162797 urine 13.10. 2014.  - + CMY-16, TEM-1- >128 64 >128 32                                                                                                           >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 
35 2014162793 Urine (catheter) 13. 10. 2014.  - + CMY-16, TEM-1- >128 64 >128 64 >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 
36 2014163856 Urine 14.10. 2014. - + CMY-16, TEM-1- >128 >128 >128 32                                                                                                           >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 
37 2014205122 urine 15.12. 2014.  - + CMY-16, TEM-1 >128 >128 >128 32                                                                                                           >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 
38 11861 Urine (catheter)    21.01. 2015                                                                                                                  - + CMY-16, TEM-1 >128 >128 >128 32                                                                                                           >128 >128 >128 >128 >128 0.5 >128 1 0.06 64 64 



 

 
 
 
 
Abbreviations: AMX, amoxycillin; AMC, amoxycillin/clavulanic acid; CXM, cefuroxime; CAZ, ceftazidime;  CTX, cefotaxime; CRO,  
ceftriaxone; FEP, cefepime; FOX, cefoxitin; PIP, piperacillin;  TZP, piperacillin/tazobactam; IPM, imipenem; MEM, meropenem; GM, gentamicin; 
 CIP, ciprofloxacin, ESBL: phenotypic test for detection of  ESBLs, AmpC-phenotypic test for AmpC β-lactamases, BL: β-lactamase content 
 
bclavulanic acid was added to AMX in the fixed concentration of 4 mg/L 
 
 
 

 


