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Abstract 

Respiratory syncytial virus (RSV) glycoprotein G mimics fractalkine, a CX3C chemokine, 

which mediates chemotaxis of leukocytes expressing its receptor, CX3CR1. The aim of this 

study was to examine the relationship between RSV infection and expression of perforin and 

IFN- in CX3CR1-expressing peripheral blood CD8+ T cells. Samples were collected from 

infants with RSV bronchiolitis, both in the acute and convalescence phase (n=12), and from 

their age- and sex-matched healthy controls (n=15). Perforin expression and IFN- secretion 

in CX3CR1+ CD8+ T cells were assessed by four-color flow cytometry. The NF-B p50 and 

p65 subunit levels were also determined as markers of RSV-induced inflammation. Study 

results showed perforin and CX3CR1 expression to be significantly lower in the convalescent 

phase of infected infants than in healthy controls. There was no significant difference in IFN- 

secretion and NF-B binding activity between two time-points in RSV-infected infants, or 

when compared to healthy controls. Infants with prolonged wheezing had lower acute-phase 

CX3CR1 levels in peripheral blood.  These data indicate existence of an event persisting after 

acute RSV infection that is able to modulate effector functions of cytotoxic T cells, and also 

link disease severity with CX3CR1 expression. 

Key words: infants, respiratory syncytial virus, CX3CR1, perforin, interferon- 
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Introduction 

For the last several decades, respiratory syncytial virus (RSV) carries the unhappy title of the 

leading cause of serious lower respiratory tract illness in infants (1). Although apparently only 

some of the infected infants develop bronchiolitis or pneumonia that require hospitalization, 

those numbers become alarming when one considers that 70% of all children acquire RSV 

infection before their first birthday,  reinfections are almost obligatory (2), and there is no 

effective vaccine. For infants who recover from RSV bronchiolitis there seem to exist an 

increased risk for developing recurrent wheeze and asthma later in childhood (3).  

 

The main effector cells that clear RSV from the body are suggested to be the CD8+ cytotoxic 

T lymphocytes (CTLs). However, when inappropriately activated, these cells could also 

augment the disease (4). The principal CTL method for destroying the target cell is perforin-

mediated cell lysis (5). Although perforin knockout mice can also clear the virus via FasL-

mediated cell lysis, this is less efficient and could lead to enhanced RSV infection and disease 

(6). In ex vivo assays CTL cytotoxicity correlates with high perforin expression (7), so the 

CTL perforin level in RSV infection could reflect their ability to clear the virus effectively. 

Activated CTLs also produce interferon (IFN)-, a Th1-type cytokine with antiviral properties 

(8).   

 

Perforin+ CTLs have another marker on their surface (9) that could participate in the 

pathogenesis of the disease: CX3CR1, receptor for chemokine fractalkine (CX3CL1). 

Fractalkine is secreted by human endothelial cells activated by proinflammatory signals 

(TNF-, IL-1, lipopolysaccharide, CD40 ligand, IFN-) and its mRNA is found in various 

organs, including the lungs (10, 11). It mediates the capture, adhesion and activation of 

CX3CR1-expressing cells from the bloodstream and promotes their further migration (9, 12). 
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It also inhibits the anti-CD3 stimulated IFN- production by CX3CR1+ CTLs. Recently it has 

been suggested that the signaling upon fractalkine binding to its receptor is conducted 

partially via activation of nuclear factor-B (NF-B) family of transcription factors (13, 14). 

Various stimuli (infection, inflammation, stress) can cause detachment of NF-B homo- and 

heterodimeric subunits from their inhibitory proteins and their translocation into the nucleus. 

Most common NF-B dimers are p65 with p50 or p52. Their binding to DNA initiates 

transcription of different genes for proinflammatory cytokines, chemokines and adhesion 

molecules (reviewed in 15). Also, it seems that NF-B induction is required for IFN- 

production in T cells and differentiation of Th1 type immune response (16). 

