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Two clinically distinct diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), have recently been
classified as two extremes of the FTD/ALS spectrum. The neuropathological correlate of FTD is frontotemporal lobar
degeneration (FTLD), characterized by tau-, TDP-43-, and FUS-immunoreactive neuronal inclusions. An earlier discovery that a
hexanucleotide repeat expansion mutation in chromosome 9 open reading frame 72 (C9orf72) gene causes ALS and FTD
established a special subtype of ALS and FTLD with TDP-43 pathology (C9FTD/ALS). Normal individuals carry 2–10
hexanucleotide GGGGCC repeats in the C9orf72 gene, while more than a few hundred repeats represent a risk for ALS and
FTD. The proposed molecular mechanisms by which C9orf72 repeat expansions induce neurodegenerative changes are C9orf72
loss-of-function through haploinsufficiency, RNA toxic gain-of-function, and gain-of-function through the accumulation of
toxic dipeptide repeat proteins. However, many more cellular processes are affected by pathological processes in C9FTD/ALS,
including nucleocytoplasmic transport, RNA processing, normal function of nucleolus, formation of membraneless organelles,
translation, ubiquitin proteasome system, Notch signalling pathway, granule transport, and normal function of TAR DNA-
binding protein 43 (TDP-43). Although the exact molecular mechanisms through which C9orf72 repeat expansions account for
neurodegeneration have not been elucidated, some potential therapeutics, such as antisense oligonucleotides targeting
hexanucleotide GGGGCC repeats in mRNA, were successful in preclinical trials and are awaiting phase 1 clinical trials. In this
review, we critically discuss each proposed mechanism and provide insight into the most recent studies aiming to elucidate the
molecular underpinnings of C9FTD/ALS.

1. Introduction

Amyotrophic lateral sclerosis (ALS) and frontotemporal
dementia (FTD) are two clinically distinct entities. ALS, also
known as motor neuron disease (MND), Lou Gehrig’s dis-
ease, and Charcot disease, affects both upper and lower
motor neurons leading to hyperreflexia, spasticity, fascicula-
tions, and muscular atrophy [1]. The disease onset is mostly
after 60 years of age with a prevalence of around 5 cases per

100,000 [2]. ALS patients can be divided into subgroups
according to neuropsychological deficits: ALS with cognitive
impairment (ALS-ci), ALS with behavioral impairment
(ALS-bi), and ALS with combined cognitive and behavioral
impairment (ALS-cbi) [3]. In FTD, neurodegeneration
affects the frontal and temporal lobes causing frontotemporal
lobar degeneration (FTLD) and is associated with changes in
behavior and personality, deficits in frontal executive func-
tions, and language impairment [3]. FTD is considered to
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be one of the most common forms of dementia in the popu-
lation under 65 years of age with the prevalence around 10
cases per 100,000 [4]. FTD patients are divided in three clin-
ical syndromes according to their symptomatology: two lan-
guage variants (progressive nonfluent aphasia (PNFA) and
semantic dementia (SD)), and behavioral variant of fronto-
temporal dementia (bvFTD) [3]. Based on the clinical,
genetic, and neuropathological overlap between ALS and
FTD, these two diseases are now considered as two
extremes of the FTD/ALS spectrum (Figure 1) [1]. About
15% of FTD patients show symptoms of ALS, and up to
50% of ALS patients have symptoms of FTD [5].

2. Main Features of ALS and
FTLD-TDP Neuropathology

The vast majority of ALS cases (ALS-TDP) and the most
common FTD pathological subtype (FTLD-TDP) show
TDP-43 (TAR DNA-binding protein 43) immunoreactive
aggregates forming characteristic inclusions (for overview
see [6, 7]). The hallmarks of ALS with TDP-43 pathology
(ALS-TDP) are skein-like, granular, and compact inclusions
in motor neurons, whereas in FTLD-TDP, there are four dis-
tinct morphological types (A–D) with characteristic distribu-
tion and morphology of dystrophic neurites, cytoplasmic,
and intranuclear inclusions. There is a good correlation with
both clinical phenotype and genetic alterations [8]. For
example, cases with hexanucleotide repeat expansions in
C9orf72 are typically associated with type A and type B
pathology, whereas mutations in the progranulin gene GRN
and valosin-containing protein gene (VCP) are associated
with type A and type D, respectively. Regarding the correla-
tion with clinical phenotypes, for example, PNFA is associ-
ated with type A, SD with type C, and inclusion body
myopathy with frontotemporal dementia (IBMFD) with type
D. In both ALS and FTLD, there is glial pathology mainly
affecting oligodendroglia, with TDP-43-immunoreactive
cytoplasmic inclusions [6, 7]. While most of the ALS cases

are sporadic, about half of all FTD patients show a familial
pattern of inheritance linked to mutations in several different
genes [6, 9–11].

3. Hexanucleotide Repeat Expansion in
C9orf72 Gene

A mutation in chromosome 9 open reading frame 72
(C9orf72) has been identified as a common genetic cause of
both ALS and FTD. The link of ALS and FTD to chromo-
some 9 was first reported in 2006 in two independent studies
[12, 13]. It was later shown that the mutation is an expansion
of GGGGCC (G4C2) hexanucleotide repeat in a noncoding
region of the C9orf72 gene [14–16], which is the most com-
mon genetic cause of ALS and FTD (so called C9FTD/ALS)
in certain populations.

In humans, three transcript variants of C9orf72 have been
identified. Transcript variants 2 and 3 give rise to identical
protein isoforms of 481 amino acids, while the 3′ site of
transcript variant 1 is truncated and encodes an isoform
of 222 amino acids. The hexanucleotide repeat is located
within the promoter region for transcript variant 2, which
corresponds to the position of the first intron in transcript
variants 1 and 3 depending on the transcription start site
used [17, 18].

