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1. Summary 

Mice with interleukin (IL)-7 transgene under the control of Eα promoter over-express IL-7 in 

MHC class II-positive cells and develop specific immune phenotype, marked by an increase 

in CD45R
+
 cells in both the bone marrow and peripheral blood. We show that IL-7 transgenic 

mice have a bone phenotype characterized by an age-related loss of trabecular bone in both 

axial and long bones. Osteopenia was the result of increased number of active osteoclasts on 

the surface of trabecular bone. Furthermore, IL-7 transgenic mice showed increased 

osteoclastic but unchanged osteoblastic potential of the bone marrow in vitro. IL-7 over-

expression also created osteoclastogenic microenvironment within the bone marrow which 

promoted the commitment of precursors towards the osteoclast lineage. These findings are 

important for immunological disturbances where IL-7 is involved and where alterations in the 

immune system are accompanied by changes in bone metabolism, such as multiple myeloma, 

rheumatoid arthritis and postmenopausal osteoporosis. 
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2. Introduction 

Interleukin-7 (IL-7) is produced by thymic and bone marrow (BM) stromal cells and 

mediates critical steps during early T and B lymphocyte development in mice [1]. Transgenic 

mice over-expressing IL-7 under different promoters develop lymphoproliferative phenotype 

[2,3]. IL-7 has been implicated in bone homeostasis, but its effects on bone cells are 

contradictory [4-6]. In vitro, IL-7 had inhibitory effect on both osteoclasts (OCL) [4] and 

osteoblasts (OBL) [6]. In vivo, young female transgenic mice expressing human IL-7 gene 

selectively in OBLs showed increased numbers of early B lymphocytes in the BM and 

increased trabecular bone mass [7,8]. Mice expressing an IL-7 transgene driven by MHC 

class II (Eα) promoter [3] develop enlarged marrow cavity and focal osteolysis related to the 

lymphoproliferative phenotype [9]. Within the immune system, MHC class II molecules are 

constitutively expressed by stromal cells and antigen-presenting cells, and can be induced in 

other cells during immune response [10]. As the control of IL-7 production by MHC class II 

promoter mimics pathological states marked by prolonged stimulation of lymphocytes [10], 

such as in autoimmune diseases, we assessed bone morphology and function in mice over-

expressing IL-7 transgene driven by the MHC class II (Eα) promoter. 

 

3. Materials and Methods 

IL-7 transgenic mice 

Male and female mice hemizygous for IL-7 transgene in C57BL/6 background (IL-7 TG 

mice) [3,9] and wild-type (Wt) littermates were analyzed at 8 weeks, and 6 or 12 months of 

age. IL-7 transgene carriers were identified by PCR amplification [9]. Immune phenotype 

was confirmed by flow cytometry [11]. 

Bone histomorphometry 
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After fixation in 4% paraformaldehyde and demineralization in EDTA, vertebrae or tibiae 

were dehydrated and embedded in paraffin. Serial sections (5-8 µm thick) were stained with 

Goldner's trichrome stain for the measurement of static bone morphometric parameters. The 

measurements were performed in the trabecular bone area of the proximal metaphysis, 200 

µm from the growth plate, and equidistant from endocortical bone. Histomorphometrical 

analysis of the bone in IL-7 transgenic mice included trabecular bone volume (BV/TV), 

trabecular number (Tb.No), trabecular separation (Tb.Sp), trabecular width (Tb.Wi) and 

epiphyseal plate thickness (Ep.Th) [12], measured using Osteomeasure software 

(Osteometrics Inc, Decatur, Georgia, USA) on Axio Imager A1. OCL-like cells were 

identified as tartrate-resistant acid phosphatase (TRAP)-stained cells on bone surfaces, with 

≥3 nuclei and counted separately on the epiphyseal plate, trabecular bone and endosteal 

surfaces. The number of OCLs was expressed per millimeter of bone length. 

Bone cell cultures 

BM cells from long bones were cultured in conditions stimulating either OCL [13] or OBL 

differentiation [14]. Briefly, BM cells were flushed out from long bones, washed, passed 

through a 40 µm pore size nylon cell strainer and resuspended in α-MEM supplemented with 

10% fetal bovine serum (FBS; Hyclone, Logan, UT, USA). 