 

In HIV, the frequency of CX3CR1+ CTLs positively correlates with viral loads, and HIV-

specific CD8 T cells have an increased expression of CX3CR1 compared to T cells in healthy 

individuals (17). However, CX3CR1 in RSV infection may not play just a general homing 

receptor role. It has been shown that CX3CR1 recognizes the RSV G glycoprotein because of 

its structural similarity to fractalkine: G protein also has a CX3C motif (18). When G 

glycoprotein is added to a culture of human PBMCs, it inhibits fractalkine binding to 

CX3CR1 and induces migration of CX3CR1+ cells towards a G glycoprotein gradient (18). G 

protein is produced in transmembrane and soluble form; as soluble G protein is released from 

intact infected cells into the culture fluids (19), an interaction between G protein and T cells in 

in vivo conditions is theoretically possible. 

 

To examine the relationship between RSV infection and expression of perforin and CX3CR1 

during RSV infection, we obtained peripheral blood samples of infants admitted to the 

hospital for RSV bronchiolitis, both in the acute and convalescence phase, and from their age- 
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and sex-matched healthy controls. Perforin, CX3CR1 and IFN- protein levels were 

determined by flow cytometry. In addition, NF-B binding activity was measured by ELISA. 
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Material and Methods 

Patients and controls 

Twelve infants (6 girls and 6 boys) aged 2 weeks to 9 months (mean 4.7 months) admitted to 

the participating hospitals with verified RSV infection were included in the study during the 

2004 winter epidemic. Bronchiolitis was defined as wheezing, <95% O2 saturation and lung 

hyperinflation but infiltrate-free chest radiograph if taken. Heparinized blood samples were 

obtained within 24 hours of the virus verification in nasopharyngeal secretion (within the first 

7 days from the onset of symptoms), prior to which the patients had only received supportive 

therapy and bronchodilatators (nebulized racemic epinephrinene hydrochloride or salbutamol 

sulfate). Afterwards, two of the children received 10 mg of methylprednisolone sodium 

succinate i.m. once or twice a day for 3 days. Also, four other children who subsequently 

presented with either nasopharyngitis, otitis media or pneumonia, received antibiotics. The 

control group consisted of 15 infants (8 male and 7 female) aged 2 to 9 months (mean 5.5 

months) without clinically evident allergic, immunologic, or hematologic disorders, infectious 

diseases, or undergoing corticosteroid therapy. The study received approval from Ethics 

Committees of all participating hospitals. Parents gave an informed consent for blood 

sampling. 

 

Clinical and laboratory findings 

White blood count, erythrocyte sedimentation rate, C-reactive protein and bacteriologic 

analyses were determined from samples obtained during routine hospital procedure, thus 

reducing the possibility of superimposed or concomitant bacterial infection. The symptoms 

(wheezing, minimal oxygen saturation, maximal respiratory rate, fever) were determined 

according to standard values of these parameters.  
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Viral diagnosis 

RSV-infection was verified in nasopharyngeal secretion by rapid detection (direct fluorescent 

antibody, DFA, Institute Virion Ltd., Switzerland) and/or virus isolation in cell culture (HeLa, 

GMK, HEp-2 cells) (20). 

 

Immunologic tests 

Heparinized peripheral blood samples were obtained within the first 7 days (mean 4.9 days) 

from the disease onset, following confirmation of RSV infection, and then in convalescence, 4 

to 6 weeks after disease onset. Peripheral blood mononuclear cells (PBMCs) were isolated on 

density gradient (Ficcol-Paque, Uppsala, Sweden) from the remaining blood after the whole 

blood staining. Because of the small amount of blood that could be obtained, not all 

subsequent tests were performed in every infant. For functional IFN- testing the PBMCs 

were stored in liquid nitrogen so the frozen cells from acute phase, convalescent or healthy 

infants were thawed and then analyzed at the same time. Briefly, 2x106 PBMCs were 

transferred to a cryovial (2 mL, Costar Corning Inc., NY, USA) containing 900 μL of freezing 

media (10% dimethylsulfoxide, DMSO, Sigma-Aldrich Co., St. Louis, USA, in fetal calf 

serum, FCS). Cryovials were placed in Nalgene Mister Frosty® (Sigma-Aldrich), stored for at 

least 4 hours at -70 °C, and then transferred to liquid nitrogen.  

