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Abstract 

The first scientific and experimental approaches to the study of cerebrospinal fluid (CSF) 

formation began almost a hundred years ago. Despite researchers being interested for so long, 

some aspects of CSF formation are still insufficiently understood. Today it is generally 

believed that CSF formation is an active energy consuming metabolic process which occurs 

mainly in brain ventricles, in choroid plexuses. CSF formation, together with CSF absorption 

and circulation, represents the so-called classic hypothesis of CSF hydrodynamics. In spite of 

the general acceptance of this hypothesis, there is a considerable series of experimental results 

that do not support the idea of the active nature of CSF formation and the idea that choroid 

plexuses inside the brain ventricles are the main places of formation. The main goal of this 

review is to summarize the present understanding of CSF formation and compare this 

understanding to contradictory experimental results that have been obtained so far. And 

finally, to try to offer a physiological explanation by which these contradictions could be 

avoided. We therefore analyzed the main methods that study CSF formation, which enabled 

such an understanding, and presented their shortcomings, which could also be a reason for the 

erroneous interpretation of the obtained results. A recent method of direct aqueductal 

determination of CSF formation is shown in more detail. On the one hand, it provides the 

possibility of direct insight into CSF formation, and on the other, it clearly indicates that there 

is no net CSF formation inside the brain ventricles. These results are contradictory to the 

classic hypothesis and, together with other mentioned contradictory results, strongly support a 

recently proposed new working hypothesis on the hydrodynamics of CSF. According to this 

new working hypothesis, CSF is permanently produced and absorbed in the whole CSF 

system as a consequence of filtration and reabsorption of water volume through the capillary 

walls into the surrounding brain tissue. The CSF exchange between the entire CSF system and 
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the surrounding tissue depends on (patho)physiological conditions that predominate within 

those compartments.  

Section 4. Structural Organization of the Brain 
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1. Introduction 

Cerebrospinal fluid (CSF) is a major part of the extracellular fluid of the central nervous 

system (CNS) and fine regulation of its composition is vital to the brain’s health (Johanson, 

2008; Redzic et al., 2005). The CSF has a number of important functions. It is a physiological 

medium for the brain and provides mechanical support for the brain in the way that the brain 

floats in the CSF, reducing its effective weight (Segal, 1993). Thus, in the air the brain weighs 

1.500 g and its weight in the CSF is 49.5 g, according to Archimedes’ law. The CSF appears 

to serve the brain as a major biological river, transporting humoral messages from one region 

to another (Johanson et al., 1999; Knigge, 1974) and providing a "sink" serving as an 

important route for the removal of a variety of waste products produced by cellular 

metabolism (Segal, 1993; Wolfson, 1974). The CSF in the CNS is divided in two well 

connected units. The internal unit fills the brain ventricles (the two lateral ones, the third and 

the fourth) and the central spinal canal, as well as the external unit fills the subarachnoid 

space with cisterns (Fig. 1). According to experimental scientific interest and the first modern 

studies of CSF physiology from nearly a century ago (Cushing, 1914; Dandy, 1919; Dandy 

and Blackfan, 1914; Weed, 1914) the CSF physiology is, after a hundred years of 

investigation, based on three key premises: 1) the active formation (secretion) of 

cerebrospinal fluid (Vf); 2) the passive absorption of CSF (Va); and 3) the unidirectional flow 

of cerebrospinal fluid from the formation to the absorption place. Based on all of the above, 

the CSF (with blood and lymph) is called the third circulation (Cushing, 1914; Milhorat, 

1975; Taketomo and Saito, 1965).  

There is an assumption that the CSF is formed mainly by the secretory activity of choroid 

plexuses in the brain ventricles, and that the majority of the remaining CSF is probably 

produced by the ependyma (Brown et al., 2004; Davson et al., 1987; Johanson et al., 2008; 

McComb, 1983; O'Connel, 1970). It is generally accepted that CSF flows/circulates 
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unidirectional from the brain ventricles to the subarachnoid space with the exchange of 

various substances (more or less manifested) between the CSF and interstitial compartments 

(Davson, 1967; Davson et al., 1987; Johanson et al., 2008; Plum and Siesjö, 1975). There is a 

belief that arachnoid villi of the dural venous sinuses are primarily responsible for the 

drainage of CSF from the subarachnoid space to the cranial venous blood (Figs. 1 and 2) by 

means of a hydrostatic gradient (Brodbelt and Stoodley, 2007; Weed, 1935). Welch and 

coworkers described an open tubular system projecting into the lacuna lateralis or directly 

into the venous sinus (Welch and Friedman, 1960; Welch and Pollay, 1961). The 

ultrastructural studies of these structures differed in their support of these pressure-sensitive 

opening pathway hypotheses (Alksne and Lovings, 1972; Gomez et al., 1974; Jayatilaka, 

1965). Since Shabo and Maxwell (1968) showed that the observed tubular system was 

probably a consequence of tissue histological preparation, and that the endothelium of 

arachnoid villi was, in fact, intact (Shabo and Maxwell, 1968), Tripathi and Tripathi (1974) 

proposed that there are temporary transmesothelial channels which allow the passage of CSF 

in bulk flow from the subarachnoid space to the venous blood (Tripathi, 1974; Tripathi, 1974; 

Tripathi and Tripathi, 1974). In addition, there is a large amount of literature which suggests 

that the significant absorption of CSF (Va) occurs from the subarachnoid space to the 

lymphatic system (Bradbury, 1981; Brierly and Field, 1948; Dandy, 1929; Johnston et al., 

2005; Johnston et al., 2004; Koh et al., 2005; Koh et al., 2006; Weed, 1914). Also, in spite of 

some other proposed places of CSF absorption (choroid plexuses, brain tissue, etc; see later), 

in physiological conditions the dural sinuses are still the main place of CSF absorption. 

According to the above-mentioned data, the CSF physiology conceived this way has been 

presented as the classic hypothesis of CSF hydrodynamics. Other than humans, the same 

hydrodynamics is presented in other mammals, and there is no mammalian species in which 

CSF hydrodynamics is conceived outside the framework of the classic hypothesis. Indeed, the 
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prevalent experimental data which support the classic hypothesis have been observed in 

experimental animals. Today this hypothesis, despite the fact that many aspects of CSF 

hydrodynamics are still insufficiently understood, represents, with minor modifications, a 

common point of reference in scientific papers, review articles and in numerous textbooks, 

and it is offered as an unquestionable fact. The hypothesis is also applied to explain some 

pathological states, such as an increase in intracranial pressure (ICP), the development of 

hydrocephalus, periventricular edema, etc. 

 

2. Cerebrospinal fluid formation 

2.1. The site and the way of cerebrospinal fluid formation 

There is, in relation to the classic hypothesis, little doubt that CSF is primarily, if not 

exclusively, formed inside the cerebral ventricular system. Choroid plexuses are the main site 

of CSF production (Dandy, 1919; Dandy and Blackfan, 1914; Davson, 1967; Davson et al., 

1987; de Rougemont et al., 1960; Johanson et al., 2008; Masserman, 1934; Milhorat, 1987; 

Netsky and Shuangshoti, 1970; Rubin et al., 1966; Spector and Johanson, 1989; Welch, 1963; 

Welch, 1975), and other extrachoroidal sources also participate in maintaining the balance 

(Milhorat, 1987). According to Pollay and Curl (1967), another source of CSF is the 

ependyma lining the ventricles (Pollay and Curl, 1967). As a working hypothesis, it was also 

suggested that the blood-brain barrier is probably a fluid generator, but in a very small volume 

which has no effect on the classic hypothesis (Abbott, 2004; Cserr, 1988). Because it appears 

that CSF is primarily produced by choroid plexuses, the discussion will continue to focus on 

the choroidal epithelium as a generator of CSF secretion. The choroid plexuses are branched 

and highly vascularized structures consisting of numerous villi which project into the 

ventricles (the lateral, the third and the fourth) of the brain (Fig. 3). The endothelium of the 
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choroid plexus capillaries is fenestrated, and the first stage in CSF formation is the passage of 

a plasma ultrafiltrate through the endothelium, which is facilitated by hydrostatic pressure. 