For OBL cultures [14], BM cells were seeded into 6-well plates and cultured at a 

concentration of 7×10
6
 cells in 3 ml per well in α-MEM/10%FBS. On day 4 of culture 

medium was changed. On day 7 of culture, the medium was changed and supplemented with 

8 mM β-glycerophopsphate, 10
-8

M dexamethasone and 50 µg/ml ascorbic acid. On day 11, 

cultures were fixed in 2% paraformaldehyde in PBS for 10 minutes and stained for alkaline 

phosphatase (AP) using a commercial kit (Sigma-Aldrich), and for mineralizing (Von Kossa 
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staining) or total fibroblast colonies (methylene blue staining). AP positive, mineralising or 

fibroblast colonies were counted in 3 wells per group for each experiment [14]. 

For OCLic cultures [13] BM cells were incubated overnight with 5 ng/mL recombinant 

murine macrophage colony stimulating factor (rmM-CSF, R&D Systems, Abingdon, UK) in 

α-MEM/10%FBS to stimulate monocyte-macrophage lineage, followed by harvesting of non-

adherent cells, enriched in noncommitted hematopoietic progenitors [13]. Non-adherent cells 

were seeded into a 48-well plate and cultured in α-MEM/10%FBS with 20 ng/mL of 

recombinant murine receptor activator of NF-κB ligand (rmRANKL) and 10 ng/mL of rmM-

CSF, in the density of 0.5×10
6
 cells in 0.5 mL. Medium was changed on day 3 of culture, and 

on day 6, the cultures were fixed with 2.5% glutaraldehyde in PBS for 30 minutes at room 

temperature and stained for TRAP, using a commercial kit (Sigma-Aldrich). TRAP-positive 

cells with ≥3 nuclei were considered OCLs [13]; their functional activity was confirmed by 

their ability to resorb calcium phosphate films (BD Biosciences, San Jose, California, USA). 

For co-culture experiments, the supernatants from Wt and IL-7 TG OCL cultures were 

collected at the end of the culture period (day 6) and frozen. Supernatants were added in a 

25% final volume to new OCL cultures, together with α-MEM/10%FBS, rmRANKL and 

rmM-CSF, at day 1, and again at day 3 of culture. 

Neutralization of IL-7 was performed by following a protocol for neutralization of soluble 

cytokines [13]. Briefly, supernatant from IL-7 TG OCL cultures was first incubated with 

neutralizing IL-7 antibody (R&D Systems) for 1 h at 37 ºC, and than added to Wt OCL 

cultures in a final volume ratio of 25%. The final concentration of anti-IL-7 antibody in the 

OCL culture was 2 µg/mL [4]. 
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For peripheral blood mononuclear cell (PBMC) differentiation, mononuclear cells from 

orbital plexus blood were cultured at density of 2×106 cells/mL in osteoclastogenic 

conditions (20 ng/mL RANKL and 10 ng/mL M-CSF) in α-MEM/10% FBS for 8 days. 

CD45R
+
 cells were isolated from full BM by magnetic separation using Dynabeads sheep 

anti-Rat IgG (Dynal Biotech, Oslo, Norway) and FITC-conjugated rat anti-mouse CD45R 

antibody. The separation was repeated until there were <1% of CD45R
+
 cells in the 

supernatant, as confirmed by flow cytometry. BM cells with or without CD45R+ population 

were then cultured in osteoclastogenic culture conditions with 20 ng/mL RANKL and 10 

ng/mL M-CSF in α-MEM/10% FBS. 