While the number of G4C2 repeat units in the DNA of
healthy individuals is up to 25, the number of repeats in the
DNA of ALS and FTD patients is usually 400 to several thou-
sand [14–16, 19–21]. A small percentage of patients have
shorter expansions, from 45–80 repeats [19], and an even
shorter expansion, around 30 repeats, has been associated
with the disease [15]. Notably, there is an apparent gap
between short pathogenic repeat sizes of 45 to 80 and long
expansions from 400 to several thousand units. This is likely
due to high genomic instability of the intermediate long
repeats, which may have a tendency to either expand or
contract [19]. Interestingly, longer expansions have been
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Figure 1: Influence of different genes on FTD/ALS clinical spectrum.
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recently correlated with an earlier onset of disease [19]. In
contrast, other studies detected either positive correlation
[22–25] or no association [22, 25] between disease severity
and expansion size. Additionally, the results of these studies
were variable depending on the tissue in which expansion
size was measured [22, 25].

4. C9orf72 Protein

The function of C9orf72 protein is still unclear. Bioinformat-
ics predictions suggest that C9orf72 belongs to the family of
DENN (differentially expressed in normal and neoplastic
cells) proteins, which function as RabGEF (guanine exchange
factor) regulators of membrane trafficking by activating
RabGTPases [26, 27]. RabGEF facilitates a release of GDP
from Rab and exchanges it for GTP. To support the role of
C9orf72 as RabGEF, a study conducted on neuronal cell lines
and human spinal cord tissue revealed that it was colocalized
and coprecipitated with Rab proteins [28]. Therefore,
C9orf72 could be involved in Rab-mediated cellular traffick-
ing and protein degradation. Additionally, C9orf72 protein
was detected at presynaptic sites, and as it interacts with
Rab proteins, it is believed that C9orf72 could regulate synap-
tic vesicles as RabGEF for RAB3 proteins [29]. Xiao et al.
detected interactions of C9orf72 with different components
of the nuclear pore complex (NPC) and nuclear receptors
in human brain tissue, indicating a possible role of C9orf72
in nucleocytoplasmic trafficking [30]. Nuclear transport is
compromised in different C9FTD/ALS models (such as
Drosophila, induced pluripotent stem cells (iPSC) derived
neurons, human brain tissue, yeast cells, mouse primary neu-
rons, and primary human dermal fibroblasts) [31–33]. As
knockdown of C9orf72 leads to disruption in endosomal
trafficking and formation of autophagosome [28], it is pro-
posed that C9orf72 may be also involved in the regulation
of endosomal trafficking and autophagy. Additional studies
established the involvement of C9orf72 in the regulation of
autophagy [34–36]. In studies conducted on cell lines, it
was also shown that C9orf72 could be involved in the regula-
tion of lysosomal function [37, 38] and in the formation of
stress granules [39]. In mice, C9orf72 is required for the nor-
mal macrophage and microglial function [40]. It was shown
that decreased levels of C9orf72 cause dysfunctional microg-
lia that are related to neurodegeneration [40].

5. Neuropathological Features of C9FTD/ALS

Cases with hexanucleotide repeat expansion in C9orf72
are typically associated with type A and B FTLD-TDP
pathology, as previously mentioned. The neuropathology
of C9FTD/ALS shows pathognomonic ubiquitin- and p62-
positive and, rarely, TDP-43-containing inclusions in the
cerebellum (Purkinje cells and granular cells) and hippo-
campus [41, 42]. A unique feature is the presence of aggre-
gating dipeptide repeat proteins within a proportion of
inclusion bodies, some of which may not show phosphory-
lated TDP-43 (pTDP-43) immunoreactivity [43, 44]. Ultra-
structurally, the characteristic inclusions in FTLD and ALS
with C9orf72 mutation are granular and filamentous [45].

6. Potential Mechanisms of C9orf72
Hexanucleotide Repeat Expansion-
Mediated Neurodegeneration

Three mechanisms have been proposed for G4C2 hexanu-
cleotide repeat expansion (HRE) in C9orf72 to induce neuro-
degenerative changes: (1) loss of C9orf72 function through
haploinsufficiency, (2) toxic gain-of-function due to the
generation of aberrant HRE-containing RNA, and (3) toxic
gain-of-function through the accumulation of dipeptide
repeat proteins (DPR) translated from hexanucleotide repeat
RNA. Potential mechanisms by which C9orf72 repeat expan-
sions result in neurodegeneration are summarized in
Figure 2. Microphotograph with characteristic histopatho-
logical changes is given in Figure 3. Studies investigating
these mechanisms are summarized in Table 1.