 

Monoclonal antibodies 

To determine human T cell surface antigens, the following murine anti-human antibodies 

were used: APC-conjugated anti-CD3, PE-Cy5-conjugated anti-CD8 (both from BD 

Biosciences, Heidelberg, Germany) and PE-conjugated anti-CX3CR1 (MBL International Co., 

Woburn, USA). Intracellularly located perforin and IFN- were stained with FITC-conjugated 
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antibody (BD Biosciences). FITC-, PE-, APC-, and PE-Cy5-conjugated isotype controls were 

used in each experiment for determination of non-specific binding. 

 

Whole blood staining 

Fifty L of heparinized peripheral blood were incubated in round-bottom polystyrene Falcon 

tubes (BD Biosciences) with 5 L of mouse anti-human monoclonal antibodies to CX3CR1, 

CD3, and CD8 for 30 minutes in the dark at room temperature (RT). Red blood cells were 

lysed with adding FACS Lysing Solution (BD Biosciences) for 10 minutes in the dark at RT, 

and then washed twice with staining buffer (1% FCS and 0.1% NaN3 in Dulbecco’s PBS). 

After washing, the cells were fixed for 20 minutes at 4 ºC with 4% formaldehyde in PBS. 

Cells were then permeabilized with 0.1% saponin in PBS prior to the addition of perforin 

monoclonal antibody, and then incubated for 20 minutes at 4 ºC. To remove the unbound 

antibody, the cells were washed once again in 0.1% saponin, then resuspended in staining 

buffer and immediately analyzed on a FACSCalibur flow cytometer (BD Biosciences, 

Mountain View, USA) using the CellQuest software.  

 

Cell surface and intracellular IFN-γ staining 

Thawed cells from 8 patients and 8 healthy controls were washed and resuspended in RPMI 

1640 (G) with 10% human AB serum. Cells (0.5x106)  were then incubated in sterile Falcon 

tubes with 10 g/mL brefeldin A (BFA) only or in the presence of BFA, 50 ng/mL phorbol 

12-myristate 13-acetate (PMA), 0.75 g/mL ionomycin (all from Sigma-Aldrich) for 5 hours 

at 37 ºC and 5% CO2. After washing, cells were labeled with anti-CX3CR1, anti-CD3 and 

anti-CD8 monoclonal antibodies and incubated for 30 minutes in the dark at RT. The samples 

were washed again and fixed for 20 minutes at 4 ºC with 4% formaldehyde in PBS. After 

fixation the cells were processed in the same manner as described above for the whole blood 
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staining, except for the monoclonal antibodies used for intracellular staining: here the cells 

were labeled with anti-IFN- and incubated for 30 minutes at 4 ºC. In order to critically 

evaluate the results obtained, we also estimated the effect of the freezing process, and 

additionally PMA and ionomycin stimulation, on CX3CR1 expression. Namely, it has been 

previously shown that PMA activation downregulates different molecules on T cell such as 

expression of CD4, and to a lesser extent CD8 (21). We also observed that freezing itself and 

especially PMA and ionomycin activation decreased expression of CX3CR1, resulting in 

substantial reduction in the percentage of CD8+CX3CR1+ CTLs (Fig.1). 

 

Nuclear cell extract preparation and NF-B DNA binding ELISA 

The nuclei were extracted from 3x106 of freshly isolated PBMCs using the nuclear extract kit 

(Active Motif, Rixensart, Belgium). Isolated nuclear proteins were kept at -80 ºC prior to use. 

