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Serum chitotriosidase: a circulating biomarker in polycythemia vera 

OBJECTIVES. Serum chitotriosidase activity (CHIT1) is a biomarker of macrophage 

activation with an important role in inflammation - induced tissue remodeling and fibrosis. 

Macrophages have been described to play a crucial role in regulating pathological 

erythropoiesis in polycythemia vera (PV). The aim of this study was to evaluate CHIT1 in 

patients diagnosed with Philadelphia – negative myeloproliferative neoplasms (MPN’s). 

METHODS. Using fluorometric assay, we measured CHIT1 in 28 PV, 27 essential 

thrombocythemia (ET), 17 primary myelofibrosis (PMF), 19 patients with secondary 

myelofibrosis and in 25 healthy controls. RESULTS. CHIT1 was significantly higher in PV 

(p < 0.001) and post – PV myelofibrosis (MF) transfomation (post – PV MF) (p = 0.020), but 

not in ET (p = 0.080), post – ET MF transformation (p = 0.086), and PMF patients (p = 

0.287), when compared to healthy controls. CHIT1 in PV was positively correlated with 

hemoglobin (p = 0.026), hematocrit (p = 0.012), absolute basophil count (p = 0.030) and the 

presence of reticulin fibrosis in the bone marrow (p = 0.023). DISCUSSION. A positive 

correlation between CHIT1 and these distinct laboratory PV features might imply 

macrophages closely related to clonal erythropoiesis as cells of CHIT1 origin. In addition, a 

positive association between CHIT1 and reticulin fibrosis might indicate its potential role in 

PV progression. CONCLUSION. CHIT1 might be considered as a circulating biomarker in 

PV. Additional studies are needed to clarify the role of CHIT1 in promoting disease 

progression and bone marrow fibrosis in PV. 

Keywords: Chitinase; chitotriosidase; myeloproliferative neoplasm; polycythemia vera; 

essential thrombocythemia; myelofibrosis; biomarker; cytokines 
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Introduction:  

Classical Philadelphia – negative myeloproliferative neoplasms (MPN's) encompass 

polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). 

These neoplasms are characterized by overproduction of erythroid, megakaryocytic and 

granulocytic cells, bone marrow hypercellularity and fibrosis, frequent splenomegaly and an 

increased risk of bleeding and thrombosis. Constitutive activation of the JAK - STAT 

signaling pathway is a cardinal feature in these neoplasms. Three types of mutually exclusive 

driver mutations are associated with MPN's: activating mutations in the Janus kinase 2 

(JAK2) [1-3] or thrombopoietin receptor (MPL) genes [4,5], or alterations in the calreticulin 

(CALR) gene [6,7]. Activating mutations in the JAK2 gene are most frequent and present in 

all MPN subtypes, while activating mutations in the MPL gene and alterations of CALR are 

detected only in ET and PMF. So – called ‘triple negative’ cases, which carry neither of the 

mutations, account for a small percentage of MPN patients [8].  

MPN’s are accompanied by chronic inflammation [9,10] that not only causes many of the 

debilitating symptoms associated with the disease [11,12], but also drives the selective 

expansion of the neoplastic clone [13]. MPN patients show elevated serum levels of various 

proinflammatory cytokines including interleukin (IL) - 1, IL - 6, IL - 8, IL - 11, IL - 17, tumor 

necrosis factor – alpha (TNF – α) and transforming growth factor – beta (TGF – β) [14-16]. 

Inflammation might also be directly responsible for some pathologic features of the disease, 

such as bone marrow fibrosis [17]. Moreover, JAK inhibitors were shown to efficiently 

decrease the production and signaling of major inflammatory cytokines, leading to significant 

reduction of spleen size and other  inflammation - linked clinical symptoms in PMF [18-21].  