6.1. Loss of C9orf72 Function through Haploinsufficiency.
Carriers of C9orf72 HRE have decreased levels of C9orf72
transcripts [14, 16], which are also reflected in the decreased
C9orf72 protein levels in the frontal and temporal cortex
[20], presumably due to the loss of transcription from the
mutant allele carrying the HRE. A systematic study of
C9orf72 levels in patients with HRE revealed decreased levels
of C9orf72 transcripts in comparison to non-HRE patients
and controls [46]. Interestingly, the levels of the long
C9orf72 protein isoform were decreased in the brain, while
levels of the short C9orf72 protein isoform were increased
(as detected by Western blot). Immunohistochemical analy-
sis of spinal motor neurons showed decreased expression of
short C9orf72 protein isoform on nuclear membrane in
C9ALS cases compared to controls, while subcellular locali-
zation of long C9orf72 protein isoform was unchanged
[30]. Another study detected 80% reduction of long
C9orf72 protein isoform in the cerebellum of C9orf72 HRE
carriers in comparison to controls [29]. C9orf72 hexanucleo-
tide repeat expansion might induce DNA hypermethylation
and consequently lead to decreased C9orf72 transcription
[47]. HRE is methylated when the number of repeats is
larger than 90 [48]. Moreover, the DNA from a fraction of
C9orf72 HRE carriers is also methylated in the 5′ CpG island
[47, 49, 50]. The repeat expansion-induced DNA methyla-
tion in the C9orf72 promoter region, which results in down-
regulated C9orf72 transcription, therefore provides a likely
explanation for the association between the size of repeat
expansion and the age of onset of the disease [19]. More pre-
cisely, the authors tested C9orf72 promoter activity in
human kidney and neuroblastoma cell lines and observed
reduced C9orf72 transcription in cells with larger repeats
and increased methylation. Thus, they proposed that higher
methylation of C9orf72 promoter may be an explanation of
how repeat expansion could lead to loss-of-function, without
excluding the possibility that repeat expansion could also
lead to toxic gain-of-function [19]. There is also a possibility
that higher-order DNA structures formed on G4C2 repeats
could lead to abortive transcription of C9orf72 and therefore
be the cause for decreased C9orf72 transcription [51].

C9orf72 loss-of-function in C. elegans and zebrafish
models results in motor neuron degeneration, indicating a
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possible disease mechanism [52, 53]. However, human
C9orf72 gene has only partial homology with its ortholog in
C. elegans and zebrafish. Thus, loss-of-function mechanisms
were assessed in C9orf72 knockout mice as the mouse ortho-
log of C9orf72 gene is more similar to the human C9orf72

gene [18]. Various knockout and knockdown models have
been developed, yet none of the mouse models showed phe-
notypes characteristic for ALS or FTD [35, 40, 54–57], indi-
cating that C9orf72 loss-of-function is not the true cause of
disease. The observation that patients homozygous for
C9orf72 repeat expansion do not have more severe symptoms
of disease compared to heterozygotes further supports these
findings [58, 59] (Table 2).

6.2. Toxic Gain-of-Function due to Aberrant
HRE-Containing RNA

6.2.1. Higher-Order Structures of DNA and RNA Formed
by C9orf72 HRE Sequence. Due to the uniformity of the
G4C2 sequence and the abundance of guanine nucleotides,
expanded hexanucleotide repeats in the C9orf72 gene form
higher-order DNA structures called G-quadruplexes [51, 60].
G-quadruplexes formed in the DNA can adopt both parallel-
and antiparallel-stranded conformations, and increasing the
length of the repeats creates a heterogeneous mixture of these
structures. Both C-rich sense and antisense strands can
assemble as i-motifs and hairpin structures [61]. G-
quadruplex structures formed in the C9orf72 HRE region

Figure 3: TDP-43-immunoreactive cytoplasmic inclusions, finely
granular aggregates, and lack of nuclear labelling in a spinal
cord motoneuron of a patient with ALS caused by C9orf72
hexanucleotide repeat expansion.
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Table 1: Summary of studies on the mechanisms by which C9orf72 repeat expansions cause neurodegeneration.

Reference

Molecular mechanism supported by the study

Experimental model
Loss-of-function

Gain-of-function
RNA-mediated
gain-of-function

Protein-mediated
gain-of-function

Renton et al. [15] +
Human DNA

Human brain tissue
Cell culture

DeJesus-Hernandez et al. [14] + +
Human DNA

Human brain tissue
Cell culture

Gijselinck et al. [16] +
Human brain tissue

Human DNA

Fratta et al. [58] + + Human DNA

Therrien et al. [52] + Caenorhabditis elegans

Belzil et al. [135] +
Human brain tissue

Cell culture

Gendron et al. [67] + +
Human DNA

Human brain tissue
Cell lines

Zu et al. [93] + +
Human brain tissue

Human RNA
Cell culture

Mizielinska et al. [68] + Human brain tissue

Lee et al. [70] +

Human brain tissue
Cell culture

Zebrafish embryos
Rat brain

Sareen et al. [71] + iPSC-derived neurons

Xu et al. [72] +
Cell culture
Drosophila

Lagier-Tourenne et al. [54] +
Human brain tissue

Cell culture

Donnelly et al. [69] +
Human brain tissue

Cell culture
iPSC-derived neurons

Ciura et al. [53] +
Zebrafish

Human brain tissue
Cell culture

Wen et al. [94] + +
Cell culture
Drosophila

Liu et al. [50] + +
Human autopsy tissue

Human DNA
Cell culture

May et al. [138] +
Human brain samples

Cell culture

Zhang et al. [102] +
Human brain samples

Cell culture

Cooper-Knock et al. [73] +
Human brain samples

Cell culture

Su et al. [134] + + Cell culture

Kwon et al. [95] + Cell culture

Haeusler et al [51] +
Human brain tissue

iPSC-derived neurons Cell culture
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Table 1: Continued.