Gene expression analysis 

Total RNA was extracted from cultured cells using a commercial kit (TriPure; Roche, Basel 

Switzerland). For PCR amplification, 2 µg of total RNA was converted to cDNA by reverse 

transcriptase (Applied Biosystems, Foster City, CA). The amount of cDNA corresponding to 

20 ng of reversely transcribed RNA was amplified by qPCR, using specific amplimer sets 

and SYBR Green chemistry  for β-actin, and TaqMan Assays and TaqMan chemistry for IL-7 

and IL-7R (Applied Biosystems). Quantitative PCR was conducted using an ABI Prism 7000 

Sequence Detection System (Applied Biosystems). Each reaction was performed in duplicate 

or triplicate in a 25 µL reaction volume. The generated data were analyzed by plotting the 

fluorescence signal ∆Rn vs. the cycle number. An arbitrary threshold was set on the linear 

phase midpoint of the log ∆Rn vs. cycle number plot. The cycle threshold (Ct) value was 

defined as the cycle number at which ∆Rn crossed this threshold. The expression of specific 

genes was calculated according to the standard curve of gene expression in the calibrator 
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sample (cDNA from control osteoclastogenic culture) and normalized to the expression of the 

gene for β-actin (“endogenous” control) [14]. 

Statistical analysis 

All values are expressed as mean ± standard error of the mean, and the groups were 

compared using ANOVA with Student–Newman–Keuls post hoc test. The α level was set at 

0.05. All experiments were repeated at least three times and the data are from a representative 

experiment. 

 

4. Results  

Lymphoproliferative phenotype of IL-7 TG mice 

Lymphoproliferative phenotype of IL-7TG mice [9] was visible at 8 weeks of age 

(48.5±3.8% CD45R
+
 cells in IL-7 TG vs. 28.9±0.7% in Wt female mice) and was fully 

developed at 6 months (59.8±10% CD45R
+
 cells in IL-7 TG vs. 16.8±5.1% Wt female mice) 

and 12 months (63.8±0.3% CD45R
+
 cells vs. 16.2±3.2% in WT female mice, and 69.2±4.8% 

CD45R
+
 cells vs. 15.9±4.2% in WT male mice, respectively). 

 

IL-7 TG mice have increased bone resorption in vivo and develop osteopenia 

IL-7 TG mice developed marked osteopenia with age (Fig. 1). Decrease in the number and 

thickness of trabecular bone in long bones at 12 months (Fig. 1 and 2) was preceded by 

vertebral trabecular bone loss already at 6 months of age (7.1±1.3% in IL-7 TG vs. 

20.2±1.1% in Wt female mice and 12.0±1.8% in IL-7 TG vs. 20.0±5.8% in Wt male mice; 

p<0.05, ANOVA and Student-Newman-Keuls post hoc test). Bone growth, assessed as the 

epiphyseal plate thickness, was not affected (Fig. 1). Trabecular bone loss in IL-7 TG mice 
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was preceded by an increase in active OCL on metaphyseal and trabecular surfaces at 6 

months, followed by increased OCLs at endoosteal surfaces at 12 months (Table 1). 

 

IL-7 TG mice have increased osteoclastic and unchanged osteoblastogenic potential of BM 

cells 

As bone loss in vivo can result not only from increased number or activity of OCLs but also 

from decreased number or activity of OBLs or disturbed balance in the activity of both cell 

types [6,15], we tested osteoclastogenic and osteoblastogenic potential of IL-7 TG BM. Only 

female mice were used for subsequent experiments because bone phenotype was similar in 

both sexes. At 8 weeks of age, non-adherent BM cells from both IL-7 TG and Wt mice 

generated similar numbers of OCLs in ex vivo cultures (Table 2). At 6 and 12 months of age 

there were significantly more OCLs in cultures of IL-7 TG BM (Table 2). OCL generation in 

PBMC cultures was also increased in 12-month-old IL-7 TG mice (262.0±17.1 vs. 

141.1±21.2 OCL/well in Wt cultures, p<0.05). There was no difference between IL-7 TG and 

Wt mice in BM osteoblastogenic potential assessed as the number of AP-positive colonies 

(Table 2), nor in number of mineralizing or total fibroblast colonies (data not shown). 