A potentially fatal disease complication in PV and ET is transformation to secondary 

myelofibrosis (SMF): post – polycythemia vera myelofibrosis  (post – PV MF) and post – 

essential thrombocythemia myelofibrosis (post – ET MF), respectively. The underlying 
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mechanism for transformation to MF remains unclear and is likely multifactorial. Bone 

marrow fibrosis is the result of a complex and poorly understood interaction between 

megakaryocytes, fibroblasts, endothelial cells, inflammatory cytokines and marrow stroma. 

Preclinical studies support a pathologenetic role of TGF - β. This protein is overexpressed by 

megakaryocytes in MF and the TGF - β signature is upregulated and has been targeted in MF 

animal models [17,22].  

Macrophages have been confirmed to play a crucial role in regulating normal and pathological 

erythropoiesis. Erythroid cells develop in a specialized niche, the ‘erythroblastic island’, 

composed of a central macrophage surrounded by erythroblasts. Resident bone marrow 

macrophages are important for ‘erythroblastic island’ formation and have been shown to 

regulate erythropoiesis by promoting proliferation and survival of mature erythroblasts. These 

effects are dependent on erythroblast –  macrophage contact. Once the erythrocytes have 

matured, they stay in the circulation for about 120 days. At the end of their lifespan, they are 

cleared by macrophages residing in the spleen and liver [23-29].  

Interesting results came from a study that investigated whether macrophages might be 

involved in PV pathophysiology using transgenic JAK2 - positive mice. These animals 

exhibit PV – like phenotype, including elevated hematocrit levels, erythrocytosis and 

retikulocytosis. Clodronate – induced depletion of macrophages in these mice reversed those 

PV features, validating their role in contributing to the pathophysiology of the disease. 

Furthermore, proliferation of erythroid lineage cells from human PV patients was increased 

when they were co – cultured with macrophages compared to erythroid precursors cultured 

alone. Authors therefore suggested a new model for PV progression, where the JAK2 

mutation functions as a primer for the PV phenotype, but the bone marrow microenviroment 

and the macrophage niche is required for the full manifestation of the disease in vivo [30]. 
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Chitotriosidase enzyme (CHIT1 or chitinase - 1), belongs to a family of various chitinase and 

chitinase – like proteins, and is one of the most abundantly secreted proteins, being mainly 

produced by activated macrophages, granulocytes and epithelial cells. Its natural substrate 

chitin is the second most abundant polysaccharide in nature after cellulose. Chitin is a  

polymer of N - acetylglucosamine and the main component of the cell walls of fungi and 

protozoa, egg shells of helminthes, and the exoskeletons of arthropods and insects. Although 

mammals do not contain chitin, CHIT1 plays a pivotal role in the defense against chitin - 

containing microorganisms such as fungi, insects and some bacteria [31-37]. Macrophages 

release CHIT1 after toll - like receptor stimulation and after stimulation with 

lipopolysaccharide, granulocyte – macrophage colony – stimulating factor (GM – CSF), 

interferon – gamma and TNF – α [38,39]. 

In everyday clinical practice CHIT1 is used as a circulating biomarker for monitoring the 

efficacy of various therapeutic approaches in Gaucher’s disease where is considered to be a 

surrogate serum biomarker of the tissue lipid – laden macrophages known as Gaucher cells 

[40,41]. Elevated CHIT1 was also observed in various other disorders characterized by 

nonspecific macrophage activation and expansion, such as β – thalassemia [42,43], 

Plasmodium falciparum malaria [44], sarcoidosis [45-47] and Wegener's granulomatosis [48].  

On the other hand, it has been proposed that CHIT1, through inducing TGF – β signaling,  

might also act as a promoter of tissue remodeling and fibrosis, suggesting a role in 

inflammation – mediated tissue repair processes. CHIT1 released by activated Kupffer cells 

(liver macrophages) was shown to induce hepatic fibrosis and cirrhosis [49]. Similarly, 

CHIT1 overexpression from alveolar macrophages in chronic obstructive pulmonary disease 

contributes to airway obstruction, tissue remodelling and was implicated in disease onset and 

progression [50]. CHIT1 was also involved in the induction of fibrosis in the murine model of 

interstitial lung disease where bleomycin – induced pulmonary fibrosis was significantly 



7 
 

reduced in CHIT1 -/- mice when compared to CHIT1 overexpressing transgenic mice [51]. 