Reference

Molecular mechanism supported by the study

Experimental model
Loss-of-function

Gain-of-function
RNA-mediated
gain-of-function

Protein-mediated
gain-of-function

Mizielinska et al. [87] + + Drosophila

Russ et al. [139] + + Human DNA

Prudencio et al. [113] + + Human brain tissue

Chew et al. [140] + + Mouse model expressing 66 G4C2 repeats

Freibaum et al. [32] + + Drosophila

Yang et al. [101] +

Drosophila
Human brain samples

Cell culture
iPSC-derived neurons

Jovičić et al. [33] +
Yeast cells
Cell culture

Yamakawa et al. [99] +
Cell culture
Mice brains

Hu et al. [141] + Cell culture

Gendron et al. [110] + Human brain samples

Tao et al. [98] + Cell culture

Tran et al. [86] +
Drosophila

iPSC-derived neurons
Human brain tissue

Koppers et al. [55] + + Conditional C9orf72 knockout mouse model

Cooper-Knock et al. [83] + Human brain tissue

Zhang et al. [31] + +
Drosophila

iPSC-derived neurons
Human brain tissue

Rossi et al. [84] + Cell culture

Cooper-Knock et al. [116] + Cell culture

Schweizer Burguete et al. [85] +
Cell culture
Drosophila

iPSC-derived neurons

Liu et al. [92] + + BAC mouse model of C9FTD/ALS

Kanekura et al. [96] +
Human brain samples

Cell culture

Boeynaems et al. [142] + Drosophila

Chang et al. [103] + Cell culture

Flores et al. [143] + Cell culture

Lin et al. [126] + Cell culture

Lopez-Gonzalez et al. [144] + iPSC-derived neurons

Liu et al. [145] + Human DNA and RNA

Dodd et al. [146] +

Zhang et al. [147] + Mice that exhibit poly(GA) pathology

Westergard et al. [148] +
iPSC-derived neurons

Cell culture

Sellier et al. [36] +
Cell culture
Zebrafish

Mori et al. [149] + +
Human brain samples

Cell culture
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Table 1: Continued.

Reference

Molecular mechanism supported by the study

Experimental model
Loss-of-function

Gain-of-function
RNA-mediated
gain-of-function

Protein-mediated
gain-of-function

Gijselinck et al. [19] + Human DNA

Ugolino et al. [150] +
C9orf72 knockout mice

C9orf72 knockdown cell models

Lee et al. [125] +
Drosophila
Cell culture

O’Rourke et al. [40] + + C9orf72 +/− and C9orf72 −/− mice

Atanasio et al. [56] + + C9orf72-deficient mouse

Jiang et al. [91] + +
C9orf72 +/− and C9orf72 −/− mice

Mice expressing BAC with the human expanded
C9orf72 gene

Webster et al. [34] +
Cell culture

iNeurons (obtained by differentiation of iNPCs)

Ji et al. [151] +
C9orf72 knockout mouse model

Cell culture

Ohki et al. [152] + Zebrafish

Liu et al. [153] + Cell culture

Hu et al. [154] + Cell culture

Green et al. [155] + Cell culture

Schludi et al. [156] +
Transgenic mice expressing codon-modified

(GA)149
Gupta et al. [157] + Cell culture

Khosravi et al. [158] + Cell culture

Shi et al. [159] + Cell culture

Saberi et al. [160] + Human brain samples

Kramer et al. [105] + Cell culture

Herranz-Martin et al. [161] + +
Mice that overexpress 10 or 102 interrupted

G4C2 repeats

Zhou et al. [162] +
Cell culture

Human brain samples

Lehmer et al. [163] + Human CSF

Hautbergue et al. [82] + +
Drosophila
Cell culture

Boeynaems et al. [100] + Cell culture

Maharjan et al. [39] + + + Cell culture

Moens et al. [88] + + Drosophila

Cheng et al. [164] + Cell culture

Swinnen et al. [165] + Zebrafish

Shi et al. [59] + +
Cell culture

iPSC-derived neurons
Human brain samples

Simone et al. [137] + +
iPSC-derived neurons

Drosophila

Tabet et al. [166] +
Human brain sections

Cell culture

Corrionero and Horvitz [167] + Caenorhabditis elegans
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cause generation of truncated RNA transcripts that are
aborted in the hexanucleotide repeat region [51]. These
aberrant RNA transcripts containing repetitive hexanucleo-
tide sequence can also form G-quadruplexes and RNA hair-
pin structures. Additionally, HRE-containing RNA can
form hybrids with HRE-containing DNA called R-loops
[51, 62–64]. Together, these higher-order structures of
DNA and RNA are thought to act as promoters and

regulatory elements affecting replication, transcription,
and translation of the surrounding region [65, 66], and to
exert deleterious effect on cells by causing nucleolar stress
and impeding RNA processing [51], as discussed below.

6.2.2. Sequestration of RNA-Binding Proteins into Nuclear
Aggregates by the C9orf72 HRE-RNA. HRE-containing RNA
transcripts accumulate and form nuclear aggregates, or

Table 1: Continued.

Reference

Molecular mechanism supported by the study

Experimental model
Loss-of-function

Gain-of-function
RNA-mediated
gain-of-function

Protein-mediated
gain-of-function

Zamiri et al. [168] +
CD spectroscopy

UV melting
Gel electrophoresis

Swaminathan et al. [104] + Zebrafish

Yeh et al. [169] + Zebrafish

Meeter et al. [170] + Human brain samples

Nonaka et al. [171] + Cell culture

Frick et al. [29] +
Human brain samples

Cell culture
C9orf72 knockout mice

BAC: bacterial artificial chromosome; CSF: cerebrospinal fluid; iNPCs: inducedneural progenitor cells; iPSC: induced pluripotent stem cells. Studies investigating
pathological mechanisms ofC9orf72HRE but not clearly supporting any of the three proposed diseasemechanisms are not included in this table. Search for these
studies was completed on May 20, 2018. The literature search was performed in Google Scholar using the keywords: “C9orf72”, “mechanism”, “pathological”,
“loss-of-function”, “gain-of-function”, “haploinsufficiency”, “RNA foci”, and “DPR”. The literature search was conducted by two independent researchers.