During the second stage of CSF formation, the ultrafiltrate passes through the choroidal 

epithelium at the surface of the choroid plexus, and then into the ventricle. The passage 

through the choroidal epithelium is an active metabolic process which transforms the 

ultrafiltrate into secretion (cerebrospinal fluid) (Brown et al., 2004; Davson et al., 1987; 

Johanson et al., 2008; Pollay et al., 1985; Segal and Pollay, 1977). Fluid secretion in epithelia 

has been found to be dependent on the unidirectional transport of ions, which creates an 

osmotic gradient inducing the movement of water (Figures 2, 3 and 4).  

The basic understanding of this process is incomplete and still speculative. Based on literature 

(Bergsneider, 2001; Brodbelt and Stoodley, 2007; Brown et al., 2004; Davson et al., 1987; 

Johanson et al., 2008; Lyons and Meyer, 1990; Pollay 1977; Spector and Johanson, 1989), it 

could be generally shown that the net osmotic gradient across the choroid plexus is strictly 

regulated by the transport of Na+, Cl-, and HCO3
- ions. The Na+/K+ pump located on the CSF-

facing (apical) membrane pumps Na+ out of the choroid cells, driving down their intracellular 

Na+ concentration (Figure 4). The subsequent Na+ gradient generated on the plasma-facing 

membrane (basolateral membrane) secondarily activates the transport of Na+ into the cell via 

a Na+/Cl- cotransport. Cl- exchange occurs across the apical and basolateral membranes. At 

the basolateral membrane, an active transport Cl-/HCO3
- pump and cotransport Na+/K+/2 Cl- 

mechanism allow the influx of Cl- into the choroid cell. On the apical side, the efflux of 

intracellular Cl- occurs through channels and possibly transports proteins. The main function 

of the basolateral Na+/H+ antiport and Cl-/HCO3
- pumps is to regulate intracellular pH. 

Intracellular HCO3
- generated from the hydration of carbon dioxide, a reaction catalyzed by 

carbonic anhydrase, helps stimulate Cl- accumulation on the Cl-/HCO3
- exchanger in the 

basolateral membrane. Water movement across the choroid epithelium seems to be facilitated 
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and possibly regulated by aquaporin channels. The presence of aquaporins suggests that the 

movement of water across the choroid epithelia is transcellular and not intercellular (Fig. 4). 

The secretory character of choroid plexuses that involves pumps, cotransporters and 

antiporters, ion channels and aquaporins has been confirmed during the past 15 years by the 

application of molecular biological methods (Brown et al., 2004; Johanson, 2008; Kanaka et 

al., 2001; Li et al., 2002; Oshio et al., 2005; Praetorius et al., 2004; Speake et al., 2003; Watts 

et al., 1991; Zlokovic et al., 1993). 

It is necessary to emphasize that those experiments were conducted in «ex vivo» and «in 

vitro» conditions which could significantly differ from those in living organisms. 

Furthermore, it is known that ionic transport takes place in both directions (in and out of the 

cell), but with current technology it is impossible to determine which direction is dominant in 

«in vivo» experiments. Even if there were a dominant direction of active transport from the 

choroid plexus cell to the CSF, experiments on animals cannot reveal whether such transport 

has a sufficient capacity to form the volume of CSF that is predicted by the classic concept 

(Brown et al., 2004). Since even molecular research fails to give clear insight into net ionic 

transport towards CSF, it is difficult to accept the utmost active creation of CSF as an 

undoubted fact.  

 

2.2. Formation rate of cerebrospinal fluid as the main generator of flow  

The rate of CSF formation has been measured in turtles, rats, sharks, rabbits, cats, monkeys, 

dogs, goats, and calves at approximately 1.4; 2.2; 3-4; 8-11; 14-21; 19-35; 35-50; 160; 290 

µl/min, respectively (Cserr, 1971; Heisey et al., 1962; Milhorat, 1989; Orešković et al., 2000; 

Rennels et al., 1990; Tripathi, 1974; Wright, 1972). The rate of CSF formation in humans is 

about 0.3-0.4 ml/min (Cutler et al., 1968; Masserman, 1934; Pollay, 1972; Rubin et al., 1966; 
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Sjöqvist, 1937), which means that the total production per day is about 430-580 ml. Based on 

the total CSF volume of 160 ml in the CSF system, it takes about 6 and a half to 9 hours to 

replace this volume of fluid. 

Since CSF formation is an active process, the CSF formation rate should not be significantly 

altered by moderate changes in intracranial pressure (Cutler et al., 1968; Heisey et al., 1962; 

Pollay et al., 1983; Rubin et al., 1966; Sklar et al., 1980). If CSF pathways are blocked and 

active secretion is independent of hydrostatic pressure, the CSF secretion should continue 

with an accumulation of CSF, an increase in intracranial pressure, the dilatation of the brain 

ventricles, and eventually result in hydrocephalus. In other words, if Vf in pathological 

conditions is the generator of hydrocephalus, it is reasonable to expect that Vf is the main 

generator of CSF circulation in physiological conditions. This assumption has rarely been 

reported in literature (Di Chiro, 1964; Weed, 1914). It is believed that CSF flow is augmented 

by the ciliary action of the ventricular ependyma, vascular, choroidal and respiratory 

pulsations, cardiac systole and diastole and the hydrostatic pressure gradient that exists 

between the CSF and the venous system (Bering, 1962; Bering and Satto, 1963; Bhadelia et 

al., 1995; Di Chiro, 1964; Du Boulay, 1966; Du Boulay et al., 1972; Florez et al., 2006; Lee et 

al., 2004; Mascalchi et al., 1988; Milhorat, 1975; O'Connel, 1970; Ohara et al., 1988; Scollato 

et al., 2008; Thomsen et al., 1990).  

The unquestionable fact is that, in physiological conditions, CSF secretion and absorption 

inside the CSF space are balanced:  

Vf = Va 

This means that the amount of CSF that is secreted (inside the brain ventricles) must be the 

same as the amount that is passively absorbed (into the venous sinuses and/or into the 

lymphatics). Any other relationship will result in an unbalance in the volume of CSF and with 
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time in a pathological process. The same situation is valid for CSF flow (circulation; QCSF). 

Since the secretion and absorption of CSF are positioned in different sites of the CSF system, 

the flow rate (QCSF) between secretion and absorption place must be of the same magnitude, 

so that Vf remains equal to Va; 

Vf = QCSF = Va 

Any changes in active CSF secretion should passively follow CSF flow and CSF absorption 

to maintain physiological relationships in the CSF system. It, therefore, appears logical that 

active CSF secretion is the main generator of CSF circulation if a constant (physiological) 

volume of CSF is to be maintained within the CSF system. Due to this assumption, the other 

above-mentioned reasons for maintaining CSF flow (vascular, choroidal and respiratory 

pulsations, cardiac systole and diastole) are aggravating the effects of the balanced CSF flow 

rather than its activators. Also, it is difficult to conceive that CSF flow/circulation could be so 

accurately regulated by CSF pulsations as these are mostly a consequence of organ functions 

(heart, lungs) that are located outside the CNS and are not sensitive to hydrodynamic changes 

within the CSF system. Based on all this, it seems that CSF formation should, due to its active 

nature, represent a crucial link in the classic hypothesis on CSF hydrodynamics. In light of the 

classic hypothesis, CSF absorption and circulation could almost be regarded as a consequence 

of active CSF formation. Considering the significance of the foregoing statement, the manner 

and methods used to determine CSF formation are of extraordinary importance. 

