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Genome-wide Association 
Study of Anthropometric Traits 
in Korčula Island, Croatia

Aim To identify genetic variants underlying six anthropo-
metric traits: body height, body weight, body mass index, 
brachial circumference, waist circumference, and hip cir-
cumference, using a genome-wide association study.

Methods The study was carried out in the isolated popula-
tion of the island of Korčula, Croatia, with 898 adult exam-
inees who participated in the larger DNA-based genetic 
epidemiological study in 2007. Anthropometric measure-
ments followed standard internationally accepted pro-
cedures. Examinees were genotyped using HumanHap 
370CNV chip by Illumina, with a genome-wide scan con-
taining 316 730 single nucleotide polymorphisms (SNP).

Results A total of 11 SNPs were associated with the investi-
gated traits at the level of P < 10−5, with one SNP (rs7792939 
in gene zinc finger protein 498, ZNF498) associated with 
body weight, hip circumference, and brachial circumfer-
ence (P = 3.59-5.73 × 10−6), and another one (rs157350 in 
gene delta-sarcoglycan, SGCD) with both brachial and hip 
circumference (P = 3.70-6.08 × 10−6). Variants in CRIM1, a 
gene regulating delivery of bone morphogenetic proteins 
to the cell surface, and ITGA1, involved in the regulation 
of mesenchymal stem cell proliferation and cartilage pro-
duction, were also associated with brachial circumference 
(P = 7.82 and 9.68 × 10−6, respectively) and represent inter-
esting functional candidates. Other associations involved 
those between genes SEZ6L2 and MAX and waist circum-
ference, XTP6 and brachial circumference, and AMPA1/
GRIA1 and height.

Conclusion Although the study was underpowered for 
the reported associations to reach formal threshold of 
genome-wide significance under the assumption of in-
dependent multiple testing, the consistency of associa-
tion between the 2 variants and a set of anthropometric 
traits makes CRIM1 and ITGA1 highly interesting for further 
replication and functional follow-up. Increased linkage 
disequilibrium between the used markers in an isolated 
population makes the formal significance threshold overly 
stringent, and changed allele frequencies in isolate pop-
ulation may contribute to identifying variants that would 
not be easily identified in large outbred populations.
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Interest in anthropometric traits has a long history, ever 
since the ancient philosophical debates and pioneering 
attempts to understand human anatomy (1). Modern re-
search on these traits has largely shifted from fundamen-
tal morphological anatomy toward the understanding of 
environmental and genetic factors which determine, af-
fect, and modify these traits. While environmental factors 
are known to have an important effect on some of these 
traits, primarily weight and other weight-related traits (2), 
genetic factors remained elusive to researchers for a long 
time. Population genetics theory hypothesized, based on 
the pre-genomic knowledge and comparative studies in 
plants and animals (3), that majority of these traits will be 
complex and have highly polygenic background (2,4,5). 
Additionally, some of these traits have been reported to 
have very high heritability, with that of height being used 
as the example of an extremely heritable trait (generally in 
the range of 0.90 to 0.95) (2). However, the search for the 
genetic variants underlying height has long been futile, 
casting doubt on the fundamental assumption that high-
ly heritable traits will be good candidates for gene map-
ping studies. It is only lately that very large consortia were 
formed and achieved the needed statistical power to iden-
tify the first candidate loci using genome-wide association 
studies and expanded our understanding of the determi-
nants of human stature (6-11).

The growing world-wide epidemic of obesity is one of the 
major issues in modern public health. Search for genes un-
derlying obesity has also been rather unsuccessful, due 
to an even greater degree of complexity than for height, 
with large environmental effects and variation over time 
(12). The search for obesity genes is further complicated by 
the differences in the central and peripheral type of obe-
sity (13,14). The genetic background of skinfolds has largely 
been under-investigated (15), with only a few genes im-
plied in their regulation (15,16), some of which do seem 
to show strong interaction with the environment (17,18). 
Skinfold measurements may also show variation in time 

(19), making this research area highly complex and usu-
ally considered secondary to the more classical es-

timates of the amount of fat tissue, including body mass 
index and waist circumference or waist-to-hip ratio.

