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Abstract

Cell‐adhesion glycoprotein neuroplastin (Np) is involved in the regulation of synaptic

plasticity and balancing hippocampal excitatory/inhibitory inputs which aids in the

process of associative memory formation and learning. Our recent findings show

that neuroplastin expression in the adult human hippocampus is specifically associ-

ated with major hippocampal excitatory pathways and is related to neuronal calcium

regulation. Here, we investigated the hippocampal expression of brain‐specific
neuroplastin isoform (Np65), its relationship with amyloid and tau pathology in

Alzheimer's disease (AD), and potential involvement of neuroplastin in tissue

response during the disease progression. Np65 expression and localization was anal-

ysed in six human hippocampi with confirmed AD neuropathology, and six age‐/gen-
der‐matched control hippocampi by imunohistochemistry. In AD cases with shorter

disease duration, the Np65 immunoreactivity was significantly increased in the den-

tate gyrus (DG), Cornu Ammonis 2/3 (CA2/3), and subiculum, with the highest level

of Np expression being located on the dendrites of granule cells and subicular pyra-

midal neurons. Changes in the expression of neuroplastin in AD hippocampal areas

seem to be related to the progression of disease. Our study suggests that cell‐adhe-
sion protein neuroplastin is involved in tissue reorganization and is a potential

molecular marker of plasticity response in the early neurodegeneration process of

AD.
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1 | INTRODUCTION

Studies in literature have indicated multiple different (patho)physio-

logical functions of cell‐adhesion molecule (CAM) neuroplastin in the

human brain such as: the association of neuroplastin gene polymor-

phisms with cognitive abilities and cortical thickness in adolescents1;

single nucleotide polymorphisms that are associated with a higher

risk of developing schizophrenia.2 Also, we recently reported that

immunohistochemical localization of neuroplastin in the adult human

hippocampus specifically delineates hippocampal circuitry and its

principal excitatory pathways, and that there is a link between Np

expression and calcium regulation in murine cortical hippocampal

glutamatergic neurons.3 Two isoforms of neuroplastin, Np55 and

brain‐specific Np65, have been described.4 Neuroplastin functions in

several vital processes in the mammalian central nervous system

including neurite outgrowth,5 regulation of synaptic plasticity,6
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long‐term potentiation,7,8 maintaining balance between the excita-

tory and inhibitory pathways9 and the formation of associative mem-

ory.10 Data from mice and rats have allowed us to determine that

neuroplastin has a high preference for the hippocampus and cerebel-

lum,11,12 but only two studies have systematically analysed Np

expression in human brains.3,11 As with other CAMs, it is presumed

that Np is involved in the molecular events which underlay the

structural and functional processes of brain development, ageing,

and neurodegeneration.13-15 The adult human hippocampus retains a

neuroplastic potential which enables it to remodel and reorganize

after injury.16 This has led us to believe that neuroplastin expression

changes during neurodegeneration as well. Therefore, in this study

we analysed the expression and distribution of neuroplastin

immunoreactivity in human hippocampal sections derived from

brains of individuals with Alzheimer's disease (AD) and control sec-

tions obtained from cognitively normal subjects. We found increased

neuroplastin immunoreactivity in all major hippocampal areas

(Ammon's horn, dentate gyrus, subiculum) affected by AD pathology

when compared to age‐/gender‐matched controls. This strongly indi-

cates that CAM neuroplastin is involved in molecular events underly-

ing tissue response in neurodegeneration.

2 | MATERIALS AND METHODS

2.1 | Human brain samples

Immunohistochemical analyses were performed on hippocampal sec-

tions derived postmortem from: (a) individuals with neuropathologi-

cally confirmed AD (N = 6; mean age 77.8, age range: 73‐84 years;

clinically assessed mean duration of AD: 4.5 years, disease duration

range: 3.5‐7 years); (b) age‐/gender‐matched control subjects with a

negative history of neuropsychiatric disorders and cognitive deficits,

and cause of death not related to a neurological disorder or head

trauma (N = 6; mean age: 75.5, age range: 62‐84 years). All brain

sections were obtained from the Huddinge Brain Bank (Karolinska

Institutet, Stockholm, Sweden), in accordance with ethical require-

ments and legislative permissions (Table S1).