 

3. Methods of measuring cerebrospinal fluid formation  

A number of methods have been applied in the study of CSF formation; we will mention the 

methods which have been used extensively or for a prolonged period of time, and have been 

largely responsible for recent advances in our understanding of CSF formation. More 
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precisely, a description will be provided of only those methods which are still being used in 

scientific and clinical practice.  

 

3.1. Cerebrospinal fluid drainage  

Cerebrospinal fluid drainage is the simplest and the oldest method of determining CSF 

formation in human subjects and animals. This method involves needle introduction into the 

CSF space and collection of the CSF that outflows spontaneously through the needle (Flexner 

and Winters, 1932; Frazier and Peet, 1915; Greeneberg et al., 1943; Sjöqvist, 1937; Weed, 

1914). At the beginning a large amount of CSF escapes and it is necessary to wait for a 

balanced outflow of CSF before the CSF formation rate (Vf) can be determined by measuring 

the CSF volume in time (ml/min). To obtain reliable Vf values, CSF absorption should be 

prevented; otherwise CSF formation is reduced by the rate of CSF absorption. CSF absorption 

is prevented by carrying out CSF collection under negative CSF pressure. According to a 

modification of this method, a decline in CSF pressure is determined after removing a certain 

volume of the CSF and thereafter measuring the time needed for the pressure to revert to the 

initial level. The time measured like this (in minutes) is divided by the amount of the removed 

CSF (in milliliters) in order to obtain the rate of CSF formation (ml/min). Determination of 

the CSF formation rate under negative pressure goes completely against this method (see 

below). 

 

3.2. Radiographic method  

The radiographic method (Deck and Potts, 1969; Potts, 1967; Potts and Bergland, 1969; Potts 

et al., 1971) applied in dogs and in human subjects is based on the introduction of air and 
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contrast materials into the lateral brain ventricle, which results in a visible difference in the 

level between the air and the CSF. Before air is injected into the brain ventricle, an equivalent 

quantity of CSF is removed. CSF formation compresses the air, which results in a shifting of 

the air-CSF level. By knowing the cross section area of the brain ventricle at the site of the 

shift, and by measuring the time of shifting of the air-CSF level, it is possible to calculate the 

CSF formation (ml/min). This method can also be used to measure CSF formation in the way 

that the CSF is continuously extracted from the brain in an amount that does not cause a 

significant shift in the air-CSF level. In other words, the CSF that has been removed 

represents the CSF that has been formed. The validity of the results obtained using both the 

first and the second method above is doubtful due to air absorption from the CSF system, with 

an additional problem while implementing the first method related to the determination of the 

exact cross section area.   

 

3.3. Collection of new CSF on the choroid plexus surface  

Collection of new CSF on the choroid plexus surface (de Rougemont et al., 1960) was 

performed in cats by surgical access to the brain ventricles and by lowering a glass pipette to 

make contact with the plexus which had been covered with pantopaque oil. Under such 

circumstances, the new CSF enters the glass capillary and may be collected and measured, 

which demonstrated the role of choroid plexuses in the secretion of CSF (ml/min). It is 

appropriate to point out that, in addition to the unphysiological conditions imposed by direct 

exposure of the choroid plexus, the technique of collecting choroidal fluid from under oil is 

questionable since it has been shown that pantopaque is a toxic agent which produces acute 

ventriculitis and inflammatory changes in the choroid plexuses following intraventricular 

administration (Clark et al., 1971). 
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3.4. Micropuncture of the principal vein of the choroid plexus  

Micropuncture of the principal vein of the choroid plexus (Welch, 1963) was developed in 

rabbits and is based on the idea that an increase in hemoglobin and hematocrit concentrations 

in the venous blood of the choroid plexuses occurs after blood flow through the choroid 

plexus and water loss (CSF secretion). The comparison of hematocrit or hemoglobin 

concentrations of choroidal venous and mixed arterial blood should give an index of the CSF 

secretion rate. If blood flow is known, the rates of CSF secretion can be calculated using a 

derived equation for this case (Welch, 1963; Welch, 1975). However, there are major errors in 

this technique for estimating choroidal blood flow, and the assumption that the hematocrits of 

aortic and choroidal blood are equal is probably unjustified (Cserr, 1971). 

 

3.5. Extracorporeal perfusion of the choroid plexus 

Extracorporeal perfusion of the choroid plexus (Pollay et al., 1972) was carried out by the 

rapid removal of the brain of a freshly sacrificed sheep, taking special care to preserve the 

vessels at the base, which allowed a cold saline infusion into the internal carotid artery within 

10 minutes of decapitation. It was possible to perfuse the choroid plexus by ligation of the 

carotid above the anterior choroidal artery and cannulation of the internal cerebral vein. The 

CSF secretion was estimated based on the change in hematocrit between the inflowing and 

outflowing fluid and the rate of outflow, and was calculated the same way as in the method of 

micropuncture of the principal vein of the choroid plexus. Almost certainly, the 

unphysiological state of the open evacuated ventricle renders such observations as above 

invalid. Also, the same objections that were raised regarding the micropuncture of the 

principal vein of the choroid plexus should be taken into account. 
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A critical appraisal of the above mentioned methods on humans and different experimental 

animals as well as an elaboration of their disadvantages are the reason why these methods are 

practically no longer in use. It should, however, be emphasized that the results obtained by 

those methods played a pivotal role in the acceptance of the classic hypothesis of CSF 

formation, and had a critical impact on this way created understanding of the site of CSF 

formation (brain ventricles/choroid plexuses) and of the active (secretory) character of CSF 

formation itself.  

 

3.6. Magnetic resonance imaging method 

Magnetic resonance (MR) is a noninvasive imaging technique that allows for an evaluation of 

the direction and velocity of blood throughout the blood vessels (Bradley et al., 1984; 

Bucciolini et al., 1987; Von Schulthess and Higgins, 1985). Since the aqueduct of Sylvius can 

be considered a CSF vessel, about 15 mm in length and 1-2 mm in width, that connects the 

third and the fourth brain ventricles (Brinkmann et al., 2000; Flyger and Hjelmquist, 1957; 

Longatti et al., 2007; Mascalchi et al., 1988), this technique has also been applied to 

aqueductal CSF flow (Bradley et al., 1986; Brinkmann et al., 2000; Mark and Feinberg, 1986; 

Mascalchi et al., 1988). The aqueduct is a suitable location for the characterization of CSF 

flow since it is a narrow structure, which results in a higher velocity (several cm/s) than, for 

example, in the third ventricle. Because the aqueduct has a constant diameter over a certain 

length, a rather constant flow pattern is present as opposed to, for example, the foramina of 

Monro where irregular flow patterns may be encountered. Cardiac cycle-related cerebral 

blood volume variations produce bidirectional oscillatory movement of CSF within the 

aqueduct (Barkhof et al., 1994; Bradley et al., 1986; Florez et al., 2006; Greitz et al., 1993; 

Lee et al., 2004; Luetmer et al., 2002; Ohara et al., 1988). During systole, the net inflow of 
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blood increases the intracranial volume and induces craniocaudal (systolic) CSF movement. 

During diastole, the net outflow of blood decreases the intracranial volume and promotes 

caudocranial (diastolic) CSF movement (Fig. 5). Since all of the CSF is produced in the 

cerebral ventricles and absorbed into the arachnoid granulations or lymph, there must be a net 

outflow (CSF flow/circulation) of CSF through the cerebral aqueduct (Vf = Qcsf = Va). With a 

quantitative MR flow measurement method, an estimate of this net flow can be calculated as 

the difference between the integrated CSF inflow (diastolic) and outflow (systolic) over one 

cardiac cycle, representing the production of CSF (Vf; Forner et al., 2007; Gideon et al., 1994; 

Thomsen et al., 1990).  