The binding of NF-B p65 and p50 units to DNA was then measured using the TransAMTM 

NF-B p65 and p50 transcription factor assay kits (Active Motif) and results were quantified 

by spectrophotometry. NF-B p65 assay was performed on nuclear extracts from 10 patients 

and 8 healthy controls, and p50 assay on extracts from 10 patients and 10 controls. As 

positive control we used Jurkat cell nuclear extract optimized to give a strong signal when 

used at 2.5 g/well. The assay specificity was confirmed using the wild-type consensus 

oligonucleotide as competitor for NF-B binding, and mutated consensus oligonucleotide 

with no effect on NF-B binding. All procedures were conducted according to the 

manufacturer’s instructions. 
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Statistical analysis 

Results of the flow cytometry analysis for perforin and CX3CR1 were expressed as percentage 

of gated cells or as mean fluorescence intensity (MFI). Wilcoxon's test for paired data and 

Mann-Whitney U-test for unpaired data were used. Correlation was evaluated using 

Spearman's rank correlation coefficient (rs). A P-value less than .05 was considered 

significant. Reported P-values in multiple comparisons were adjusted according to 

Hochberg's modification of Holm's procedure.  Analyses were made using the Statistica 6.0 

software (StatSoft Inc., Tulsa, USA). 
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Results 

Flow cytometry analysis of perforin and CX3CR1 expression on whole blood cells 

To ensure that the measured perforin and CX3CR1 were indeed expressed on cytotoxic T 

lymphocytes, we set a second gate based on co-expression of CD3 and CD8 in addition to 

correlated analysis of forward and right angle scatter used to establish the lymphocyte gate. 

Perforin and CX3CR1 levels were then expressed as both percentage and MFI on such double 

gated cells. Representative dot plots of four-color immunofluorescence staining are shown in 

Fig. 2. There was no statistically significant difference in the percentage of perforin+ and 

CX3CR1+ CTLs between patients and control, nor between acute and convalescent stage in 

infected infants (data not shown). Four-color immunofluorescence staining in all children 

studied showed that the majority of CD3+CD8+ CX3CR1-expressing T cells were also 

perforin positive (Fig. 2E), Perforin MFI in convalescence was significantly lower when 

compared to healthy infants (P = .0018 by Mann-Whitney U-test) (Fig. 3A). Convalescents 

also had lower CX3CR1 MFI than healthy controls (P = .012 by Mann-Whitney U-test) (Fig. 

3B). No difference was found between acute phase perforin and CX3CR1 MFI  and healthy 

controls (P = .45 and .06 by Mann-Whitney U-test, respectively), as well as in between-group 

comparison of acute phase and convalescent perforin and CX3CR1 MFI (P = .05 and .69 by 

Wilcoxon matched pairs test, respectively). When perforin MFI was measured in CTL 

population gated through additional CX3CR1+-gate, it was significantly lower in both acute 

and convalescent RSV-infected infants than in healthy controls (P = .0097 and .0005 by 

Mann-Whitney U-test, respectively; Fig. 3C). There was no relationship between the age of 

the individual patients in the control group and the measured levels of perforin and CX3CR1 

expression, so the differences observed between patients and controls were not simply the 

result of age-related changes in protein expression (data not shown).  
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Flow cytometry analysis of IFN- levels in cryopreserved cells   

The next step was to investigate whether the ability of CX3CR1+ CTLs to secrete IFN- 

differed among acutely ill, convalescent infants, and healthy controls. PBMCs were gated in 

the same manner as on whole blood staining analysis. No difference was found in the 

percentage of CX3CR1+IFN-+ cells in RSV-infected infants between two time-points tested 

or when compared to healthy controls (Fig. 4A). This should be interpreted with caution, 

however; as mentioned in Methods, freezing and activation process tends to downregulate 

CX3CR1. We found no statistically significant difference in the percentage of IFN- cells (or 

IFN- MFI) in CTLs between acute phase- and convalescent patients, or when compared to 

healthy infants (Fig. 4B). Also, there was no significant variation in percentage of CD8+ T 

cells between acute and convalescent group, nor compared to controls. 