In this article, we report on a comprehensive genome-
wide association study of height, weight, body mass index, 
and three circumference measurements – brachial, waist, 
and hip – in the isolated population of the island of Korčula 
in Croatia. The study is a part of a larger genetic epidemi-
ology research program in Croatian island isolates, “10,001 
Dalmatians.” The genetic epidemiology research program 
in Croatian island isolates began in 1999 (20,21), then ex-
panded to study human genetic variation and effects of 
isolation and inbreeding (22-29), and finally entered the 
phase of focusing on diseases and gene mapping studies 
(8,30-35). By now, the research project has included more 
than 3000 examinees from isolated populations, and even-
tually it aims to reach 10 001 examinees.

SuBJeCTS AND MeTHODS

This study was carried out in the adult population of the 
island of Korčula, Croatia. The field work was performed in 
2007 in the eastern parts of the island, targeting healthy 
volunteers from the town of Korčula and villages Lumbar-
da, Žrnovo, and Račišće (Figure 1). Participants were invit-
ed by mail, posters, radio, and personal contacts. The sam-
pling scheme for this study was convenient sampling, as 
the study aim was to include approximately 1000 of adult 
island inhabitants for the purpose of the genome-wide as-
sociation analysis, regardless on the sample representa-
tiveness and demographic structure.

All examinees were aged 18 and over and had signed in-
formed consent before entering the study, which was ap-
proved by the Ethical Committee of the Medical School, 
University of Zagreb. A total of 944 examinees were includ-
ed in the study between March and December 2007. In 
all examinees, a large number of quantitative phenotypic 
traits were measured, including height, weight (and de-
rived body mass index), and brachial, waist, and hip cir-
cumference. For these anthropometric measurements, 
standard methods were used (36).

DNA extraction was performed using Nucleon kits (Tep-
nel, Manchester, UK) and a total of 944 samples were 
genotyped in Institute of Human Genetics, Helmholtz 
Zentrum München, Germany. Genotyping was performed 
using Illumina HumanHap 370CNV (Illumina, San Diego, 
CA, USA), with a total of 346 027 single nucleotide poly-
morphism (SNP) markers. Quality control of the genotype 

Figure 1.

Settlements on the island of Korčula, Croatia, included in the study.
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data, excluding markers with a call rate <98%, with minor 
allele frequency <2%, or out of Hardy-Weinberg equilib-
rium (P < 10−10), left 316 730 SNPs in the analysis. Exclusion 
of individuals carrying markers with a call rate of <98% 
and those sampled twice in the study, left 898 people for 
inclusion in the analysis.

Relatedness between examinees was estimated from their 
whole genome data using the sharing of genome identi-
cal by descent (IBD) in PLINK (37). This method is robust 
to pedigree information errors, undeclared relationships, 
and samples swap, and gives realized sharing rather than 
expected one given by the pedigree information (for the 
same pedigree-based relationship, sharing varies within a 
range due to segregation and recombination stochastic 
events). Using this function, the sample could be grouped 
into 154 parent-child pairs, 107 sibling pairs, avuncular or 
equivalent 137, first cousins or equivalent 363, first cous-
ins once removed or equivalent 1861, second cousins or 
equivalent 8962. The mean IBD sharing between all pos-
sible pairs of individuals was 0.003 (min = 0, max = 0.61).

Genome-wide associations between anthropometric phe-
notypes (adjusted for age and sex) and SNP markers were 
analyzed using the “mmscore” function of the GenABEL R sta-

tistical package (38), using an additive model. This score test 
for family-based association accounts for pedigree structure 
and allows unbiased estimations of SNP allelic effect (39). No 
correction for multiple testing was applied. The relationship 
matrix used in this analysis was generated by the identity-
by-state (ibs) function of GenABEL, which used ibs genotype 
sharing to determine the realized pair-wise kinship coeffi-
cient similarly to the PLINK genome function. Minor allele 
frequencies were reported for the identified SNPs. Weighted 
genomic inbreeding coefficient was used in the inbreeding 
estimation (23). All identified SNPs that reached significance 
at the level of P < 10−5 were visualized using HaploView soft-
ware (MIT/Harvard Broad Institute, MA, USA).