However, in articles on the subject of hydrodynamics in the aqueduct of Sylvius, the 

expression for CSF flow is used in many situations without an explanation and/or in the 

wrong/false context, as for example: average CSF flow, mean CSF flow, maximal systolic 

and diastolic CSF flow. Such use of terminology for CSF flow leads to confusion and the 

misunderstanding of CSF hydrodynamics. Due to the classic hypothesis of CSF 

hydrodynamics, CSF flow is used only in the case when it represents CSF circulation. 

By definition of CSF hydrodynamics, CSF flow (unidirectional-craniocaudal) in the aqueduct 

of Sylvius is CSF volume that passes through the aqueductal cross-sectional surface during a 

defined period of time (ml/min, or m3/s in SI units; Figure 5). Because of the bidirectional 

oscillatory movement of CSF (see above), only the integrated difference between systolic and 

diastolic CSF movement in ml per unit of time (ml/s; l/day; ml/cardiac cycle) represents the 

CSF flow. Anything else cannot be called CSF flow. Now that we have defined what CSF 

flow (circulation) is in the aqueduct of Sylvius, we may state the literature (Table 1) used to 

get the values of the formed CSF from the measured CSF flow; also, we calculated them from 

the data available for CSF velocity.  
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Actually, the determination of CSF formation from the CSF flow rate is based on a relatively 

simple equation used to calculate the flow (Figure 5): 

Qcsf = Aaqu vcsf   

where: 

Qcsf = CSF flow (m3/s) 

Aaqu = cross section area of the aqueduct of Sylvius (m2) 

vcsf = difference between integrated CSF velocity in cranial and caudal direction (m/s) 

When CSF velocity through the aqueduct is measured by MR methods, and information about 

the aqueduct diameter is provided, there is a possibility to calculate Vf. Thus, since  

Vf = Qcsf  

then  

Vf = Aaqu vcsf  

The area (A) of the aqueduct can be presented as: 

A = r2

where r = d/2 and the diameter of the aqueduct is assumed to be 2.0 mm (Brinkmann et al., 

2000; Flyger and Hjelmquist, 1957; Longatti et al., 2007), and thus the calculated results are 

shown in Table 1. 

In Table 1 it is evident that the CSF formation (Vf) obtained in only one study (Tab. 1; No. 3) 

was within the limits of physiological formation (0.3 – 0.4 ml/min). In two studies (Tab. 1; 

Nos. 2 and 5), calculated CSF formation was zero, and in the remaining studies Vf values 
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were higher than the values measured using the other methods (Cutler et al., 1968; Lorenzo et 

al., 1970; Masserman, 1934; Pollay, 1972; Rubin et al., 1966; Sjöqvist, 1937). It is important 

to emphasize that in reality these differences are even greater considering that the choroid 

plexus of the fourth brain ventricle is not included in the study using the MR imaging method 

to determine Vf as it is outside the field of measurement. This is why it is necessary to correct 

the obtained values in order to get the total rate of CSF formation. It has been found (Bering 

and Satto, 1963; Flexner and Winters, 1932; Welch, 1963) that the choroid plexus of the 

fourth ventricle weighs about 25 per cent of total choroid plexuses mass. If the assumption 

were made that the amount of fluid formed from a single plexus of any individual animal is 

approximately a direct function of the plexus weight, then an additional 1/4 of CSF volume 

should be added to obtain the exact rate of CSF formation (corrected Vf; Table 1). Thus 

corrected values are (Tab. 1. except for Nos. 2 and 5) approximately 1.5 - 3-fold higher than 

the values reported in the literature so far (Cutler et al., 1968; Lorenzo et al., 1970; 

Masserman, 1934; Pollay, 1972; Rubin et al, 1966; Sjöqvist, 1937). Such significant deviation 

in Vf determination within the MR imaging method itself (from 0 to 1.04 ml/min) and the 

deviation in relation to other methods are probably the consequence of various techniques 

being used to measure the CSF flow although the values should in both cases be the same 

regardless of the different techniques used. Phase-contrast magnetic resonance (MR) imaging 

is mainly used in cardiovascular imaging for obtaining quantitative information on blood 

flow. Some error in measurement is inevitable due to the technical limitations of this method, 

and for blood flow assessment it is estimated to be around 10% (Hoeper et al., 2001; Lotz et 

al., 2002). It is much more demanding to perform a precise measurement of CSF flow through 

the mesencephalic aqueduct. Despite the use of the most sophisticated equipment, a 

significant inaccuracy is found in measurements due to the nonlinearity of the gradients, eddy 

currents and partial volume effects (Barkhof et al., 1994; Henry-Feugeas et al., 1993; Lee et 
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al., 2004). This can be clearly seen (see Table 1) if the results, which differ in range from 0 to 

1.04 ml/min, are compared. 

Regrettably, in many other studies where CSF movement in the aqueduct of Sylvius has been 

examined in physiological conditions by different MR imaging techniques, the obtained 

results did not allow presentation of the rate of CSF formation (Vf) neither from reported flow 

values nor from the CSF velocity (Baledent et al., 2006; Barkhof et al., 1994; Florez et al., 

2006; Kim et al., 1999; Lee et al., 2004; Luetmer et al., 2002; Mase et al., 1998; Schroeder et 

al., 2000; Scollato et al., 2008; Stahlberg et al., 1989). The reason for this lies in the fact that 

attempts have been made to diagnose pathologic changes by means of other, more easily 

measurable hydrodynamic parameters in the aqueduct of Sylvius (see above).  

MR imaging is a noninvasive, highly sophisticated method and, when used in animals, is a 

rather expensive and limited method based on the magnitude of the animals' aqueduct 

(Brinkmann et al., 2000). On the other hand, as CSF formation, circulation and absorption are 

mainly investigated on experimental animals, the perfusion method of CSF spaces remains 

the method of choice for this purpose.  

 

3.7. Perfusion method of cerebrospinal fluid spaces  

Much of our recent understanding of CSF hydrodynamics comes from the quantitative 

utilization of the technique of ventriculo-cisternal perfusion. This method is widely accepted 

and represents a basic tool by which CSF physiology has been studied. Mostly thanks to the 

results of experiments obtained by this method, a general hypothesis of CSF hydrodynamics 

has been confirmed. Although this method is used extensively in animals, its clinical usage 

has been very limited as the procedure is invasive. This method was developed by 

Pappenheimer et al. (1962) and Heisey et al. (1962) on a goat and has been considered a 
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precise and physiological method for studying cerebrospinal fluid secretion (Lorenzo et al., 

1970). Perfusion is performed from the lateral brain ventricle to the cisterna magna 

(ventriculo-cisternal perfusion; Figure 6) by a mock CSF that contains a marker (inulin, 

albumin or dextran). Determination of CSF formation is based on the assumption that marker 

dilution in perfusate occurs due to CSF secretion within the brain ventricles, implying that 

higher CSF secretion increases marker dilution. Apart from ventriculo-cisternal perfusion, a 

series of modifications to this method has been presented in the literature; they differ only in 

terms of the entry and exit sites of the perfusate in the CSF space (e.g., ventriculo-ventricular 

perfusion; ventriculo-aqueductal perfusion, ventriculo-lumbar, etc.). Since all these methods 

are founded on the same hypotheses as ventriculo-cisternal perfusion, a detailed presentation 

of only the ventriculo-cisternal perfusion method is sufficient. 

Perfusion of the brain ventricles from the lateral ventricle to the cisterna magna begins with 

introducing one metal cannula into the lateral brain ventricle (inflow cannula), and the second 

into the cisterna magna (outflow cannula). The inflow cannula is attached to a T-shaped 

connector, and for the purpose of measuring CSF pressure, on one side it is connected via 

polyethylene tubing to a manometer (polygraph), and on the other side to the syringe 

containing artificial fluid with the diluted marker. The syringe is fixed on the perfusion pump 

that allows the artificial fluid with the marker (inflowing perfusate) to flow into the lateral 

ventricle at a constant rate of perfusion (ml/min). The outflowing cannula is connected to a 

plastic tube with the outflowing perfusate from the brain ventricles and the cisterna magna 

that is collected in test tubes (Figure 6). Perfusion is performed under a certain hydrostatic 

pressure that can be adjusted by setting the end of the outflowing polyethylene tubing above 

(positive pressure) or below (negative pressure) the external auditory channel whose level is 

assumed to be the zero value of the hydrostatic pressure. 
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The method itself is indirect because the rate of CSF formation is calculated by marker 

dilution in the outflowing perfusate. Equations for the calculation of CSF formation founded 

on test substance dilution were elaborated by Heisey et al. (1962) on the basis of the known 

principle for calculation of the glomerular filtration quantity by means of inulin clearance in 

renal physiology. 