More recently, increased serum levels of CHIT1 were described in atherosclerosis, where 

CHIT1 produced by macrophages might enhance atherosclerotic plaque formation and 

subsequent thrombosis [52-54].  

These studies suggest that CHIT1 has a dual function; it is both an innate immune mediator 

and a regulator of tissue remodeling. Therefore, CHIT1 might have organ- as well as cell - 

specific effects in the context of infectious diseases and inflammatory disorders. As MPN's 

are characterized by a state of chronic inflammation, which is proposed to be directly 

involved in disease progression and bone marrow fibrosis, we found it relevant and timely to 

investigate CHIT1 in MPN patients.  

 

Subjects and methods:  

Consecutive patients with PV, ET and PMF diagnosed according to World Health 

Organisation (WHO) 2008 criteria [55] and post  - ET MF and post – PV MF diagnosed 

according to International Working Group for Myelofibrosis Research and Treatment (IWG – 

MRT) 2008 criteria [56], were enrolled in the study between  July 2014 and February 2017. 

Healthy blood donors served as controls.  Excluded from participation were pregnant women, 

subjects younger than 18 years of age, subjects with acute infections, known autoimmune 

disorders or concomitant solid tumors. 

Bone marrow biopsy was performed in all patients due to clinical reasons and at physician’s 

discretion, not as a requirement for participation in this study. Only patients whose blood 

samples were taken within 6 months from the bone marrow biopsy were included in this 

study. 
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This was a case – controlled study conducted at two hematological centers in Croatia  (the 

Department of  Internal medicine at the General Hospital of Sibenik – Knin County and the 

Division of Hematology at the Department of Internal Medicine, University Hospital Center 

Zagreb). 

Data regarding the patients’ diagnosis, sex, age, JAK2 and CALR mutational status, presence 

of constitutive symptoms (fever ≥ 37.5C, night sweats or weight loss ≥ 10% in the preceding 

6 months), palpable hepatosplenomegaly and treatment modalities (phlebotomy, 

acetylsalicylic acid and / or hydroxycarbamide therapy) were collected at the time of study 

enrollment. Bone marrow fibrosis was graded by hematopathologist according to the current 

European consensus  [57].   

Ethics:  

This study was performed in accordance to the Declaration of Helsinki and approved by the 

General Hospital of Sibenik – Knin County and University Hospital Centre Zagreb Ethics 

Committees. Prior to enrollment all participants signed the informed consent.  

Laboratory assays:  

Blood samples for measurement of blood counts, serum lactate dehydrogenase  (LDH)  and 

CHIT1 were taken at the time of study enrollment.  

Samples for CHIT1 measurement  were left to clot, and serum was separated from cellular 

fragments by centrifugation (3500 rpm, 10 minutes). All serum samples were stored at – 80 

ºC until the analysis period. CHIT1 was determined using a fluorometric enzyme assay. 

Specifically, 5μL of serum was incubated with 100 μL of the 22 μM fluorogenic substrate 4 – 

methylumbelliferyl- β–N,N,N-triacetylchitotrioside (Sigma – Aldrich, USA) in McIlvaine 

buffer (pH 5.2) for 60 min at 37C. The reaction was stopped by adding 600 μL of 0.2 M 



9 
 

glycine–NaOH buffer (pH 10.4). The enzymatic hydrolysis product 4-methylumbelliferone 

was measured at specified excitation (365 nm) and emission (450 nm) wavelengths on Cary 

Eclipse Fluorimeter (Agilent Technologies, USA). CHIT1 was expressed as nanomoles of 

substrate hydrolyzed per hour per milliliter of incubated serum (μmol/L/h). 