 

BM microenvironment for increased osteoclastogenesis in IL-7 TG mice 

Immune phenotype of IL-7 TG mice includes up to four-fold increase in CD45R
+
 BM cells 

[9], which may also have OCL differentiation potential in vitro [19,20]. To assess possible 

contribution of CD45R
+
 cells to increased osteoclastogenic potential of IL-7 TG BM, we 

cultured separated CD45R
+
 BM population. CD45R

+
 BM cells from IL-7 TG and Wt 12 

month-old mice had similar osteoclastogenic potential (74.5±4.1 OCL/well in vs. 86.5±7.5, 
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respectively, p=0.1919), indicating that they had the same differentiation potential. As the 

CD45R+ population was increased up to 3-fold in IL-7 TG BM, it indicates that it is the 

enlarged progenitor pool, and not their differentiation potential per cell, which either gives 

rise to more OCLs or provides a supportive microenvironment for OCL differentiation. 

To further test the role of CD45R
+
 BM population in OCL differentiation in IL-7 TG mice, 

we cultured whole BM and BM depleted of CD45R
+
 population using the same 

osteoclastogenic culture conditions. Whereas depletion of CD45R
+
 cells did not affect OCL 

differentiation in Wt mice, OCL numbers decreased up to 60% in IL-7 TG mice (Fig. 3), 

confirming that increased CD45R
+
 population and its interactions with CD45R

–
 

microenvironment are responsible for increased osteoclastogenesis in IL-7 TG BM. 

To assess possible humoral factors in the environment over-expressing IL-7 [18], we cultured 

Wt OCL cultures with supernatants from IL-7 TG cultures. IL-7 TG culture supernatants 

stimulated OCL formation in Wt mice (309.0±13.8 OCL/well in Wt cultures with IL-7 TG 

supernatants vs.167.4±12.0 OCL/well in Wt cultures without addition of supernatant; 

p<0.05). This demonstrated that the stimulation of osteoclastogenesis could also be mediated 

by a soluble factor from IL-7 TG OCL cultures. Although IL-7 mRNA expression generally 

increased with the OCL differentiation in IL-7 TG OCLs (relative mRNA quantity day 0: 

0.99±0.02, day 2.5: 1.61±0.07, day 5: 4.53±0.06), the addition of IL-7 antibody in 

concentrations shown to fully inhibit IL-7 activity [4] could not abrogate the effect of 

supernatant transfer (230.3±5.2 OCL/well in Wt cultures, 387.3±5.3 OCL/well in Wt 

cultures+25% IL-7 TG culture supernatant, and 386.3±27.2 OCL/well in Wt cultures+25% 

IL-7 TG culture supernatant+2 µg/mL IL-7 antibody; p<0.05). On the other hand, the 

expression of IL-7R mRNA, as assessed by quantitative PCR, was increased early in OCL 
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cultures from IL-7 TG but not in with Wt mice (day 0 IL-7R RNA relative quantity 23.0±1.3 

in IL-7 TG and 8.8±0.9 in Wt OCL cultures, p<0.05). 

 

5. Discussion 

Our study showed that systemic IL-7 over-expression linked to MHC class II expression 

induces not only the accumulation of B cells and its progenitors, but also OCL differentiation 

and subsequent trabecular bone loss in vivo. Bone loss was specific for trabecular bone, as the 

morphology of the epiphyseal growth plate was not affected. Bone trabeculae were decreased 

in number and thickness, enlarging the BM cavity. 

The loss of bone in IL-7 TG mice was the consequence of increased number of OCL on 

trabecular and endoosteal surfaces. These findings demonstrated that the primary target of IL-

7 over-expression in vivo was bone resorption, regardless of the underlying cause of over-

expression, because findings in the IL-7 over-expression in MHC class II cells was similar to 

that in other in vivo models, such as treatment of intact mice with IL-7 or in IL-7 receptor 

(IL-7R) knockout mice [5]. Increased osteoclastogenesis as direct cause of bone loss was 

confirmed by demonstrating that BM cells from IL-7 transgenic mice formed more functional 

OCLs in vitro than BM of age- and sex-matched Wt mice. Alterations in the osteoclastogenic 

potential were at least in part age-related because increased osteoclastogenesis was not 

evident in IL-7 TG mice before 6 months of age, and only 12 month old TG animals 

presented a fully developed bone phenotype. 