However, certain preconditions must be fulfilled to use this method and calculate CSF 

formation. Above all, in order to apply the analogy from renal physiology, it is necessary that 

CSF behaves in accordance with the classic hypothesis of secretion, circulation and 

absorption of CSF (like the third circulation), which at the same time represents the pivotal 

hypothesis that is the origin of all the other derived hypotheses. Almost all of the lost marker 

from the CSF can be accounted for by the bulk absorption distal to the fourth ventricle. Any 

dilution of the marker during passage through the ventricles should result from newly formed 

CSF. All CSF should be produced within the brain ventricles and absorbed outside in 

subarachnoid space. As a marker, a substance can only be used that is otherwise absent from 

the CSF. If CSF is absorbed within the brain ventricles, the measurement of the formed CSF 

is reduced by the amount of the CSF absorbed within the ventricles. Provided that these 

conditions are fulfilled, the following equation for calculating CSF formation can be applied:  

Vf = Vi x (Ci – Co)/Co 

where: 

Vf = rate of CSF formation (ml/min) 

Vi = rate of inflow perfusate (ml/min) 

Ci = concentration of the marker in inflow perfusate (mg/ml) 

Co = concentration of the marker in outflow perfusate (mg/ml) 
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Although the classic hypothesis of net CSF formation is mostly due to the development of the 

widely used ventriculo-cisternal perfusion method for the measurement of Vf, the mentioned 

assumptions have not been critically evaluated. However, it is known that a marker can pass 

from the CSF into the brain parenchyma (Bergsneider, 2001; Curran et al., 1970; Davson et 

al., 1987; Fenstermacher et al., 1974; Orešković and Bulat, 1993), and that inulin enters 

rapidly into perivascular CNS spaces, reaches a very large surface area of capillaries and, by 

slow diffusion across microvascular walls, reaches the bloodstream and is rapidly eliminated 

into the urine (Vladić et al., 2009). Due to the fact that the marker passes from the perfusate to 

the adjacent tissue, correction factors were used to calculate Vf (Cserr, 1971; Curran et al., 

1970; Heisey et al., 1962; Pappenheimer et al., 1962). During ventriculo-cisternal perfusion 

with the perfusate containing 3H-water and blue dextran (m.w. 2x106), it was observed that 

the increase of hydrostatic pressure in the perfusate from negative (-10 cm H2O) to positive 

(20 cm H2O) values had opposite effects on these two substances: the augmentation of blue 

dextran and a decrease in 3H-water concentration occurred in the perfusate (Orešković and 

Bulat, 1993). If we take into account that it was demonstrated that a significant bulk 

absorption of  3H-water (Bulat et al., 2008) occurs within the brain ventricles, all these losses 

of the marker from the perfusate and the changes in marker concentration caused by loss of 

water should give a false calculation of net CSF formation. Furthermore, the higher rates of 

CSF formation are calculated at lower rates of ventriculo-cisternal perfusion than at higher 

perfusion rates (Orešković et al., 2003), indicating that an inherent defect in the method is 

present, probably caused by a different mixing of the marker and the native CSF at a different 

perfusion rate. Also, the CSF formation rate measured by prolonged ventriculo-cisternal 

perfusion declines spontaneously with time for a reason that remains obscure, and this 

reduction may be an artifact of the method (Martins et al., 1977). The results registered in 

sacrificed cats showed persisting CSF formation (between 3 and 5 µl/min) 80 minutes after 
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the animals were sacrificed (Orešković et al., 2008). As CSF could not possibly form in dead 

animals, it is possible that an error in the method is in question. A potential artifact of the 

method was also observed in experiments performed in a plastic cylinder. In this method 

(Orešković et al., 2008) the absorption of the marker into the surrounding tissue was 

prevented, all “CSF was secreted” above the collection site, “CSF absorption” did not occur 

before this site and “CSF was formed” by simulating CSF formation by means of an infusion 

pump. The calculated results of “CSF formation” by Heisey et al. (1962) obtained under the 

same circumstances as the result obtained through simulation by means of the pump, were 

significantly higher although they should be the same in both cases. If this occurred in dead 

animals and in the plastic cylinder, a reasonable question arises as to what perfusion itself 

does in live animals.  

To summarize, of utmost importance in this indirect method is that the concentration of the 

marker substance can be changed only by newly formed CSF if we are to obtain the correct 

result of the CSF formation rate (Vf) by using the equation of Heisey et al. (1962). Since a 

change of the marker substance is not caused only by newly formed CSF, but also by 

absorption of the marker substance into the surrounding ventricular tissue, and inflow 

(Bering, 1952) or outflow (Bulat et al., 2008) of water inside the brain ventricles, the method 

itself will always (e.g. when Vf is studied in dead and alive animals, “in vitro” experiments, 

during perfusion of other parts of the CSF system, such as the spinal cord, etc.) give some 

kind of result by which the CSF formation rate could be calculated. For these reasons, all the 

results concerning CSF secretion obtained by the perfusion method should be reevaluated, 

both the results showing an increased secretion (in papillomas and choroid plexus 

carcinomas) or a decreased secretion (for example, after the application of carboanhydrase 

inhibitors). 

 



 25

3.8. Direct aqueductal method for measuring CSF formation 

Due to the above mentioned problems with the indirect method, a direct method for Vf 

calculation has been developed on cats by draining the CSF out of the aqueduct of Sylvius. 

This method is in fact a modification to the drainage method of the aqueduct of Sylvius by 

Flexner and Winters (1932). The main problem with the Flexner and Winters (1932) method 

was the high rate of oscillation of active aqueduct flow. The period of active flow from the 

aqueduct (10 µl/min) was followed by a 30 minute cessation period. It seems that the main 

reason for this oscillation was the manner of blocking the aqueduct of Sylvius. Actually, the 

blockade was made using a distended balloon positioned in the fourth ventricle. The pressure 

within the balloon was two times higher than the physiological one (about 160 mm H2O) and 

this unphysiological pressure, by influencing the sensitive adjacent tissue, probably caused a 

significant disturbance in the CSF hydrodynamics and brain blood flow surrounding the 

balloon.  

To avoid the mentioned problems, a method was developed on a cat, in which the aqueduct of 

Sylvius was blocked by a plastic cannula without increased pressure on the adjacent tissue 

(Orešković et al., 2002). Surgical reconstruction was done so that the CSF system was 

completely protected against any uncontrolled influences of atmospheric pressure and CSF 

leakage from subarachnoid and ventricular spaces. Thus, the relationship between the 

ventricular and subarachnoid CSF pressure was established in a physiological range without a 

transmantle pressure gradient which is a crucial advantage of the model (Klarica et al., 2009). 