Statistical analysis:  

Categorical variables are presented with absolute and relative frequencies and are compared 

using chi – square test. Quantitative variables are presented as medians and ranges. After 

testing for normality we decided to use nonparametric tests. The Kruskal – Wallis analysis of 

variance was used to analyze differences in age between patients and healthy controls. The 

Kruskal – Wallis and the Mann - Whitney U test were used to analyze differences in CHIT1 

between PV, post – PV MF, ET, post – ET, PMF and SMF patients and healthy controls. The 

Spearman correlation coefficients were calculated to assess correlations between CHIT1 and 

different clinical and laboratory variables. The Mann – Whitney U test was used to analyze 

differences in absolute basophil counts between patient groups. The difference in CHIT1 

between bone marrow fibrosis grades was also analyzed using the Mann – Whitney U test. P 

values under 0.05 were considered significant for all analyses. Data analysis software system 

IBM SPSS Statistics, version 21.0 (IBM, Armonk, NY, USA), was used. 

 

Results:  

There were included 28 PV, 27 ET, 17 PMF and 19 SMF patiens. Among the 19 SMF 

patients, there were 8 post – PV MF and 11 post – ET MF patients. There was no statistically 

significant difference between patients and healthy controls according to sex  (p = 0.485) or 

age (p = 0.182). Subjects’ characteristics are shown in Table 1.  
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CHIT1 was significantly higher in PV patients (median 57 μmol/L/h,  range 3 – 458), when 

compared to healthy controls (median 30 μmol/L/h, range 12 - 78) (p < 0.001). PMF patients 

had levels similar to controls (median 33 μmol/L/h,  range 8 – 378; p = 0.287) while those 

with ET had a trend towards higher values that failed to reach statistical significance (median 

36 μmol/L/h, range 1 – 502; p = 0.080) (Figure 1.). The differences in CHIT1 levels between 

PV, ET or PMF were also not statistically significant (p = 0.060 and p = 0.109, respectively). 

Patients with SMF had higher CHIT1 (median 44 μmol/L/h, range 18 – 162) than healthy 

controls (p = 0.013). However, when we divided SMF patients into those with post – PV MF 

and post – ET MF,  only patients with post – PV MF had elevated CHIT1 levels (median 72 

μmol/L/h, range 21 – 162; p = 0.020). The difference between CHIT1 in post – ET MF 

patients (median 42 μmol/L/h, range 18 – 67) and healthy controls was not statistically 

significant (p = 0.086) (Figure 1.), neither was the difference between post – PV MF and post 

– ET MF patients (p = 0.129). 

We observed a statistically significant positive correlation in PV patients between CHIT1, 

hemoglobin (correlation coefficient 0.420, p = 0.026) and hematocrit levels (correlation 

coefficient 0.470, p = 0.012) (Figure 2.). 

There was a statistically significant positive correlation in PV patients between CHIT1 and 

absolute basophil count (correlation coefficient 0.410, p = 0.030) (Figure 3.). Post – ET MF 

and PMF patients had higher absolute basophil count when compared to PV (p = 0.024 and p 

= 0.039, respectively), post – PV MF (p = 0.041 and p = 0.048,  respectively) and ET patients 

(p =  0.038 and p = 0.047, respectively). The difference in absolute basophil count between 

post – ET MF and PMF patients was not statistically significant (p = 0.853), neither was the 

difference between PV, post – PV MF  and ET patients (p = 0.758 and p = 0.588, 

respectively).  
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There was no correlation between CHIT1, hematocrit, hemoglobin and the absolute basophil 

count in post – PV MF, ET, post – ET MF, PMF and SMF patients. 