 

NF-B p65 and p50 subunit DNA binding 

There was no significant difference in NF-B p65 or p50 subunit concentrations determined 

in PBMC nuclear extract between acute phase RSV-infected infants, convalescents or healthy 

controls (Table 1). 

 

Correlation with clinical and laboratory parameters 

Analysis of the data obtained from all RSV-infected infants yielded no significant correlation 

of the levels of perforin, IFN- and NF-B with the clinical parameters examined (days of 

wheezing, days of O2 supplementation, minimal O2 saturation and maximal respiratory rate). 

However, as illustrated in Fig. 5A, Spearman's rank correlation analysis of the data obtained 

from RSV-infected infants in acute phase showed a significant inverse correlation between 

CX3CR1 MFI and days of wheezing. Infants with prolonged wheezing also showed a slight 
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tendency to have lower percentage of CX3CR1+IFN-+ CTLs in the acute phase, but this was 

not found significant (Fig. 5B). We didn’t observe a different pattern of immune response in 

convalescence in children who received additional glucocorticoid or antibiotic therapy after 

the acute-phase blood sample was obtained when compared to those only on 

bronchodilatators and supportive treatment (data not shown). 
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Discussion 

The principal finding of this study was that the levels of CX3CR1 and perforin expression on 

CTLs were lower in the convalescent phase of the disease in RSV-infected infants than in 

healthy controls, even though CTL population itself remained alike. CX3CR1/perforin+/+ T 

cells are proposed to be cytotoxic effector cells, a terminally differentiated subset with 

cytotoxic activity (12). A cell armed with perforin and CX3CR1 receptor is potentially able to 

migrate towards either fractalkine (9, 12) or RSV G protein (18) gradient into the affected 

respiratory system, and destroy the infected cells by means of perforin/granzyme-mediated 

cell lysis. Therefore, a perforin+CX3CR1+ cytotoxic T cell population might have an 

important role in the host defense against RSV infection. However, lower perforin content and 

CX3CR1 expression in convalescent CTLs (measured 4 to 6 weeks of the disease onset) was a 

somewhat unexpected result, especially as it is known that even severely ill infants shed the 

virus for a maximum of 3 weeks after the infection (22). 

 

There are several possible explanations for this observation. Recent studies on animal models  

(23-25) and cell-lines  (26) intriguingly suggested that RSV could persist in the lungs by 

means of low-grade replication (in mice up to a 100 days after the acute infection). 

Continuous and subtle release of G protein could attract CX3CR1high cells into the lungs 

without affecting the apparently healthy infant; hence the lower CX3CR1 expression levels. 

Or, CX3CR1 might be internalized, as other chemokine receptors are known to recycle after 

interacting with their ligands (27). If the virus is cleared, though, fractalkine remains as a 

possible modulator of CX3CR1 expression in convalescence. The requirement for fractalkine 

release is inflammation. There is other evidence indicating an existence of an ongoing cellular 

immune response after RSV clearance, probably in the form of Th2-type immune imprinting. 

IL-4 mediated suppression of CD8 cytolitic activity has been suggested both in mice (28) and 
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humans (29). RVS-infected infants have an increased percentage of CD4+, CD23+ and CD25+ 

lymphocytes at the 5-month follow-up compared to acute-phase infants and healthy controls 

(30). CD25, a receptor for interleukin-2, is commonly used as a marker of T cell activation. 

Soluble CD25 levels were also found to be increased in both acute and convalescent phase of 

RSV infected infants (31). Continued inflammation in the lungs could trigger fractalkine 

release and so recruit perforin+CX3CR1+ CTLs (or induce receptor recycling) even without 

systemic manifestations. 