Although bone loss is often caused by disturbances in both bone formation and resorption, 

IL-7 over-expression by MHC class II cells did not affect OBL differentiation, contrasting 

reports from other IL-7 over-expression models, such as inhibition of new bone formation by 
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IL-7 in neonatal calvarial organ cultures [6]. Unchanged osteoblastogenic lineage cell 

differentiation in IL-7 TG mice indicated that the target of IL-7 over-expression in MHC 

class II-positive cells in vivo were OCL precursors, which is in line with the in vitro evidence 

that IL-7 increases myeloid colony progenitors when combined with other colony stimulating 

factors [16]. Our preliminary results show that the expression of IL-7R mRNA was increased 

early in OCL cultures from IL-7 TG compared with Wt mice, indicating that OCL precursors 

from IL-7 TG BM cells had greater sensitivity to IL-7 and thus possibly a greater capacity for 

differentiation along OCL differentiation pathway. Support for this pathogenetic mechanism 

comes from studies showing that IL-7 stimulates in vitro murine OCL differentiation from 

cells attached tightly to the bone surfaces by expanding the pool of OCL precursors [17] as 

well as human OCL differentiation from peripheral blood stem cells by upregulating T 

lymphocyte production of osteoclastogenic factors [17,18]. BM population responsible for 

the increase in OCL differentiation could be CD45R
+
, as we demonstrated that removal of 

CD45R
+ 

cells resulted in normal osteoclastogenesis in vitro. Although some reports assign 

osteoclastogenic properties of CD45R
+
 BM cells to contaminating CD45R

–
 cells [21], our 

study clearly demonstrated that this cell population is important in osteoclastogenesis in 

conditions with IL-7 over-expression. 

Increase in OCL progenitor pool was not the only mechanism mediating the effect of IL-7 

over-expression in the BM, as the differentiation stimulus could be transfered in vitro by 

humoral factors from transgenic OCL cultures. Furhermore, the finding that IL-7 specific 

antibody could not fully abrogate the effect of supernatant transfer demonstrated that IL-7 is 

not the sole mediator of increased osteoclastogenesis in IL-7 TG mice, but rather its 
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interactions with the whole BM microenvironment. This is in line with the proposal that IL-7 

effects on bone cells depend on whether IL-7 is delivered systematically or locally [17]. 

BM microenvironment plays a fundamental role in haematopoiesis, especially of B 

lymphocytes [22]. IL-7 over-expression may change BM microenvironment to promote 

differentiation of CD45R
+
 cells along OCL pathway, as well as to secrete yet unidentified 

soluble osteoclastogenic factors in CD45R
–
 BM populations. IL-7 has been shown to 

stimulate cytokine secretion from IL-7R-expressing BM stromal cells [22]. Another 

downstream cytokine in IL-7 over-expressing environment could be RANKL, the key 

osteoclastogenic factor that binds to its RANK receptor on OCL precursors [15] and is able to 

induce CD45R+ cell proliferation in combination with IL-7 [23]. RANKL, shown to increase 

with IL-7 stimulation of T lymphocytes [15], mediates bone resorption together with tumor 

necrosis factor-α in IL-7 treated mice [18]. As we added soluble RANKL and M-CSF in 

culture, the contribution of increased RANKL expression in stromal cells or T lymphocytes 

could not be assessed. Also, we could not use the experimental models withe exogeously 

added IL-7 to test cell responses to excess IL-7 as IL-7 protein is already over-expressed and 

secreted in vivo and in vitro in IL-7 TG mice [3]. Our future research focuses on the 

identification of factors in the BM microenvironment in IL-7 TG mice and their relationship 

to CD45R+ cell population. 