CHIT1 was significantly higher in PV patients who had reticulin fibrosis (MF – 1) in the bone 

marrow  (median 76.50 μmol/L/h, range 3-458) than in those patients without reticulin 

fibrosis (MF – 0) (median 43.50 μmol/L/h, range 14 – 69) (p = 0.023). No statistically 

significant difference was observed between CHIT1  and the bone marrow fibrosis grade in 

post – PV MF, ET, post – ET MF, PMF and SMF patients.   

CHIT1 did not correlate with sex, age, erythrocyte, leukocyte, granulocyte or platelet counts, 

JAK2 or CALR mutational status, LDH levels, presence of constitutive symptoms and 

palpable hepatosplenomegaly, treatment with acetylsalicylic and / or hydroxycarbamide 

therapy or the need for phlebotomy. 

 

Discussion: 

To the best of our knowledge, no previous studies have examined the role of CHIT1 in MPN 

patients. We herein for the first time report elevated CHIT1 in PV and post – PV MF, but not 

in ET, post – ET MF and PMF patients.  

Bone marrow environment and the macrophage niche have been shown to play a crucial role 

in supporting erythrocyte production, maintenance and removal. Macrophage activity 

stimulates signaling pathways which complement JAK2 signaling, and without their support, 

the proliferative potential of erythroid cells diminishes substantially. In addition, macrophages 

were described to play an important role in regulating pathological erythropoiesis in PV 

where they contribute in acquiring ‘erythroid’ phenotype. Interestingly, elevated CHIT1 in 

our study was observed only in PV and post – PV MF: a subset of patients with the 
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‘polycythemic‘ phenotype. Furthermore, CHIT1 in PV was positively correlated with 

hematocrit and hemoglobin level, which are distinct PV features within the MPN spectrum 

and a ‘major’  diagnostic criteria in the WHO classification [55,58]. 

Several studies have also reported basophilia as a MPN feature. Basophils are increased in 

MPN’s and represent a part of malignant clone and [59-61]. High absolute basophil count was 

even shown to be an independent predictor of inferior survival in PMF [62]. These cells 

harbor a large number of proinflammatory mediators. Among various other cytokines, they 

secrete GM – CSF which was shown to induce macrophage CHIT1 synthesis and secretion 

[38,39, 63-65]. In our study post – ET MF and PMF had higher absolute basophil counts in 

comparison to PV, post – PV MF and ET patients. In this context, we would expect CHIT1 to 

be higher in post – ET and PMF patients. On contrary, higher CHIT1 was observed in PV and 

post – PV MF. Futhermore, a positive correlation between CHIT1 and the absolute basophil 

count was noted only in PV patients. In the study of Pieri et al. [61], ET and PMF patients had 

increased absolute basophil counts when compared to controls. However, the number of 

'activated' basophils did not differ in comparison to controls. This was in contrast to PV, 

where absolute and 'activated' basophil counts were increased. Similary, Lucijanic et al. [62] 

reported increased absolute basophil count in PMF when compared to controls. In this study, 

high absolute basophil count positively correlated with elevated leukocyte count, LDH, 

massive splenomegaly and constitutive symptoms which reflects higher disease activity and 

proliferative potential. These observations indicate different underlying pathophysiologic 

processes within the MPN spectrum. In this perspective, ‘activated’ basophils in PV patients 

might induce CHIT1 secretion through GM – CSF - mediated signaling. Therefore, elevated 

CHIT1 in PV patients and a positive correlation between CHIT1 and these PV - defining 

features, hemoglobin, hematocrit and absolute basophil count, might imply macrophages 

closely related to clonal erythropoiesis as cells of CHIT1 origin.  
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On the other hand, elevated CHIT1 in PV patients might also result from granulocyte 

secretion or erythrocyte overproduction and subsequently increased spleen and liver 

macrophage activity due to phagocytosis of damaged erythrocytes. In our study there was no 

correlation between CHIT1, presence of palpable hepatosplenomegaly and the leukocyte, 

granulocyte or erythrocyte counts, which makes these hypotheses less likely. However, 

further studies are warranted to more precisely elucidate cell(s) of CHIT1 origin.  