TABLe 1. Descriptive statistics (mean ± standard devia-
tion, SD) of the investigated traits of the examinees 
(n = 898) from the Korčula island
Trait Mean ± SD Range
Height (mm) 1680.9 ± 90.8 1410.0-1970.0

Weight (kg)   79.1 ± 14.2   49.5-166.6
Body mass index (kg/m2)   27.9 ± 4.1   16.6-53.8
Brachial circumference (mm)  333.4 ± 45.0  200.0-944.0
Hip circumference (mm) 1040.6 ± 78.6  748.0-1563.0
Waist circumference (mm)  941.4 ± 121.5  620.0-1385.0

Figure 2.

Genome-wide association study of height using Haploview software, showing peaks on chromosomes 1 and 5 reaching genome-wide significance level 
of P < 10−5.
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ReSuLTS

Genetic variants associated with height, weight, and 
body mass index

A total of 898 examinees were genotyped and included 
in the analysis. Descriptive statistics for the investigat-
ed traits are presented in Table 1. The average inbreed-
ing coefficient was 0.013 ± 0.025. Initial genome-wide 
association study revealed two SNPs associated with 
body height at the level of P < 10−5 on chromosomes 1 
and 5. The variant at chromosome 1 (P = 4.81x10−6) did 
not have a gene in proximity (±100 kilobases). The vari-
ant on chromosome 5 (P = 9.77x10−6) implicated a gene 

ionotropic glutamate receptor AMPA1 (GRIA1) (Table 
2, Figure 2).

Two further SNPs were associated with weight, one be-
longing to hypothetical protein LOC122509 (FAM14B) gene 
on chromosome 14, while the other was within zinc fin-
ger protein 498 gene (ZNF498) on chromosome 7 (Table 2, 
Figure 3). The P value for the former variant was 3.13 × 10−6 
and 3.59 × 10−6 for the latter.

Body mass index was associated with a single SNP on the 
chromosome 2 that was not associated with any gene (Ta-
ble 2, Figure 4), with a P value of 5.76 × 10−6.

Genetic variants associated with brachial, hip, and waist 
circumference

Brachial circumference showed association with 6 SNPs at 
chromosomes 2, 5, 7, and 13. Two of the SNPs (rs157350 and 

TABLe 2. A summary of single-nucleotide polymorphisms (SNP) that showed association with anthropometric traits that reached levels of 
genome-wide significance of P < 10−5*

Trait SNP Chromosome Position
P value
( × 10−6)

Minor allele 
frequencies β

Standard 
error (β) Position Gene

Height rs7513590  1 5070572 4.81 0.104 -0.316 0.069 no gene no genes +/− 100kb

Height rs12658202  5 152959747 9.77 0.453    0.110 0.025 intronic
glutamate receptor, ionotro-
pic, AMPA 1 (GRIA1)

Weight rs7792939  7 99045812 3.59 0.148    0.255 0.055 7kb 5′ zinc finger protein 498 
(ZNF498)

Weight rs7157940 14 93632946 3.13 0.458    0.118 0.025 5′ UTR
hypothetical protein 
LOC122509 (FAM14B)

Body mass index rs7590983  2 174070595 5.76 0.045    0.462 0.102 no gene no genes +/− 100kb

Brachial circumference rs1863080  2 36379940 7.82 0.102    0.307 0.069 56kb 5′ cysteine-rich motor neuron 
1 (CRIM1)

Brachial circumference rs7723398  5 52264862 9.68 0.222    0.191 0.043 intronic
integrin alpha 1 precursor 
(ITGA1)

Brachial circumference rs32056  5 156006717 9.07 0.093 -0.325 0.073 intronic delta-sarcoglycan (SGCD)

Brachial circumference rs157350  5 156072147 3.70 0.105 -0.311 0.067 intronic delta-sarcoglycan (SGCD)

Brachial circumference rs7792939  7 99045812 4.90 0.148    0.255 0.056 7kb 5′ zinc finger protein 498 
(ZNF498)

Brachial circumference rs201789 13 49884119 6.20 0.279    0.170 0.038 intronic XTP6