Table 2: Evaluation of potential mechanisms underlying pathology in C9FTD/ALS.

Molecular mechanism underlying
pathology in C9FTD/ALS

Pros Cons

Loss-of-function

C9orf72 loss-of-function models in C. elegans and
zebrafish result in motor neuron degeneration

C9orf72 loss-of-function mouse models do not
show phenotype characteristic for ALS and FTD

Carriers of C9orf72 HRE have decreased levels of
C9orf72 mRNA and proteins in the brain

Patients homozygous for C9orf72 repeat expansion
do not have more severe symptoms of disease

RNA-mediated gain-of-function

HRE-containing RNA transcripts accumulate and
form nuclear aggregates, or RNA foci, in the brain

of patients with mutated C9orf72

Drosophila models of RNA toxic gain-of-function
fail to produce neurodegeneration

Sequestration of RNA-binding proteins into RNA
foci can disrupt RNA processing, translation,
nucleocytoplasmic transport, and granule
transport and lead to nucleolar stress

The results on RNA toxic gain-of-function mouse
models are conflicting and need to be further

investigatedHigher abundance of RNA foci in patients
carrying C9FTD/ALS HRE is associated with

earlier disease onset

Protein-mediated gain-of-function

Drosophila model of protein-mediated gain-of-
function develops neurodegeneration

Amounts of DPR in the brain do not correlate with
clinical phenotype, severity of diseases, and

neurodegeneration

DPR disrupt nucleocytoplasmic transport, RNA
processing, translation, ubiquitin proteasome
system, formation of stress granule, and Notch

signalling pathway and can lead to nucleolar stress

Abundance of DPR is low in the brain regions
most affected by ALS and FTD

ALS: amyotrophic lateral sclerosis; C9FTD/ALS: hexanucleotide repeat expansion in C9orf72 causing ALS and FTD; DPR proteins: dipeptide repeat proteins;
FTD: frontotemporal dementia; HRE: hexanucleotide repeat expansion.
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RNA foci, in the brain of patients with C9orf72 HRE [14]. As
the transcription of C9orf72HRE DNA region can also occur
in the antisense direction, antisense RNA is also found within
foci in the brains of patients with C9orf72 HRE [67, 68].
Several proteins specifically bind to C9orf72 HRE-containing
RNA, including ADARB2, ALYREF, hnRNP H, hnRNP A1,
nucleolin, Pur α, and SRSF2 [51, 69–73]. A number of
RNA-binding proteins (RBP) are implicated in the HRE-
induced neurodegeneration.

(1) Nucleolin. One of the main constituents of the nucleolus,
nucleolin, has a high affinity for C9orf72 RNA containing
G-quadruplex structures of G4C2 repeat [51]. Nucleolin
bound to RNA G-quadruplexes dislocates from the nucleoli
and disperses through the nucleus. This results in impaired
rRNA processing, followed by decreased maturation of ribo-
somes, and finally, accumulation of untranslated mRNA in
the neuronal cytoplasm [51].

(2) Pur α. Another protein that has been identified as a HRE-
RNA binding is Pur α [72]. Involvement of Pur α in the path-
ogenesis of ALS/FTD is supported by experiments showing
that Pur α overexpression alleviates HRE-mediated toxicity.
In other words, Pur α overexpression prevents cell death both
in mammalian cells and inDrosophila [72]. Pur α is a compo-
nent of the RNA-transport granules—particles that carry
mRNAs to the nerve fibers where translation of those
mRNAs into proteins occurs [74, 75]—and is involved in
the regulation of the cell cycle [76] and in cell differentiation
[77, 78]. Sequestration of Pur α by the C9orf72 hexanucleo-
tide RNA repeats could impair neuronal mRNA transport
thus leading to neurodegeneration [79].

(3) hnRNPs. The largest group of proteins sequestered by the
C9orf72 HRE-containing RNA are heterogeneous nuclear
ribonucleoproteins (hnRNPs) [44, 51]. It was shown that
C9orf72 interacts with hnRNP-U, hnRNP-F, hnRNP-K
[51], hnRNP-A2/B1, and hnRNP-A1 [28], while hnRNP A1
and hnRNP H colocalize with RNA foci [70, 71]. HnRNP
H is involved in the regulation of RNA processing [80]; thus,
hnRNP H sequestration in RNA cause aberrant RNA pro-
cessing and may enhance neurodegeneration [70].

(4) ADARB2. An RNA-editing enzyme ADARB2 also inter-
acts with the HRE-containing RNAs and colocalizes with
RNA foci in C9ALS cases [69]. Although the mechanism by
which ADARB2 sequestration in RNA foci could contribute
to HRE-mediated toxicity is unclear, it was proposed that this
protein may be important for RNA foci formation because
ADARBP knockdown results in the reduction of neurons
that contain RNA foci [69].

(5) SRSF1 and SRSF2. It was shown that serine-arginine-
rich splicing factor 1 (SRSF1) and SRSF2 colocalize with
RNA foci [70]. Given that SRSF2 is a marker of nuclear
speckles, nuclear regions important for storage of splicing
factors [81], its accumulation in RNA foci could disrupt
the function of these speckles and lead to aberrant RNA
processing [73]. Additionally, binding of the nuclear export

adaptor SRSF1 to C9orf72 repeats promotes export of
C9orf72 repeats from the nucleus. As it was demonstrated
that SRSF1 knockdown in C9FTD/ALS Drosophila model
blocks neurodegeneration, SRSF1 could be a potential ther-
apeutic target [82].