In conclusion, systemic over-expression of IL-7 in MHC class II positive cells caused a 

specific bone phenotype in which CD45R
+
 population, expanded by IL-7 over production, 

could serve as OCL precursors and stimulate production of soluble factors to increase the 

osteoclastogenic potential of BM cells. These findings are important for immunological 

disturbances where IL-7 is involved and where alterations in the immune system are 
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accompanied by changes in bone metabolism, such as multiple myeloma, rheumatoid arthritis 

and postmenopausal osteoporosis [6,24]. 
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Figure 1. Decreased bone mass in IL-7 transgenic (TG) female mice. Tibias from TG mice 

and wild-type (Wt) littermates (n=6) were assessed for trabecular bone mass (BV/TV), 

epiphyseal plate thickness (Ep.Th.), trabecular number (Tb.No.), trabecular width (Tb.Wi.), 

trabecular separation (Tb.Sp.). Asterisk – significant difference vs. Wt mice (p<0.05, 

ANOVA and Student-Newman-Keuls post hoc test). 
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Figure 2. Decreased trabecular bone volume in IL-7 transgenic female mice. Goldner’s 

trichrome staining of tibias from female IL-7 transgenic mice (IL-7 TG) and wild-type (Wt) 

mice.  
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Figure 3. Decreased osteoclast (OCL) number in cell cultures from bone marrow (BM) 

depleted of CD45R+ population. OCL formation in cultures of whole BM or BM depleted of 

CD45R+ population from wild-type (Wt) or IL-7 transgenic cultures (IL-7 TG) (n=6 per 

group), stimulated with 20 ng/ml rm RANKL and 10 ng/ml rm M-CSF. Asterisk – significant 

difference vs. non-separated culture (p<0.05, ANOVA and Student-Newman-Keuls post hoc 

test). 
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Table 1. Tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in tibiae of IL-7 

transgenic (TG) and wild-type (Wt) mice* 

Number of osteoclasts per mm bone perimeter 

(mean ± SEM) 

Cells Mice 

8 weeks 6 months 12 months 

Wt 0.0±0.0 2.6±0.7 0.0±0.0 Chondroclasts 

IL-7 TG 0.0±0.0 2.9±0.4 0.0±0.0 

Wt 3.3±0.4 10.8±2.1 28.0±1.3 Metaphyseal 

osteoclasts IL-7 TG 3.7±0.7 19.9±2.7
†
 70.7±16.2

†
 

Wt 2.2±0.2 1.4±0.4 6.3±3.8 Trabecular osteoclasts 

IL-7 TG 2.4±0.6 6.3±1.8† 16.3±5.3† 

Wt 0.3±0.0 0.7±0.4 23.7±6.4 Subendostal osteoclasts 

IL-7 TG 0.2±0.0 2.7±1.0 51.3±12.9
†
 

Wt 5.8±0.6 15.4±3.3 58.0±4.5 Total 

IL-7 TG 6.4±0.1 31.8±4.9† 138.3±32.8† 

*Serial sections from tibiae of IL-7 TG and Wt littermates (4 sections per tibia, 6 mice per 

group) were stained for TRAP. 

†
p<0.05 vs. Wt, ANOVA and Student-Newman-Keuls post hoc test. 
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Table 2. Osteoclastogenic and osteoblastogenic potential of bone marrow (BM) from IL-7 

transgenic (TG) and wild-type (Wt) mice* 

OCL number 

(mean ± SEM) 

AP-positive OBL colonies 

(mean ± SEM) 

Age 

Wt IL-7 TG Wt IL-7 TG 

8 weeks 194.7±25.9 196.3±26.7 49.3±1.2 48.7±2.2 

6 months 267.0±11.1 457.0±20.3†
 51.3±0.7 57.0±2.5 

12 months 199.5±6.2 428.7±19.9
†
 79.0±2.1 84.0±1.5 

*For OCL differentiation, non-adherent BM cells [13] were cultured at the density of 10
6
 

cells/mL/well of 48-well plates, with 10 ng/ml rmM-CSF and 20 ng/mL rmRANKL. After 6 

days, TRAP-positive cells with ≥3 nuclei were counted (n=6). For OBL differentiation [14], 

BM cells were cultured at density of 7×106 cells/3 mL/well of 6-well plates, with 8 mM β-

glycerophosphate, 50 µg/mL ascorbic acid and 10-8M dexamethasone. Alkaline phosphatase 

(AP)-positive OBL colonies were counted at day 11. 

†
p<0.05 vs. Wt, ANOVA and Student-Newman-Keuls post hoc test. 