Hip circumference rs157350  5 156072147 6.08 0.105 -0.306 0.068 intronic delta-sarcoglycan (SGCD)

Hip circumference rs7792939  7 99045812 5.73 0.148    0.256 0.056 7kb 5′ zinc finger protein 498 
(ZNF498)

Waist circumference rs7158173 14 64715003 3.93 0.471 -0.114 0.025 76kb 5′ MAX

Waist circumference rs4787483 16 29792948 2.10 0.343    0.164 0.035 intronic
Seizure-related 6 homo-
logue (mouse)-like 2 isoform 
(SEZ6L2)

*The table summarizes SNPs, their positions on the chromosomes, P values, minor allele frequencies, effect size and direction (expressed as β and standard error of β), effect 
allele, and implicated gene.
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Figure 3.

Genome-wide association study of weight using Haploview software, showing peaks on chromosomes 7 and 14 reaching genome-wide significance 
level of P < 10−5.

Figure 4.

Genome-wide association study of body mass index using Haploview software, showing a peak on chromosome 2 reaching genome-wide significance 
level of P < 10−5.
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Figure 5.

Genome-wide association study of brachial circumference using Haploview software, showing peaks on chromosomes 2, 5, 7, and 13 reaching genome-
wide significance level of P < 10−5.

Figure 6.

Genome-wide association study of hip circumference using Haploview software, showing peaks on chromosomes 5 and 7 reaching genome-wide sig-
nificance level of P < 10−5.
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rs7792939) implicated delta-sarcoglycan gene (SGCD). The 
SNP with the stronger effect (rs157350) of P = 3.70 × 10−6 was 
also associated with the hip circumference (P = 6.08 × 10−6). 
Both brachial and hip circumference showed associations 
with the SNP rs7792939 in zinc finger protein 498 (ZNF498) 
on chromosome 7 (Table 2, Figure 5 and 6), with signifi-
cance of P = 4.90 × 10−6 and P = 5.73 × 10−6, respectively. The 
same SNP showed strong association with body weight. 
Other variants associated with brachial circumference in-
cluded rs1863080 in cysteine-rich motor neuron 1 (CRIM1) 
gene on chromosome 2 (P = 7.82 × 10−6), rs7723398 in in-
tegrin alpha 1 precursor (ITGA1) gene on chromosome 5 
(P = 9.68 × 10−6), and rs201789 in XTP6 gene on chromo-
some 13 (P = 6.20 × 10−6).

Finally, waist circumference was associated with two SNPs, 
one on chromosome 14 (rs7158173) belonging to the 
MAX gene (P = 3.83 × 10−6) and the other on chromosome 
16 (rs4787483) belonging to seizure-related 6 homologue 
(mouse)-like 2 isoform gene (SEZ6L2; P = 2.10 × 10−6) (Table 
2, Figure 7).

DISCuSSION

The results of this study suggest several potential candi-
date genes involved in determining height, weight, and 

body mass index, as well as the hip, waist, and brachial 
circumference. We identified novel genetic associations 
with 6 human anthropometric traits using an isolate pop-
ulation. In isolated populations, genome-wide association 
studies can be particularly useful because of several poten-
tial advantages. First, allele frequencies of some important 
variants may be skewed from those found in the general 
population due to a combination of population genetic 
effects such as founder effect, genetic drift, and inbreed-
ing (2). This could dramatically increase the power of ge-
nome-wide association study to detect otherwise rare vari-
ants of reasonably large effects on phenotypes of interest, 
if their frequency is unusually increased in an isolate popu-
lation, a suggestion that has been proposed for some iso-
lated Croatian Adriatic islands (22). In addition, accepted 
methods of computation of formal threshold for genome-
wide statistical significance that corrects for multiple test-
ing performed for hundreds of thousands of genetic mark-
ers may be overly stringent in isolate populations because 
of their population genetic properties (22). Increased link-
age disequilibrium in such populations makes many of the 
markers linked so that many of the performed tests are 
dependent on each other (linkage disequilibrium works 
against the assumption of the independence between 
all performed tests) (31), which in turn mathemati-

Figure 7.