2.2 | Neuroanatomical, histochemical,
immunohistochemical, and volumetric procedures

All brains were fixed in 10% neutral formalin for 21 days prior to paraf-

fin embedding. Left hippocampi were cut in rostrocaudal direction, with

a random position for the first cut within the first rostral 3 mm, as previ-

ously described.17 Twelve micrometers thick sections were used for

both Nissl staining and immunohistochemistry. The following proce-

dures were performed, as previously published: (a) assessment of the

tissue shrinkage; (b) estimation of the number of hippocampal neurons;

(c) delineation and volumetric estimation of hippocampal subfields; (d)

Braak staging and neurofibrillary tangles (NFT) counting.18,19

For immunohistochemistry, sections were dewaxed and rehy-

drated. Following the antigen retrieval in citrate buffer (pH 6.0 at

95°C for 30 minutes) and pretreatment with 2.25% hydrogen

peroxide in methanol and water for 30 minutes, sections were incu-

bated in blocking solution (5% horse serum and 0.5% Triton X‐100
in PBS) for 2 hours at RT. Incubation with primary anti‐neuroplastin
65 antibody raised in goat (1:100, R&D Systems, AF5360, Min-

neapolis, Minnesota, USA) in blocking solution was performed at

+4°C overnight. Parallel sections incubated in blocking solution with-

out primary antibody were used as negative controls. Incubation in

secondary anti‐goat antibody conjugated with horse‐radish peroxi-

dase (Jackson ImmunoResearch Laboratories, West Grove, Pennsyl-

vania, USA) in blocking solution was performed at RT for 2 hours.

Diaminobenzidine (DAB) was used as an enhancement agent for

immunoreactivity visualization. Sections were scanned using a high‐
resolution scanner (Hamamatsu NanoZoomer C10730‐12). Signal

intensities were semiquantitatively scored by three independent

researchers as none (0), low (+), moderate (++), or strong (+++)

(Table S2). Final confirmation and quantification of Np immunoreac-

tivity signal was done using ImageJ densitometric analysis (ImageJ,

NIH public domain, https://imagej.nih.gov/ij/). For the image calibra-

tion, a calibrated optical density step tablet was used according to

instructions. The intensity of the immunoreaction on each slide was

additionally corrected for alveus immunoreactivity, the white matter

area showing no reaction for neuroplastin.

The volume and number of neurons were assessed stereologi-

cally, as described previously.19 Briefly, following manual delineation

of the hippocampal formation areas at low magnification, estimates

of the reference volume for each area were made using the Cavalieri

principle. For determination of the shrinkage in the third dimension

(assuming that shrinkage is similar in all three dimensions), we used

the value of the square root of the areal shrinkage as a correction

factor on slab thickness used in the Cavalieri formula.

Next, the numerical density of neurons was measured using the

disector method.20 Finally, the total number of neurons was

obtained by multiplying the numerical density of the particular hip-

pocampal subdivision with its reference volume.

2.3 | Statistical analysis

Statistical analysis of total Np immunoreactivity was done by using the

Student's t test. Np immunoreaction intensities in different AD hipocam-

pal areas were grouped according to disease duration (less than four and

more than 5 years), and were compared to controls by One‐Way ANOVA

and Tukey post‐hoc analysis. Relationship between the number of amy-

loid plaques and neurofibrillary tangles in major hippocampal areas with

quantified Np total immunoreactivity was analysed using Pearson's corre-

lation coefficient. All statistics were performed by using IBM SPSS ver.

25 (IBM Analytics, New York, NY, USA) software.

3 | RESULTS

3.1 | Hippocampal expression of neuroplastin in
Alzheimer's disease

We found altered levels of neuroplastin expression in distinct sublay-

ers of the human hippocampus in AD brains. When compared to
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age‐matched control tissues, we noticed that the overall intensity of

neuroplastin immunostaining was higher in the AD hippocampi of

early stage diseased patients and that the distribution of Np in sub-

layers of the hippocampi had changed.

Human Np65 was found to specifically localize on the neuronal

membranes and in neuropil, while the overall Np immunoreactivity is

distributed throughout distinct neuron‐containing hippocampal sub-

layers in both AD and control hippocampi (Figure 1). The highest Np

signal in normal human hippocampus is present in the CA1 area and

dentate gyrus, > CA2/3, > hilus, > subiculum, and is specifically

expressed in sublayers containing pyramidal or granule cells, as

reported previously.3

In AD hippocampi, a convincing increase in Np immunoreactiv-

ity intensity has been consistently found in all major analysed

hippocampal areas (Figure 1). At the cellular level, the change in

Np immunoreactivity in AD hippocampi was found to be associ-

ated mostly with neurons of the pyramidal sublayer in CA1, CA2/

3, and subiculum, and with DG granule cells (Figure 1; Table S2).