CHIT1 was also shown to be dysregulated in granulomatous and other human diseases 

characterized by inflammation and faulty tissue remodeling. As mentioned previosuly, 

various inflammatory cytokines are elevated in MPN's. In addition, TNF – α, a 

proinflammatory cytokine, was reported to be involved in inflammation - associated 

carcinogenesis [66-70]. In the bone marrow, expression of TNF – α genes resulted in 

neutrophil activation and TNF – α - facilitated clonal expansion. 

Macrophages release CHIT1 upon stimulation with TNF – α. In the MPN setting, TNF – α 

might directly stimulate CHIT1 secretion, which in turn, through inducing TGF – β signaling, 

might act as a promoter of tissue remodeling and fibrosis in PV. We found a positive 

correlation in PV patients between CHIT1 and the presence of reticulin fibers in the bone 

marrow and reticulin fibrosis has been cited as a risk factor for MF transformation [71-73]. In 

addition, our study shows CHIT1 to be higher in SMF patients when compared to healthy 

controls, especially in post – PV MF patients, where highest CHIT1 levels were noted. 

Interestingly, these patients were actually anemic (median hemoglobin 93g/L) with a higher 

bone marrow fibrosis grade. Furthermore, 75% of post – PV MF patients had constitutive 

symptoms, which is a highest percentage among all groups (Table 1.). Although we found no 

correlations between CHIT1, hemoglobin / hematocrit levels, presence of constitutive 

symptoms and the bone marrow fibrosis grade in post – PV MF, highest CHIT1 levels in 

these patients could be explained by disease transition from the ‘hypercellular’ phase in PV to 
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the ‘fibrotic’ phase  in post – PV MF. In these patients elevated CHIT1 might primarily be a 

reflection of more advanced disease with a higher degree of inflammation and marrow 

fibrosis with subsequent anemia and constitutive symptoms. Similarly, higher median 

hemoglobin (155 g/L) and hematocrit (0.49%) levels in our PV patients despite phlebotomies 

and / or hydroxycarbamide therapy (Table 1.) might indicate uncontrolled disease with a high 

inflammatory state and elevated CHIT1. In this perspective, a steady rise of CHIT1 from 

'early' PV to the 'burnt – out' post – PV MF transformation might indicate its role in PV 

progression. However, due to limited  number of post – PV MF patients included in our study, 

additional studies are warranted to clarify the role of CHIT1 in promoting disease progression 

and bone marrow fibrosis in PV.  

Another chitinase – like protein, YKL – 40 or chitinase – 3 – like protein 1,  was also studied 

in MPN’s [74,75]. YKL – 40 is secreted primarily by granulocytes and was described to be 

involved in cell proliferation, differentiation, angiogenesis, inflammation and remodelling of 

the extracellular matrix [76,77]. In the MPN setting, serum YKL – 40 levels were reported to 

be significantly higher in PV and PMF patients when compared to ET and healthy controls. 

Futhermore, YKL – 40 was shown to correlate with C – reactive protein, LDH, granulocytes, 

JAK2 alellic burden and the presence of fatigue in PV patients, which are common indicators 

of increased tumor burden in these neoplasms. Our observations of elevated CHIT1 in PV and 

post – PV MF patients might further substantiate the role of chitinases and chitinase – like 

proteins in the pathogenesis and progression of MPN's, particularly in inflammation - induced 

tissue repair processes.  