(6) ALYREF. Because aberrant nuclear transport is observed
in different C9FTD/ALS models [31–33], the observation
that ALYREF (Aly/REF export factor) also colocalizes with
RNA foci in C9FTD/ALS cases [70, 73, 83] is of interest.
However, although knockdown of nuclear export adaptor
SRSF1 blocks neurodegeneration in Drosophila, only a
modest decrease in neurodegeneration was observed after
knockdown of ALYREF [82].

In conclusion, toxic gain-of-function due to aberrant
HRE-containing RNA can lead to dysfunctional RNA pro-
cessing [73], aberrant translation [84], nucleolar stress [51],
disrupted nucleocytoplasmic transport [31], and dysfunction
in granule transport [85]. Additionally, it was observed that
higher abundance of RNA foci in the frontal cortex of
C9FTD patients is associated with earlier disease onset [68].
However, several experimental studies failed to detect neuro-
degeneration in in vivo C9FTD/ALS models displaying RNA
foci (Table 2). Neurodegeneration was not observed in Dro-
sophila models carrying 160 G4C2 repeats [86], 288 G4C2
repeats [87], and 1000 G4C2 repeats [88]. More precisely,
Drosophilamodels carrying “RNA-only” repeats that formed
RNA foci but not DPRs failed to produce neurodegeneration,
while Drosophila models carrying “pure repeats” that could
form both RNA foci and DPRs displayed neurodegeneration
[87, 88]. However, two transgenic C9FTD/ALS mouse
models with both RNA and protein toxic gain-of-function
failed to produce neurodegeneration [89, 90], while two other
transgenic mouse models showed signs of neurodegeneration
[91, 92]. Regarding the latter two C9FTD/ALS mice models,
whether neurodegeneration was caused by toxic HRE-
containing RNAs or DPRs translated from hexanucleotide
repeat RNA remains to be assessed [91, 92].

6.3. Toxic Gain-of-Function through Accumulation of
Dipeptide Repeat Proteins Translated from C9orf72 HRE-
Containing RNA. RNA transcripts of C9orf72 HRE region
can undergo repeat-associated non-ATG (RAN) translation
in which different DPR proteins are synthesized [43, 44, 93].
Poly-Gly-Ala, poly-Gly-Pro, and poly-Gly-Arg are translated
from different open reading fragments on the sense transcript
and poly-Gly-Pro, poly-Pro-Arg, and poly-Pro-Ala from the
antisense transcript. Toxicity of DPR proteins seems to be
mainly dependent on arginine-containing DPR proteins, par-
ticularly poly-Pro-Arg [33, 87, 94, 95]. Arginine-rich DPRs
appear to disrupt primarily nucleocytoplasmic transport
[33] and RNA processing [33, 95], which can cause dysregu-
lation of translation [96, 97], nucleolar stress [98], disturb
ubiquitin proteasome system [99], affect the formation of
stress granules [100], and influence theNotch signalling path-
way [101]. Additionally, it was shown that poly-Gly-Ala DPR
proteins can disturb the ubiquitin proteasome system and
cause endoplasmic reticulum stress [102], and enhance the
formation of toxic amyloid fibrils [103].
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Although there is molecular evidence of DPR proteins’
toxicity in in vitro and in vivo C9FTD/ALS models
[104, 105], post mortem analyses of human brain revealed
inconsistent results (Table 2). No correlation of DPR pro-
teins with clinical phenotype, severity of disease, and neuro-
degeneration was observed, and the abundance of DPR
proteins was low in the brain regions most affected in ALS
and FTD [106–109]. This lack of correlation may signal that
neurons carrying toxic DPR proteins are possibly dead
at the time of autopsy [18]. Additionally, there were dis-
crepancies in the outcome of the studies comparing the
distribution of DPR proteins between ALS and FTD cases
[107, 110, 111].

7. Cellular Processes Affected in C9FTD/ALS

Although many cellular processes are affected by C9orf72
repeat expansion, including translation [96], ubiquitin
proteasome system [99], Notch signalling pathway [101],
granule transport [85], and normal function of TDP-43 (for
review see [17]), here we discuss the cellular processes
affected by C9orf72 repeat expansion for which sufficient
information is available.

7.1. Effects of DPR Proteins and HRE-Containing RNAs on
Nucleocytoplasmic Transport. A hallmark morphological
feature of TDP-43 proteinopathies is the cytoplasmic accu-
mulation and aggregate formation of TDP-43. We have dem-
onstrated earlier that impaired nucleocytoplasmic transport
plays a major role in this process [112]. Importantly,
C9orf72 repeat expansion compromises nucleocytoplasmic
transport of proteins and RNA through the nuclear pores.
A study in yeast expressing arginine-rich DPR constructs
demonstrated that one of the main targets of toxic DPR pro-
teins is nucleocytoplasmic transport [33]. In support of these
findings, genetic screens in Drosophila designed to identify
genes linked to HRE-induced toxicity also identified compo-
nents of the nuclear pore complex and nucleocytoplasmic
transport machinery [31, 32]. Furthermore, RCC1, which is
a human protein required for nucleocytoplasmic transport,
is mislocalized in cells derived from patients with the
C9orf72 HRE, providing preliminary evidence that C9FTD/
ALS HRE might affect nucleocytoplasmic transport in
human cells as well [33]. Taken together, the studies in yeast
and Drosophila provided the first evidence that C9orf72
repeat expansion causes degeneration by impairing nucleo-
cytoplasmic transport of proteins and RNA [31–33]; how-
ever, the effect of C9FTD/ALS HRE on nucleocytoplasmic
transport in human cells needs to be further investigated.
These findings open a possibility of targeting nucleocytoplas-
mic transport as a potential new therapeutic target in ALS and
FTD [31, 32]. Additionally, as mRNA export factor ALYREF
[70, 73, 83] and Ran GTPase-activating protein (RanGAP,
regulator of nucleocytoplasmic transport) [31] colocalize
with RNA foci (observed in C9FTD/ALS brains) and their
function is disrupted, it seems that not only DPRs can lead
to aberration of nucleocytoplasmic transport but also HRE-
containing RNAs.