In the dentate gyrus, hippocampal area known to be a site of

adult neurogenesis and intensive plasticity,16 increased Np

immunoreactivity was predominantly associated with dendrites of

granule cells in the inner molecular layer (Figure 1). Additional

detected changes of Np expression in AD hippocampi included

accumulation of immunoreactive intracellular structures in the

subicular pyramidal layer (Figure 1).

In order to investigate whether cytopathological changes in AD

may interfere with our interpretation of Np immunoreactivity, we

performed quantitative analysis of neuron number and measurement

F IGURE 1 Neuroplastin immunoreactivity pattern in hippocampal sections derived from individuals with neuropathologically confirmed
Alzheimer's disease (AD) and age/gender‐matched controls. Representative data are shown, observed on at least three sections derived from
six AD and six control hippocampi. Immunoreactivity of neuroplastin is increased in all major analysed hippocampal areas (dentate gyrus, CA1,
CA2/CA3, and subiculum) of AD sections. Different intensity of specific neuroplastin immunostaining was demonstrated at the cellular level
between control and AD sections, as well as the association of neuroplastin immunostaining with bodies and dendrites of granule cells in the
inner molecular layer of dentate gyrus, pyramidal neurons of CA2/3, CA1 and subiculum. C, control; AD, Alzheimer's disease; DG, dentate
gyrus; CA1, CA2/CA3, Cornu Ammonis; SUB, subiculum; sg, stratum granulare; sm, stratum moleculare; sPy, stratum pyramidale. Scale bars ‐
5 mm (hippocampal formation); 100 μm (subiculum), 250 μm (DG and CA2/3), 500 μm (CA1)
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of volume of hippocampal areas in AD and matched control sections.

Neither of these measured parameters was shown to be significantly

different between AD and controls, supporting our finding of

increased total hippocampal Np immunoreactivity in AD vs controls

by excluding a potential influence of factors such as changed cell

number or tissue volume on the interpretation of Np immunoreactiv-

ity (Figure 2A, B). Indeed, quantification of the overall Np signal

intensities revealed: (a) significantly increased total Np

F IGURE 2 Neuroplastin immunoreactivity in human hippocampus changes both with ageing in controls and progression of Alzheimer's
disease. No significant quantitative difference in (A) neuron number and (B) volumes of hippocampal areas in AD sections was found when
compared with controls. (Error bars denote SD, standard deviation around mean of data referring to volumetric parameters.) (C) Quantification
of neuroplastin immunoreactivity in analysed hippocampal areas, expressed as total neuroplastin immunoreactivity revealed increased values in
AD compared with controls, being statistically significant in dentate gyrus and subiculum. Error bars denote standard deviation (SD) around
mean of data referring to quantified Np immunoreactivity in sections derived from six AD and six control subjects. Asterisk (*), P < 0.05,
Student t test. (D) In AD, total neuroplastin immunoreactivity tends to decrease with disease progression in all analysed hippocampal areas,
however, still remains higher in AD than in control hippocampal sections. Significant difference in Np immunoreactivity was found when
comparing controls and AD with shorter disease duration in DG, CA2/3 and subiculum, as well as when comparing two AD groups differing in
disease duration (asterisk denotes P < 0.05, One Way ANOVA and Tukey post‐hoc analysis; error bars denote standard deviation (SD). (E)
Quantification of amyloid plaques and neurofibrillary tangles in AD hippocampal sections confirmed the CA1 as the area with the highest
burden of specific AD neuropathological changes. (F) In AD hippocampal sections, negative correlation was found for Np immunoreactivity and
number of amyloid plaques in CA1 (r = –0.61, Pearson's). Np, neuroplastin; IR, immunoreactivity; I.O.D., integrated optical density; DG, dentate
gyrus; CA1, CA2/3, Cornu Ammonis; SUB, subiculum; AD, Alzheimer's disease; NFT, neurofibrillary tangles; N/A, not assessed
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immunoreaction in AD hippocampi compared to controls in dentate

gyrus and subiculum (P = 0.049 and 0.034, respectively) (Figure 2C);

(2) significantly increased Np immunoreactivity expressed per neuron

number in dentate gyrus and CA2/3 (P = 0.018, 0.031, respectively).

3.2 | Neuroplastin expression in the hippocampus
changes with progression of Alzheimer's disease

We observed another interesting feature of hippocampal Np

expression related to the changes in Np immunoreactivity intensity

with ageing in controls and with disease progression in AD. First,

quantification of total Np immunoreactivity confirmed higher Np

signal intensities in all AD samples than in controls (Figure 2C).