Although we observed elevated CHIT1 in PV patients, no correlations were found between 

CHIT1 and some clinical and laboratory variables that are usually suggestive of a higher 

disease burden, which might limit the use of CHIT1 as a circulating biomarker of disease 

progression and / or tumor burden. However, targeting the CHIT1 activation cascade through 
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the administration of specific antibodies or pan - chitinase inhibitors was shown to 

significantly ameliorate inflammation and fibrosis in several animal models of autoimmune 

diseases, most likely by suppressing the CHIT1 dependent release of different cytokines and 

chemokines [78]; the safety of this approach in humans is not yet determined as it might 

increase susceptibility to fungal and protozoal infections. If proven safe in humans, the 

development of targeted therapies would be valuable option in the treatment of these 

neoplasms, particularly in PV. 

In addition, there is current interest in therapeutically targeting the macrophages which 

provide critical support to the tumor cells, i.e. targeting them in chronic lymphocytic leukemia 

(CLL) has been shown to result in CLL cell death [79].  As mentioned previously, studies on 

animal models have shown that bisphosphonates (clodronate) induce macrophage depletion 

with the reversal of PV phenotype in mice. However, in a prospective, multi – centre, phase II 

randomised trial, zoledronic acid in myelofibrosis patients showed a lack of response [80].  

Finally, statins with their 'pleiotropic effects' have been shown to induce macrophage 

apoptosis and to reduce macrophage activation in atherosclerotic plaques, as well as the levels 

of proinflammatory cytokines, such as TNF - α and IL – 6 [81-83]. These drugs have also 

been described to have strong antiproliferative and proapoptotic properties with the potential 

to decrease clonal myeloproliferation. In addition, MPN - associated JAK  kinase localization 

to lipid rafts and its signaling was shown to be inhibited by statins [84-90].  One case report 

demonstrated a remarkable hematological and molecular response with the reduction of JAK2 

allelic burden in a PV patient during simultaneous alendronate and simvastatin treatment [91]. 

However, further experimental and clinical research is needed on the potential role of these 

relatively non - toxic drugs in the treatment of MPN's. We can only speculate that potentially 

greater response could be seen in the 'early' disease, such as PV, than in the 'fibrotic' setting. 
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Even though our study shows CHIT1 to be significantly higher in PV and post – PV MF 

patients in comparison to healthy controls, it has several limitations. The number of patients 

included was limited and they were tested at various time – points in their disease course after 

having been diagnosed with MPN. Hydroxycarbamide therapy was given to approximately 

50% of PV and ET patients and to 25% - 35% of post – PV MF, post – ET MF and PMF 

patients almost certainly influenced the blood cell counts (Table 1.). To minimize the effect of 

therapy or general patient condition, we included only patients that were clinically well, 

treated as out – patients and on stable hydroxycarbamide dose and / or phlebotomy schedule, 

i.e. patients with a  stable disease who achieved an equilibrium between cell proliferation and 

destruction.  

 

Conclusion:  

CHIT1 could be a considered as a circulating biomarker in PV, which might, through 

inducing TGF – β signaling, have a role in promoting tissue remodeling and bone marrow 

fibrosis. This observation provides an additional degree of complexity to these neoplasms and 

further highlights the role of the tumor microenvironment in pathogenesis and the clinical 

presentation of MPN’s, which might help in recognizing new therapeutic targets in these 

neoplasms. However, studies with larger series of PV and post – PV MF patients are required 

to more precisely elucidate the role of CHIT1 in promoting disease progression and bone 

marrow fibrosis. 
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Tables and figures:  

Table 1. Subject characteristics and laboratory values. PV = polycythemia vera, post – PV MF = post - polycythemia vera myelofibrosis 

transformation, ET = essential thrombocythemia, post – ET MF = post - essential thrombocythemia myelofibrosis transformation,  PMF = 

primary myelofibrosis, IU/L = international units per liter 

 

  PV Post - PV MF ET Post - ET MF PMF Controls 

Number of patients 28 8 27 11 17 25 

Sex, female (%) / male (%) 15 (54%) / 13 (46%) 3 (38%) / 5 (62%) 13 (48%) / 13 (52%)  8 (73%) / 3 (27%) 8 (40%) / 12 (60%) 12 (48%) / 13 (52%) 