7.2. C9orf72 Hexanucleotide Repeat Expansion and RNA
Processing. Several studies reported different transcrip-
tional profiles between C9FTD/ALS patients and controls
[54, 69, 71, 113–115]. Additionally, Cooper-Knock et al.
observed an enrichment in RNA splicing factors in
C9FTD/ALS patients [116], further supporting the obser-
vation of aberrant RNA processing caused by pathological
processes in C9FTD/ALS. The main mechanism that leads
to disturbed RNA processing in C9FTD/ALS patients is
through sequestration of RBP in RNA foci [14, 73], but
it could be also caused by DPR proteins as they can bind
to RPB too [33, 95].

7.3. HRE-Containing RNAs and Dipeptide Repeat Proteins
Can Lead to Nucleolar Stress. The way by which nucleolin
binding to RNA foci disrupts the normal function of the
nucleolus [51] was discussed above. It was also observed that
DPR proteins can cause nucleolar stress in cell lines [98].
Enlargement of the nucleolus was observed in in vitro [94,
98] and in vivo [101] C9FTD/ALS models expressing
arginine-rich DPR proteins. Enlargement of the nucleolus
in these models leads to its fragmentation and decreased mat-
uration of rRNA [98].

7.4. The Effect of DPRs on Formation and Function of
Membraneless Organelles. Cells possess several RNA and
protein-containing membraneless organelles, collectively
referred to as ribonucleoprotein (RNP) granules, which sep-
arate from the cytoplasm or nucleoplasm into a distinct liq-
uid phase-like state that is typically slightly denser than the
surrounding [117]. Examples of such organelles are nucleoli
and Cajal bodies in the nucleus and processing bodies
(P-bodies), stress granules, and transport granules in the
cytoplasm [117–119]. Formation of such compartments is
triggered by intrinsically disordered low complexity poly-
peptide sequences present within RBP, which have the ability
to undergo phase transitions [120–122]. Furthermore, it has
been shown that nuclear membraneless suborganelles, such
as Cajal bodies and nuclear speckles, can be nucleated by sev-
eral coding and noncoding RNAs through the recruitment of
proteins residing in these nuclear bodies [123]. Stress induces
the formation of many membraneless compartments [124].
Lee et al. reported that arginine-rich DPRs bind low com-
plexity polypeptide sequences of RBP that are components
of membraneless organelles. Arginine-rich DPRs alter phase
separation of those proteins and, in that way, disturb the
function of membraneless organelles [125]. Liquid-liquid
phase separation of RBP is very important for the normal for-
mation of membraneless organelles. Other authors also
showed that arginine-rich DPRs disturb the function and
dynamics of membraneless organelles [126], more precisely,
stress granules [98, 100]. Because it has been proposed that
stress granules could be seeding points where aggregation
of pathological proteins in FTD and ALS begins [127, 128],
understanding the influence of DPR proteins on dynamics
of membraneless organelles is highly relevant in this context.

7.5. C9orf72 HRE Affects Autophagy and Apoptosis. Adulter-
ations in the autophagic pathway can alter protein
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homeostasis, causing detrimental effects on neurons that
have been implicated in neurodegenerative diseases like Par-
kinson’s disease and tauopathies. Autophagy prevents pro-
teotoxic cell death by removing damaged, misfolded, and
unwanted proteins [129]. Hindrance of C9orf72 function
leads to a consequential decrease in Rab GTPase activity, a
protein involved in membrane fusion, vesicle formation,
and vesicle trafficking, which impairs the endocytosis process
and autophagy. This causes an increased amount of p62/
SQSTM1 and TDP-43, known markers of ALS-FTD [36].
Using C9orf72-deficient mice and cell lines, Sullivan et al.
demonstrated that C9orf72 forms a binding complex with
SMCR8 and WDR41, which allow it to interact with
FIP200/Ulk1/ATG13/ATG101 complex and initiate autoph-
agy [35]. Additionally, C9orf72 HRE have been implicated in
increased endoplasmic reticulum stress by causing dysregula-
tion of its calcium channels that leads to neuron apoptosis.
This has been quantified by observing a decrease in antiapop-
totic genes Bcl-2 and BcL-XL, while causing an increased
expression of proapoptotic gene BAK [130].

7.6. C9orf72 HRE and Neuroinflammation. Experimental
studies investigating C9orf72 loss-of-function in C9orf72-
deficient mice revealed an increase in proinflammatory
cytokines, lymphadenopathy, splenomegaly, alterations in
myeloid cells from spleen, and in some cases of autoimmu-
nity [40, 56, 57]. Additionally, a human autopsy study
showed that C9ALS cases had more severe microglial pathol-
ogy in the medulla and motor cortex than ALS cases without
C9orf72 HRE [131]. These findings raised questions about
increased neuroinflammation in C9FTD/ALS patients and
possible involvement of activated microglia in disease patho-
genesis. It was proposed that microglia could represent a link
between three potential pathological mechanisms of C9orf72
HRE, whereby microglia is being most affected by loss of
C9orf72 function, while neurons are most affected by a
gain-of-function mechanism. Altogether, increased neuroin-
flammation, accumulation of RNA foci, and DPRs could lead
to neuronal death (reviewed in [132]).