Genome-wide association study of waist circumference using Haploview software, showing peaks on chromosomes 14 and 16 reaching genome-wide 
significance level of P < 10−5.
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cally lowers the threshold for genome-wide significance 
for an unknown but substantial amount. Lowering the sig-
nificance threshold means greater power for the studies 
performed in isolate populations. Due to the two mecha-
nisms described above (2,22), it would not be unexpected 
that genetic variants underlying complex traits are identi-
fied in human isolate populations rather than in outbred 
population by using genome-wide scans of comparable 
density and much larger sample sizes (5,8).

In recent years, genome-wide association studies have 
proven their worth as an extremely powerful tool in iden-
tifying genetic variants underlying many human diseases 
and complex traits (40). Hundreds of genetic variants are 
presently being discovered by large consortia of scientists 
in pioneering efforts to use this reliable approach to pro-
vide hypothesis-free insights into the genetic architecture 
of complex human phenotypes (36). Our study succeed-
ed in identifying 11 genetic loci that reached significance 
level of P < 10−5. Although this does not make all of them 
necessarily genome-wide significant in formal turns, we 
believe that they should be carefully considered for repli-
cation in other populations and further functional studies 
due to combination of factors described above.

The gene AMPA1 (GRIA1) implicated in height in our study 
has also been implicated in stimulus-reward learning in 
mice (41,42) and possibly in bipolar disorder and schizo-
phrenia in humans (43,44), but possible mechanisms re-
main obscure, and the finding has yet to be replicated. It 
has not been associated with human height to date. How-
ever, human height has been strongly inversely associated 
with the risk of schizophrenia (45), making this finding po-
tentially interesting for further replication and functional 
follow-up, as GRIA1 gene could be a potential common 
factor contributing to both phenotypes.

It has recently been revealed that SCGD codes aminomu-
tase catalyzing a-tyrosine to beta-tyrosine (46). The gene 
has been hypothesized to have a role in cardiomyopathy 
and muscular dystrophy (47). Furthermore, we have not 
been able to find information on the possible role and 
function of ZNF498 gene. Thus, both genes represent good 
candidates for further functional studies to clarify their 
possible role in determining body shape and size.

CRIM1, implicated in brachial circumference, is an inter-
esting candidate gene. It encodes a putative transmem-

brane protein with multiple cysteine-rich (CR) domains 
known to have bone morphogenetic proteins bind-

ing activity, and is usually associated with vertebrate cen-
tral nervous system development and organogenesis (48). 
It has been suggested that it regulates the rate of process-
ing and delivery of bone morphogenetic proteins to the 
cell surface (49). Interestingly, several reports linked it to 
control of body size (50,51), thus making it a promising 
candidate for further follow-up studies.

ITGA1, another gene implicated in brachial circumference, 
is an equally interesting candidate gene. It is a part of integ-
rin collagen receptor locus on human chromosome 5q11.2 
(52). Thus, it is involved in the early remodelling of osteo-
arthritic cartilage and plays an essential role in the regula-
tion of mesenchymal stem cell proliferation and cartilage 
production (53). Further replication of our finding and fol-
low-up functional studies will be necessary to confirm its 
regulation of brachial circumference and interactions with 
other genes.

Unlike the previous candidate genes, no plausible informa-
tion is currently available on possible roles and functions 
of XTP6, SEZ6L2, and MAX genes that would help us under-
stand their possible role in determining human body size 
and shape.

The results presented here suggest that some identified 
genes were implicated in more than one trait, suggesting 
that they might be responsible for the genetic action on 
the common underlying property for these traits. Other 
genes, such as CRIA1 and ITGA1, represent very promising 
and biologically plausible functional candidates.

The shortcomings of this study primarily include the po-
tential low statistical power, which is a consequence of the 
limited population size encountered in any genetic isolate. 
Studies performed in isolated populations should always 
seek replication to ensure that the findings are indeed rep-
resentative of wider general human populations and not 
limited to specific circumstances of a particular isolate. Fi-
nally, variants identified in this study all require functional 
follow-up and replication in other populations in order to 
establish their true significance in determination of human 
body size and shape.
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