Actually, in case of pathway obstruction, the absence of a transmantle gradient would not 

cause the possible CSF flow from the ventricles through the brain tissue into the subarachnoid 

space, as was suggested by Milhorat (1989). Therefore, if CSF is mainly formed inside the 

brain ventricles and absorbed in the subarachnoid space, it has to circulate at a physiological 

CSF pressure through the aqueduct of Sylvius or, as is the case in this model, through the 
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plastic cannula positioned in the aqueduct. The direct (visual) observation of the CSF outflow 

throughout the external end of the cannula (adjusted to the physiological CSF pressure) 

should represent CSF formation (Figure 7). The collected volume of CSF divided by the time 

of collection therefore represents the rate of CSF formation (Orešković et al., 2002). But 

during the examined period, CSF permanently pulsated near the external end of the plastic 

cannula, the flow of the CSF volume (circulation) did not exist and not a single drop of CSF 

was observed in the collection tube in any of the investigated animal. These results closely 

corresponded to some results observed by the MR imaging technique on humans (Bradley et 

al., 1986; Enzmann and Pelc, 1991) and the results obtained by a similar method on cats 

(Orešković et al., 2001). To test the sensitivity of the method, i.e. check if the physiological 

CSF formation rate can be measured by this method, the “CSF secretion” was under the same 

conditions experimentally imitated by infusing the artificial CSF into the lateral brain 

ventricle by means of an infusion pump (Figure 7). The infusion rate (“CSF secretion”) was 

adjusted according to the limits of the expected rate of CSF secretion (13 µl/min) suggested 

by the classic hypothesis (Flexner and Winters, 1932; Orešković et al., 2000; Plum and Siesjö, 

1975; Pollay, 1975; Pollay, 1977; Welch, 1963). Under these experimental conditions, CSF 

formation could be represented as: 

Vf = Vo - Vi 

Since no difference between the rate of experimentally “secreted CSF” (infused volume) and 

the rate of the outflowing perfusate (Vo) was observed, i.e. as much “CSF was secreted” into 

the brain ventricles, that much of the “net CSF formed” was measured, obviously CSF 

formation did not exist. 

Vf =13 µl/min - 13 µl/min = 0 
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In this way it was also demonstrated that anything that is produced within the brain ventricles 

(13 µl/min by pump) is accurately measured by this method (13 µl/min outflow rate).  

When the CSF formation was measured simultaneously by this direct and indirect perfusion 

method under the above mentioned conditions (Orešković et al., 2005), the rate of CSF 

formation calculated by Heisey et al. was about 5 µl/min (the same result was also obtained in 

cats by applying ventriculo-ventricular perfusion in isolated ventricles; Orešković et al., 1991) 

although Vf does not exist (Vf = 0). The calculated rate of CSF formation was obviously not 

the consequence of CSF formation within the brain ventricles, but probably the consequence 

of the absorption of the marker into the surrounding tissue (see Perfusion method of 

cerebrospinal fluid spaces).  

Could this paradoxical observation be explained and incorporated into the classic hypothesis 

of the CSF hydrodynamics? 

 

4. Criticism of the classic hypothesis of cerebrospinal fluid formation 

Despite the generally accepted CSF formation hypothesis where CSF is actively produced 

(secreted) mainly within the brain ventricles by choroid plexuses, there are experimental 

results which are not consistent with this hypothesis. Development of this classic hypothesis 

was crucially affected by early experimental studies done by the pioneers of CSF physiology 

research, Weed (1914) and especially Dandy (1919). Weed (1914) concluded that the usage of 

the method of ventricular catheterization provides evidence of a more direct nature that the 

choroid plexuses of the cerebral ventricles are the generators of cerebrospinal fluid.  

Yet, out of the various observations that have come about as proof that the choroid plexuses 

actively form (secret) CSF, none has influenced modern thinking more than Dandy's crucial 
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experiment (1919) concerning the consequences of choroid plexecotomy. If the choroid 

plexus of one lateral ventricle was removed, and if foramina of Monro of both lateral 

ventricles were obstructed, it was reported that the ventricle containing a choroid plexus 

would dilate and the ventricle lacking a choroid plexus would collapse. This observation led 

Dandy to conclude that the choroid plexuses were the sole source of CSF secretion. This 

experiment, besides being the source of CSF formation and its active nature (secretion), still 

points to a few more facts that are crucial in terms of forming a general hypothesis of CSF 

hydrodynamics. If the obstructed lateral ventricle containing a choroid plexus dilated, it is 

obvious that CSF would not be absorbed inside the brain ventricles. If absorbed outside the 

brain ventricles, the CSF should flow to the place of CSF absorption. When there is an 

obstruction of the CSF system between the place of CSF secretion and the place of CSF 

absorption, the brain ventricles should, because of the continuity of CSF secretion by the 

choroid plexuses, dilate and produce hydrocephalus. In fact, the whole classic hypothesis of 

CSF hydrodynamics could be postulated and confirmed by this experiment. The problem with 

Dandy's crucial experiment (1919) is that the presented observation was obtained in a single 

dog experiment. If the fact that this experiment has not been able to be reproduced is 

neglected and the obtained results are accepted as fact, the logical consequence of that 

experiment was Dandy's approach to the treatment of hydrocephalus by choroid plexectomy. 

For many years this surgical procedure was the most popular form of treatment for infantile 

hydrocephalus in the United States. However, over decades it became clear that bilateral 

extirpation and/or cauterization of the choroid plexuses invariably failed to benefit the 

patients. Because of universally poor results, choroid plexectomy was abandoned by 

neurosurgeons as a treatment for hydrocephalus, and today it is an operation of historic 

interest only and has no place in the treatment of hydrocephalus. But the failure of choroid 
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plexectomy to cure, or at least ameliorate progressive hydrocephalus was incompatible with 

the thesis that the choroid plexuses are the main source of active CSF formation.  

Beside unsuccessful medical treatment, there are experimental data that have provided 

evidence of extrachoroidal CSF secretion. Thus, for example, attempts to repeat the classic 

experiment by Dandy (1919) were unable to confirm Dandy's finding that the plexectomized 

ventricle collapsed (Hassin, 1924; Milhorat, 1969). Moreover, the lateral ventricle became 

markedly dilated, which indicates that hydrocephalus can occur rapidly and progressively in 

the plexectomized ventricular system and that the choroid plexus is not essential as a source 

of CSF secretion (Milhorat, 1969). Furthermore, when the rate of CSF formation within the 

lateral ventricles, the third ventricle, and the aqueduct of Sylvius were compared in control 

and bilaterally plexectomized animals, the rates in the plexectomized group were found to be 

on average about 70% of the norm (Milhorat, 1975; Milhorat et al., 1971), or CSF formation 

in plexectomized patient remained similar to that in hydrocephalus-free individuals (Milhorat 

et al., 1976). Also, choroid plexectomy was not found to alter the chemical composition of 

CSF, thus indicating, at least, that the sites other than the choroid plexuses can produce a fluid 

whose composition of water, electrolytes, and protein is the same as that of normal CSF 

(Hammock and Milhorat, 1973; Milhorat, 1969; Milhorat, 1975; Milhorat et al., 1976).  

With the development of the endoscopic methods in the mid 90s, new attempts were made to 

cure hydrocephalus using different surgical procedures on the choroid plexuses (Enchev and 

Oi, 2008; Pople and Ettles 1995; Wellons et al., 2002). Although the results of the treatment 

were somewhat better than those using a classic surgical approach, the same problems still 

persisted. The ventricular size was not significantly reduced by choroid plexus coagulation 

and only 35% of patients achieved long-term control without cerebrospinal fluid shunts 

(Pople and Ettles 1995). In another study (Griffith and Jamjoom, 1990), in 48% of the cases, 

shunting was required, which was done from one week to thirteen months after the choroid 
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plexus coagulation. And so, even when the plexus is removed, the development of 

hydrocephalus can still occur. These results show that the role of the choroid plexus in the 

pathophysiology of hydrocephalus is still unclear, that our knowledge of the hydrocephalus 

pathophysiology is still insufficient, and the results clearly confirm the above mentioned 

claims about CSF formation related to the choroid plexuses.  

We must wonder how anybody could, based on those results, consider the choroid plexuses as 

the main site of CSF formation, and whether such contradictory results initiated another 

interpretation of the nature of CSF formation. The answer to the latter question is that they did 

not, and there are, in our opinion, several reasons for that.  