8. Potential Therapeutic Approaches

Potential therapeutics most commonly target HRE-
containing RNA, because its degradation abolishes RNA tox-
icity and the formation of DPR proteins by RAN translation.
The following approaches have been considered so far.

8.1. Antisense Oligonucleotides. Antisense oligonucleotides
(ASOs) targeting HRE-containing RNAs were tested in dif-
ferent studies [54, 69, 91]. After treatment of C9FTD/ALS
cells in in vitro [54, 69, 71] and in vivo models with ASOs
(mice expressing bacterial artificial chromosome (BAC) with
the human expanded C9orf72 gene [91] and adeno-
associated virus (AAV) (G4C2)66 mice [133]), a reduction in
RNA foci was observed. Additionally, treatment with ASOs
also led to a decrease in DPRs [91, 133]. Although ASOs used
in these studies did not affect the levels of normal C9orf72
protein [54, 71, 91], the possibility of total silencing
C9orf72 cannot be confirmed, so these approaches need to

be considered with caution. A clinical trial for ASO targeting
HRE-containing RNAs (WVE-3972-01; https://adisinsight
.springer.com/trials/700291284) is expected in the fourth
quarter of 2018.

8.2. Small Molecules. The advantage of using small molecules
as therapeutics for C9FTD/ALS is that these compounds
could not only target HRE-containing RNAs or DPR pro-
teins but also cellular processes affected by pathology under-
lying C9FTD/ALS. Su et al. developed three small molecules
that target hexanucleotide repeat region of RNAs and could
stop RAN translation in (G4C2)66-expressing COS7 cells
[134]. As epigenetic alterations were observed in C9FTD/
ALS cases, epigenetic changes in the C9orf72 gene were also
targeted. Usage of G-quadruplex-binding small molecules
yielded increased expression of C9orf72 protein [135–137].

9. The Mechanisms of C9orf72 HRE-Mediated
Neurodegeneration Are Not
Mutually Exclusive

It is possible that the proposed mechanisms of C9FTD/ALS
coexist and act in a combined manner. Maharjan et al. sug-
gested that HRE in C9orf72 gene affects normal expression
of C9orf72, diminishes levels of C9orf72 protein, and conse-
quently impairs the formation of stress granules during the
cellular stress (caused by formation of RNA foci and DPRs).
In other words, C9orf72 loss-of-function made cells more
sensitive to toxicity caused by gain-of-function mechanisms
[39]. Additionally, Lall and Baloh [132] proposed a model
that unifies all three pathological mechanisms mentioned
above. Other authors stressed the importance of generation
of rodent experimental models in which all three mecha-
nisms coexist, for example, by crossing C9orf72 knockout
mouse and mouse carrying BAC with human expanded
C9orf72 gene [18]. Although it was shown that ASO targeting
HRE-containing RNAs do not affect the levels of normal
C9orf72 protein [54, 71, 91], the possibility of silencing
C9orf72 totally should not be overlooked. As ASO targeting
HRE-containing RNAs moves into phase 1 of clinical trials,
the development of novel cellular and animal experimental
models that exhibit all three pathological mechanisms is
highly relevant.

10. Conclusions

Seven years after the discovery of hexanucleotide repeat
expansion in C9orf72 gene, a lot of progress has been made
in the clarification of molecular mechanisms through which
C9orf72 repeat expansions cause neurodegeneration. Three
possible, not mutually exclusive, mechanisms could together
contribute to the pathogenesis of disease [39]. The majority
of the studies investigating the molecular mechanisms of
pathological processes in C9FTD/ALS support either toxic
HRE-RNA or DPR-dependent gain-of-function, with many
studies supporting both mechanisms (Table 1). Hence, to
better identify potential therapeutic targets, further studies
are needed to fully understand molecular events underlying
pathological processes in C9FTD/ALS.
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ALYREF: Aly/REF export factor
ASOs: Antisense oligonucleotides
BAC: Bacterial artificial chromosome
bvFTD: Behavioral variant of frontotemporal

dementia
C9orf72: Chromosome 9 open reading frame 72
C9FTD/ALS: Hexanucleotide repeat expansion in

C9orf72 causing ALS and FTD
CSF: Cerebrospinal fluid
DENN proteins: Differentially expressed in normal and

neoplasia proteins
DPR proteins: Dipeptide repeat proteins
FTD: Frontotemporal dementia
FTLD: Frontotemporal lobar degeneration
FUS: Fused in sarcoma
G4C2: GGGGCC
GEF: Guanine exchange factor
hnRNPs: Heterogeneous nuclear

ribonucleoproteins
HRE: Hexanucleotide repeat expansion
IBMFD: Inclusion body myopathy with fronto-

temporal dementia
iNPCs: Induced neural progenitor cells
iPSC: Induced pluripotent stem cells
MND: Motor neuron disease
NCL: Nucleolin
NPC: Nuclear pore complex
P-bodies: Processing bodies
PNFA: Progressive nonfluent aphasia
pTDP-43: Phosphorylated TDP-43
RAN translation: Repeat-associated non-ATG translation
RanGAP: Ran GTPase-activating protein
RBP: RNA binding proteins
RNP: Ribonucleoprotein
SD: Semantic dementia
SRSF: Serine-arginine-rich splicing factor
TDP-43: TAR DNA-binding protein 43
VCP: Valosin-containing protein.
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