Median age, (range), years 62 (39 - 70) 64 (48 - 70) 58 (40 - 71) 56 ( 33 - 75) 63 (39 - 80) 57 (49 - 64) 

Total leukocyte count, median (range), x109/L 9.1 (4.2 - 17.6) 11.7 (2.4 - 91) 6.9 (3.2 - 14.9) 10.1 (5.4 - 55.3) 18.9 (2.1 - 46.5)   

Absolute granulocyte count, median (range), x109/L 6.1 (2.8 - 15.3) 9.4 (1.9 - 49.1) 4.4 (2.5 - 8.9) 9.3 (3.4 - 25.6) 9.5 (0.8 - 49.1)   

Absolute basophil count, median (range),  x109/L 0.096 (0 - 0.236) 0 (0 - 0.100) 0.067 (0 - 0.132) 0.09 (0 - 0.021) 0.022 (0 - 0.608)   

Absolute erythrocyte count, median (range), x1012/L 5.5 (3.4 - 7.9) 3.3 (2.6 - 5.9) 4.4 (3 - 5.8) 4.1 (2.7 - 7.3) 3.91 (3.0- 5.9)   

Hemoglobin, median (range), g/L 155 (115 - 202) 93 (78 - 135) 134 (89 - 165) 108 (76 - 168) 98 (71 - 168)   

Hematocrit, median (range), % 0.490 (0.354 - 0.626) 0.282 (219 - 429) 0.397 (0.290 - 0.494) 0.318 (0.221 - 0.531) 0.300 (0.208 - 0.480)   

Platelets, median (range), x 109/L 313 (142 - 930) 309 (17 - 1120) 539 (167 - 1030) 248 (24 - 549) 161 (46 - 1120)   

Serum lactat dehydrogenase, median (range), IU/L 220 (154 - 560) 330 (164 - 568) 238 (130 - 696) 365 (268 - 1987) 470 (281 - 568)   

Positive JAK2 mutation, number of patients (%) 23 (82%) 7 (88%) 18 (67%) 7 (64%) 13 (65%)   

Positive CALR mutation, number of patients (%) 0 0 5 (19%) 3 (27%) 3 (18%)   

Bone marrow fibrosis grade (MF-0/MF-1/MF-2/MF-3) 12/16/0/0 0/0/4/4 19/8/0/0 0/0/5/6 0/0/5/12   

Palpable hepatosplenomegaly, number of patients (%) 9 (32%) 7 (88%) 8 (29%) 9 (82%) 17 (100%)   

Constitutive symptoms, number of patients (%) 8 (25%) 6 (75%) 7 (28%) 6 (55%) 10 (59%)   

Phlebotomy, number of patients (%) 18 (64%) 0 0 0 0   

Acetylsalicylic acid therapy, number of patients (%) 20 (71%) 3 (37.5%) 12 (44%) 2 (18%) 3 (18%)   
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Hydroxycarbamide therapy, number of patients (%) 15 (54%) 2 (25%) 14 (52%) 4 (36%) 4 (24%) 
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Figure 1. CHIT1 levels were significantly higher in PV and post – PV MF patients when 

compared to healthy controls. The difference between CHIT1 in ET, post –  ET MF and PMF 

patients when compared to healthy controls were not statistically significant. PV = 

polycythemia vera, post – PV MF = post - polycythemia vera myelofibrosis transformation, 

ET = essential thrombocythemia, post – ET MF = post - essential thrombocythemia 

myelofibrosis transformation, PMF = primary myelofibrosis, CHIT = serum chitotriosidase  

activity
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Figure 2. Positive correlation in PV patients between CHIT and hematocrit level. CHIT1 = 

serum chitotriosidase activity, Htc = hematocrit 
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Figure 3. Positive correlation in PV patients between CHIT1 and absolute basophil count. 

CHIT1 = serum chitotriosidase activity. 

 
 

 
 

 
 
 