First, the authors of those results did not introduce a significant change in the classic concept 

of CSF hydrodynamics. Rather, they concluded that, although a significant fraction of CSF is 

formed extrachoroidally (across the cerebral endothelium), a considerable volume of CSF is 

formed continuously within the cerebral ventricles and the choroid plexuses contribute to this 

formation. The nature of CSF formation should involve combined processes of ultrafiltration 

and active transport, and the CSF should circulate along CSF pathways until the major sites of 

absorption (arachnoid villi) are reached (Milhorat, 1976).  

Another reason is the understanding that hydrocephalus occurs due to interrupted 

communication (obstruction) between the CSF formation site and the CSF absorption site, 

which was shown in different animal models of CSF pathway obstruction. Thus, for the 

development of hydrocephalus to happen, it is necessary that the CSF is actively formed (by 

secretion) and that the formation occurs before obstruction, which significantly supports the 

classic hypothesis. Although hydrocephalus is not a matter of interest here, in this article, it is 

impossible to avoid discussion on this pathologic state. The etiopathogenesis of 

hydrocephalus is still not well known. For example, it is not clear if obstruction of CSF 
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pathways is so important, and if hydrocephalus may develop only as a result of the 

obstruction of the circulating pathways and in reduction in ability to absorb cerebrospinal 

fluid.  

The most cogent reason for questioning the traditionally accepted relationship of stenosis as 

cause and hydrocephalus as result is that it is relatively common to find a mild degree of 

stenosis in conjunction with hydrocephalus when it is clear that the function of the patency of 

the aqueduct as a conduit for CSF was unimpaired. It is possible that aqueductal narrowing or 

even closure may occur as a result of hydrocephalus and that it may, in the past, have been 

wrongly blamed for being the cause of hydrocephalus, when in fact it only contributed to it in 

the final stages (Williams, 1973). Moreover, Masters et al. (1977) have shown that an 

infection by reovirus type 1 in mice causes hydrocephalus developments in proportion to the 

degree of inflammatory/fibrotic changes within the cerebrospinal fluid pathways. As the 

hydrocephalic state progresses, axial herniation and compression of the midbrain results in the 

appearance of aqueduct stenosis. It was demonstrated that the stenosis of the aqueduct was a 

secondary phenomenon, not causally related to the pathogenesis of hydrocephalus. 

Furthermore, Adeloye and Warkany (1976) have shown that on rats with a zinc-deficient diet 

throughout pregnancy stenosis of the aqueduct can cause hydrocephalus only late in fetal life 

when the aqueductal lumen normally becomes small. Earlier in development, when the 

dysgenesis of the anterior neurospore occurs, the aqueduct is quite capacious and cannot 

obstruct CSF flow. In some animals the aqueduct was deformed but not occluded, and yet 

hydrocephalus was present throughout the ventricular system. Other animal experiments 

using a hypovitaminosis A diet in rabbits (Millen and Woolam, 1958) or a pteroylglutamic 

acid-deficient diet in rats (Monie et al., 1961) also suggested that stenosis of the aqueduct of 

Sylvius was the result of hydrocephalus. Borit and Sidman (1972) reported that in mutant 

mice there was a genetically determined postnatal communicating hydrocephalus which 
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secondarily produced aqueductal stenosis by compression of the mesencephalon. The best 

clinical evidence of secondary aqueductal stenosis was given by Foltz and Shurtleff (1966) 

who found that among 27 patients with communicating hydrocephalus, 12 developed 

secondary aqueductal stenosis or aqueductal occlusion during chronic venticulo-atrial 

shunting.  

It is also not clear if the pressure gradient is often associated with the occurrence of 

hydrocephalus, particularly the acute one, and some authors view it as the fundamental 

mechanism of hydrocephalus development regardless of whether a low gradient (Conner et 

al., 1984; Hakim and Hakim, 1984; Levine, 2008; Penn et al., 2005) or a high gradient is in 

question (Kaczmarek et al., 1997; Nagashima et al., 1987; Smillic et al., 2005). There are, 

nevertheless, some other authors who believe that CSF pressure gradient is not possible 

within the cranium firmly enclosed by bones, mostly because they did not observe such a 

gradient neither in experiments involving animals (Shapiro et al., 1987) nor in patients with 

communicating or non-communicating hydrocephalus (Stephensen et al., 2002).  

Since the data regarding the gradient-related results in literature are so contradictory, the 

question arises as to whether the transmantle pressure gradient is necessary for the 

development of hydrocephalus or some other factors may play an important role in such a 

process with occlusion or the stenosis of CSF pathways. It was shown in cats that 3 weeks 

after the application of kaolin in the cisterna magna with the obstruction of cervical 

subarachnoid space, or the stenosis of the aqueduct with a plastic screw, dilatation of 

ventricles is developed without a rise in the ventricular CSF pressure (Miše et al. 1996). The 

acute experiments show that an occlusion of the aqueduct itself does not cause the rise of CSF 

pressure in isolated ventricles and their dilatation (Klarica et al., 2009). However, during a 

prolonged occlusion or stenosis of the aqueduct, the development of a ventricular dilatation 

probably without an increase in the ventricular pressure should be expected. This idea is 
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supported by the observation that in patients with communicative and non-communicative 

hydrocephalus the transmantle pressure is absent (Stephensen et al., 2002). Furthermore, 

Holtzer and de Lange (1973) observed in some children with communicative and non-

communicative hydrocephalus that after the shunt obstruction the hydrocephalus did not 

progress suggesting that this pathological process was compensated. All of this evidence 

supports the idea that the transmantle pressure gradient may not be necessary or instrumental 

for the development of hydrocephalus, and that some other factors may play an important role 

in the development of that pathological process (see below).  

All of these mechanisms indicate that hydrocephalus develops over a prolonged period. We 

assume that hydrocephalus is essentially a chronic process which may change into its acute 

form under certain conditions (ventricular dilatation with a high CSF pressure) due to the 

appearance of the transmantle pressure gradient. If pathological changes take place along with 

an interruption of communication before the obstruction and they result in a CSF pressure 

increase in the ventricles (e.g. bleeding, infection, a tumour, a cysticercous cyst), this should 

lead to the pressure gradient appearance, an accelerated ventricular dilatation and the 

occurrence of the acute hydrocephalus phase. Previously, Zulch (1958) described many cases 

of arrested hydrocephalus that remained dormant for years, with the aggravation occurring 

only when some other pathological process took place within the cranium.  

The cause of hydrocephalus in the case of diffuse villous hyperplasia of the choroid plexus, 

choroid plexus papilloma or choroid plexus carcinoma remains controversial. It is commonly 

stated that the cause of hydrocephalus is CSF oversecretion. However, other causes are also 

mentioned, such as arachnoiditis, inflammatory ependymitis, and CSF pathway obstruction 

caused by the tumorous mass itself, or by its metastases (metastases are usually observed in a 

cerebello-pontine angle, the third ventricle, the suprasellar region, and the spine: foramen 

magnum, cervical and lumbo-sacral areas) (Akil et al., 2008; Davson et al., 1987; Nagib and 
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O'Fallon, 2000). Vascularity is increased and the enhancement of the choroid plexus 

following an injection of gadolinium is very evident in cases of papillomas (Fujimura et al., 

2004). Inside a carcinoma, areas of necrosis and cystic formations have been observed, and 

the permeability of such a structure is much higher than that of a healthy choroid plexus. 

Thus, the CSF is abnormal in 60% of cases (increased protein levels, xanthochromia or both) 

(Hawkins, 1980). It was also observed in animals that the amount of proteins in the CSF, as 

well as the number of white blood cells, is increased in the case of a choroid plexus tumor 

(Bailey, 1986). Since blood can be found in the CSF, hydrocephalus could develop because of 

subarachnoid scarring (recurrent bleeding from the tumor) (Barber et al., 2008; Davson et al., 

1987; Nagib and O'Fallon, 2000). The ventricle on the side of the lateral ventricular papilloma 

is usually the larger of the two (Davson et al., 1987) – the development of unilateral 

hydrocephalus with the entire CSF pathways patent. Cases of a partial enlargement of only 

one part of the ventricle have also been detected. Pencalet et al. (1998) have shown 25 cases 

of papilloma and 13 cases of choroid plexus carcinoma in children. Hydrocephalus was 

present in 33 patients and poorly correlated with the size, site, and pathological characteristics 

of the tumor.  