 

Although we found no significant difference in CX3CR1 levels between acutely ill and 

healthy infants, the correlation of clinical parameters with immunologic data indicated that 

infants with prolonged wheezing (and therefore a more severe disease) apparently had lower 

acute-phase CX3CR1 expression in peripheral blood. This might be due to the pronounced 

sequestration of CX3CR1high CTLs in the lungs (or increased receptor recycling in periphery) 

in a more severe disease, which is accompanied by a stronger inflammatory response 

(increased fractalkine release) and possibly higher viral load (increased G protein 

concentration). A connection between CX3CR1 and disease severity has been recently 

described in a murine model (32), where G glycoprotein reduced respiratory rates via G 

protein-CX3CR1 interaction and induction of substance P (reduced respiratory rates and even 

apnea can occur during RSV bronchiolitis in very young infants).  

 

Recycling could also be responsible for the observed fall in CX3CR1 levels in cryopreserved 

cells (described previously) and after PMA and ionomycin stimulation (17). PMA- and 

ionomycin-activated CTLs showed no difference in the percentage of IFN- cells or IFN- 

protein levels between infected infants in either phase of disease and healthy children. This 

was not surprising as PMA and ionomycin stimulation used to enhance detection of pre-
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programmed cytokine production induces IFN- expression in T cells that are not necessarily 

RSV-specific, as we  (33) and others (34) observed earlier. Also, we found no difference in 

NF-B activation between RSV-infected infants at either time-point and their healthy 

controls. As IFN- production in T cells depends largely on NF-B (16), this is in accordance 

with our IFN- results. However, the NF-B p65 and p50 subunit DNA binding was measured 

in PBMC nuclear extract, so the possible changes in NF-B activation in CTLs may have 

been masked within a total PBMC population. 

 

Low perforin content in CTLs during convalescence also has several potential causes. It could 

as well be a result of RSV persistence. Studies in other chronic viral infections (7) showed 

that most of the virus-specific CTLs express low levels of perforin and are not directly 

cytotoxic. Additionaly, perforin content varies in distinct differentiation stages of CD8+ T 

lymphocytes. Only effector and effector memory CTLs express perforin, whereas naïve and 

central memory do not (35). Low perforin expression in convalescent-phase CTLs (Fig. 3B) 

could therefore mean that for some reason, naïve and/or central memory CTL population 

remained prevalent in peripheral blood. Intriguingly, if perforin expression is analyzed in 

CX3CR1+ CTL subpopulation (Fig. 3C), its lower levels in infected infants vs. controls are 

found not only in convalescence, but also in acute disease. Moreover, infected infants can 

clearly be divided in two groups; first one where perforin levels drop from acute-phase to 

convalescence, and second where perforin content increases. Previously, when we 

investigated TLR4 expression (receptor for RSV F glycoprotein) in infants with RSV 

bronchiolitis (36), we also noted that increased TLR4 expression in monocytes was observed 

only in one subgroup of acutely ill infants. Results of a recent study about influence of 

epidemiologic, socioeconomic and clinical factors on RSV disease severity suggest that high 
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variability of clinical and immunologic parameters seen in RSV probably originates from 

patients’ genetic background (37). 

 

It should be noted that all our experiments were conducted on peripheral blood samples. 

Therefore, these findings might not reflect the actual situation in the respiratory tract, where 

RSV replication and tissue pathology take place. Of course, lung samples in human RSV 

studies are usually not available, and its closest resemblance, bronchoalveolar lavage, could 

be taken from intubated infants with bronchiolitis during the acute disease, but not from 

clinically healthy convalescents or controls. To substantiate our results, additional studies are 

necessary, and currently under way. In order to clearly show that changes in CX3CR1 

expression were not secondary to non-specific effects of an acute viral respiratory infection in 

general, infants with non-RSV viral bronchiolitis should be investigated as well. Since all 

infants included in our study presented with bronchiolitis, the possible link between low 

CX3CR1 levels and more severe disease presentation should be tested among children with 

milder forms of RSV infection such as upper respiratory tract infection. Also, perforin 

dynamics during RSV infection has not been, to our knowledge, previously investigated, and 