Second, the hippocampal Np signal intensity was significantly

higher in AD with shorter disease duration (≤4 years) vs age‐
matched controls in dentate gyrus, CA2/3, and subiculum

(P = 0.004, 0.025, 0.038, respectively) (Figure 2D). Third, although

total Np immunoreactivity had been persistently higher in AD hip-

pocampus and there was a statistical difference found in specific

hippocampal areas of early stage disease vs controls, our results

indicate that total Np expression decreases with ageing in controls

(data not shown) and in the AD group with longer disease duration

(5‐7 years) (Figure 2D). Moreover, the comparison of quantified

neuroplastin immunoreactivity between two AD groups with a dif-

ferent disease duration (AD ≤ 4 years vs AD ≥5 years) revealed a

significant decrease in Np immunoreactivity with disease progres-

sion in the dentate gyrus, CA2/3, and subiculum, (P = 0.014, 0.010,

0.011, respectively) (Figure 2D).

We further investigated the relationship of neuropathological

features specific for neurodegeneration with detected alterations of

neuroplastin immunoreactivity in AD hippocampi. The highest num-

ber of amyloid plaques and neurofibrillary tangles were found in

CA1 (Figure 2E). A strong negative correlation was found between

neuroplastin immunoreactivity and the number of amyloid plaques in

CA1 (r = –0.61) (Figure 2F). Weak negative correlation was observed

between the NFT number and neuroplastin immunoreactivity in CA1

(r = –0.33), CA2/3 (r = –0.15) and subiculum (r = –0.17).

4 | DISCUSSION

Using immunohistochemical techniques, this study showed that the

expression of neuroplastin, CAM known to be involved in pro-

cesses of learning, memory and cognition, is consistently and signif-

icantly changed in the major hippocampal areas in Alzheimer's

disease. Observed alterations of hippocampal Np immunoreactivity

are clearly related to both the distribution and dynamics of patho-

logical events in AD. Our study suggests that the aberrations of

Np expression in these hippocampal areas are because of a

response to attenuate the neuropathological changes caused by

AD. This finding supports previously reported literature entailing

alterations of CAMs in response to lesions that trigger a neurode-

generative pathological cascade.14,15,21,22

Significantly increased Np expression in early‐phase AD may

reflect structural and functional reorganization of the tissue, while

reduction in hippocampal compensatory cellular and molecular

capacities during disease progression is associated with an overall

decreased Np immunostaining intensity. Our study demonstrated

that in the early stage of AD the total Np expression increases pre-

dominantly in the dentate gyrus, mainly unaffected by NFT.23 As the

disease progresses, Np immunoreactivity is still higher in the DG

than in age‐matched controls, however, the overall signal intensity

decreases in all analysed areas and most dramatically in CA1, a vul-

nerable hippocampal area with the highest amount of amyloid pla-

ques and NFT burden.23 Despite evidence of specific Np expression

in human hippocampi and changed Np immunoreactivity in AD vs

controls, it was not possible to determine a direct causal association

of Np immunoreactivity and the estimated quantitative distribution

of the neuropathological hallmarks of AD. This observation as well

as a lack of significant correlation of quantified senile plaques or

neurofibrillary tangles with age and duration of the disease, could be

also explained by results of previous studies that pointed out great

interindividual differences in neuropathological findings in ageing

and AD,19 and difficulties in establishing a correlation between cell

loss, NFT, and SP quantity.18,24 However, observed relationship of

hippocampal Np immunoreactivity in AD with the number of amyloid

plaques and NFT in the present study seems promising for further

investigation in a larger sample.

Interestingly, besides confirmed and previously described local-

ization of Np expression on neuronal membranes, we observed intra-

cellular Np immunoreactivity in subicular pyramidal neurons in AD.

Although it is not possible to unequivocally explain this finding with-

out further study, we may speculate that processing and/or traffick-

ing of CAM neuroplastin is disturbed in vulnerable subicular areas

affected by AD‐related neurodegeneration.18,19

In conclusion, our preliminary results strongly indicate that

altered hippocampal expression of cell‐adhesion glycoprotein neuro-

plastin in Alzheimer's disease is most probably related to a tissue

plasticity response in neurodegeneration. Neuroplastin's role in the

molecular mechanisms entailing neurodegenerative diseases is yet to

be elucidated and requires further studies.
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