CTL differentiation markers should be included in more sophisticated flow cytometric 

analysis. However, if one takes high perforin and CX3CR1 levels as attributes of effector 

CTLs’ ability to migrate towards and lyse infected cells, their lower convalescence levels in 

peripheral blood indicate either a lung invasion of effector cell population, or downregulation 

of markers due to cotinuous immune reaction several weeks after the acute infection.  
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Table 1. Analysis of nuclear factor-B (NF-B) p65 and NF-B p50 subunits. 

Concentration of NF-B p65 and NF-B p50 subunits per well in peripheral blood 

mononuclear cell nuclear extract of respiratory syncytial virus-infected infants during acute 

phase and convalescence, and of their healthy controls. N indicates number of samples 

analyzed. Mann-Whitney U-test was used for comparison with healthy control values, and P-

value less than .05 was considered statistically significant.  

 

 

 NF-B (g/well)                                         

 p65 p50 

 N 
Media

n 
Range 

P to 
controls 

N Median Range 
P to 

controls 
acute phase  10 1.69 1.02-2.50 0.213 10 0.93 0.6-2.16 0.067 

convalescence  10 1.59 1.28-2.81 0.131 10 0.70 0.49-1.86 0.057 

controls 8 1.93 1.58-2.75   10 1.50 0.77-2.91   
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Fig. 1. Percentage of CX3CR1+CD8+ T cells of healthy infants in whole-blood samples 

(whole blood), cryopreserved isolated peripheral blood mononuclear cells (frozen PBMCs), 

and PBMCs stimulated with phorbol 12-myristate 13-acetate (PMA) and ionomycin (I) 

(PMA+I PBMCs). Squares indicate medians, boxes percentile boundaries, and whiskers 

minimum and maximum values.  

 

Fig. 2. Expression of perforin and CX3CR1. Representative dot plots of forward and right 

angle scatter (A), surface isotype control staining (B),  CD3 and CD8 co-expression plot gated 

through lymphocyte gate (C), intracellular isotype control staining (D) and perforin and 

CX3CR1 co-expression plot gated through lymphocyte and CD3/CD8 gate (E). 

 

Fig. 3. Expression of CX3CR1 and perforin in infected infants and controls. Mean 

fluorescence intensity (MFI) of CX3CR1 (A) and perforin (B) in CD3+CD8+ cytotoxic T cells, 

and perforin (C) in CX3CR1+ CD3+CD8+ cytotoxic T cells of respiratory syncytial virus 

(RSV) infected infants during acute phase (acute) and convalescence (convalescents) (n=12), 

and of their healthy controls (controls) (n=15). The values obtained in a single infant in acute 

and convalescent phase of disease are linked with a line. Each circle represents one tested 

infant. Horizontal lines represent median values. Mann-Whitney U-test was used for between-

group comparison, and P-value less than .05 was considered statistically significant. 

       

Fig. 4. Percentage of interferon-(IFN)--secreting cells among CX3CR1+ CD3+CD8+ T cells 

(A) and CD3+CD8+ T cells  (B) stimulated with PMA and ionomycin (I) of respiratory 

syncytial virus-infected infants during acute phase (acute) and convalescence (convalescents) 

(n=8), and of their healthy controls (controls) (n=8). Each circle represents one tested infant. 

Horizontal lines represent median values.  
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Fig. 5. Negative correlation between the duration of wheezing (days) and CX3CR1 mean 

fluorescence intensity (MFI) on CD3+CD8+ T cells in acute-phase RSV-infected infants 

(n=12) (A). No significant  correlation was found between the duration of wheezing and 

percentage of interferon-(IFN)--secreting, CX3CR1+ cytotoxic T cells (n=8) (B). Each 

rectangle represents one tested infant. The relationship between variables was assessed by 

Spearman rank order coefficient (rs). 
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