Unfortunately, the treatment of such pathological conditions is not satisfactory. In a series of 

24 choroid plexus tumors, a total surgical excision was performed in 20 cases. The 

postoperative mortality was 8% (mortality within one month of surgery), but the overall 

mortality was 25% (Lena et al., 1990).  

Oversecretion of choroid plexus papilloma is shown using the technique of CSF drainage 

(Fairburn, 1960; Nagib and O'Fallon, 2000; Tamburrini et al., 2006), and a “scientifically 

acceptable method” of ventriculo-spinal perfusion (Eisenberg et al., 1974; Milhorat et al., 

1976). In some cases, 400 to 960 ml/day have been collected by external drainage, under the 

conditions of pressure of 5 cm H2O (Fairburn, 1960). By using CSF drainage, it was 
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determined that more than 2 l of CSF a day could be drained preoperatively (Nagib and 

O'Fallon, 2000; Tamburrini et al., 2006). However, after a complete tumor resection, in most 

cases it was observed (cca 2/3 of the cases, according to the literature data) that the CSF 

extensively drains even more than 72 hours after the operation, and because of this it was 

necessary to insert a shunt (Lena et al., 1990; Nagib and O'Fallon, 2000). Tamburrini et al. 

(2006) have shown that, even after a choroid plexus resection, the CSF drains at the rate of 

1000 ml/day. The progression of hydrocephalus after a complete resection of the tumorous 

tissue has also been observed, so a shunt had to be placed inside both ventricles, even 3 years 

after the surgery (Husag et al., 1984). In 9 out of 33 children (Pencalet et al., 1998), a 

ventriculoperitoneal shunt was required after tumor excision, which questions the notion that 

cerebrospinal fluid oversecretion is the only cause of hydrocephalus. 

Hirano et al. (1994) and Britz et al. (1996) measured the daily CSF production rate by way of 

external drainage (collection of ventricular CSF). This procedure can cause fluid and 

electrolyte imbalance (due to the large amount of fluid loss). It is believed that the creation of 

CSF determined by a method of drainage in these cases has flaws, like the fact that a decrease 

in pressure during drainage creates new hydrostatic conditions inside the cranium, and 

therefore an inability to determine the volume of CSF that is absorbed. By using the 

ventriculo-spinal perfusion in children (125I albumine), it has been detected that the creation is 

4-5 times larger than normal (1.43 ml/min), while the calculated absorption was within 

normal range, 0.59 ml/min (Eisenberg et al., 1974). The normal value is the result which 

Cutler et al. (1968) have observed in children without CSF pathway obstruction, and in those 

that had communicating hydrocephalus, obtained by ventriculo-lumbar perfusion (creation 

0.30 ml/min; absorption 0.61 ml/min). In this method, the quantity of CSF secretion is 

determined based on the dilution of the marker substance (see section 3 - Methods of 

measuring cerebrospinal fluid formation). Taking into account that the pathologically 
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changed choroid plexus is a structure more permeable for large molecules (more proteins in 

the CSF), it is possible that a part of the marker substance is lost from the CSF, in a larger 

amount than in patients with a healthy choroid plexus, thus providing the illusion of 

hypersecretion. On the other hand, an increased amount of the proteins inside the CSF 

increases the colloid-osmotic CSF pressure, which has to lead to increased water withdrawal 

from the interstitium and the cerebral capillaries. This could explain why more CSF is being 

formed during external drainage under the lower hydrostatic pressure, in the case of a choroid 

plexus papilloma.  

If we add to the above mentioned, and also relevant to papilloma tumors, a discussion in 

section 4 - Criticism of the classic hypothesis of cerebrospinal fluid formation related to 

choroid plexectomy, it becomes clear that in accordance with the explanation of the 

hydrocephalus, pathophysiology in these conditions does not exist, and that most studies 

presented here do not fit into the classic CSF secretion, circulation and absorption hypothesis. 

Moreover, numerous hypotheses of hydrocephalus development are mentioned in today's 

literature, which are not in accordance with the classic hypothesis. For example, some other 

factors, such as an increase in the ventricular CSF pulse pressure (Di Rocco et al., 1978), an 

impairment of systolic-diastolic displacement of the CSF with the development of 

periventricular ischemia (Miše et al., 1996), cardiac disease (Luciano and Dombrowski, 

2007), changes in arterial pulsations (Greitz, 2004 and 2007) and venous compliance 

(Bateman, 2000 and 2003) may play an important role in the development of that pathological 

process. 

The third reason why the choroid plexuses are considered to the main site of formation should 

be the fact that the observations mentioned so far were accompanied by a significant number 

of concurrent studies that pointed to CSF formation by the choroid plexuses (Dandy, 1919; de 

Rougemont et al., 1960; Pollay et al., 1972; Weed, 1914; Welch, 1963), as was extensively 
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stated in the section Methods of measuring cerebrospinal fluid formation. Despite the 

significant unphysiological conditions under which those experiments were mostly 

performed, the results that indicated CSF formation by the choroid plexus and the reasons 

stated above helped keep the choroid plexus as the main place of CSF formation. Even more, 

until today the whole mechanism of CSF secretion by the choroid plexuses was proposed and 

elaborated (Figures 2, 3 and 4; see section The site and the way of cerebrospinal fluid 

formation), and the secretory character of the choroid plexuses was confirmed by the 

application of the molecular biological methods during the past two decades (Brown et al., 

2004; Johanson, 2008; Kanaka et al., 2001; Li et al., 2002; Oshio et al., 2005; Praetorius et al., 

2004; Speake et al., 2003; Watts et al., 1991; Zlokovic et al., 1993). 

Furthermore, a significant characteristic of CSF formation is, according to the classic 

hypothesis, its active nature (CSF secretion). Since CSF formation is an active process, the 

rate of CSF formation should not be altered following changes in intracranial pressure (ICP). 

Several authors have tried to establish a relationship between CSF formation and ICP. From 

the data obtained during the CSF perfusion technique, it was concluded that the alteration of 

ICP had little or no significant effect on CSF formation (Artru, 1988; Bering and Satto, 1963; 

Cutler et al., 1968; Heisey et al., 1962; Rubin et al., 1966; Sklar et al., 1980). However, other 

studies have demonstrated that a change in ICP interferes with the rate of CSF formation 

(Calhoun et al., 1967; Flexner, 1933; Frier et al., 1972; Hochwald and Sahar, 1971; Martins et 

al., 1977; Orešković et al., 2000; Weiss and Wertman, 1978) and that the rate of CSF 

formation declines as pressure in the CSF system is elevated. These results, obtained from 

different experiments on animals, cannot be explained by the classic hypothesis of CSF 

formation since Vf is considered to be active and energy consuming, and should bear on ICP, 

especially because a force under + 30 cm H2O is not sufficient to affect an active process 

(Pollay et al., 1983). In other words, it seems that CSF formation may occur as a result of a 



 38

passive process rather than an active one, and that the volume of CSF is regulated by 

hydrostatic pressure (Bulat, 1993; Orešković et al., 2000; Orešković et al., 1991). 

It should also be pointed out that experimental results, which suggest a significant portion of 

CSF formation outside the brain ventricles were obtained (Di Chiro, 1964; Orešković et al., 

1991; Sato et al., 1972; Sato et al., 1971; Sato and Bering, 1967). On the basis of these 

studies, it may be concluded that CSF is formed within the entire fluid system and that it is 

not mainly related to the brain ventricles and consequently to the choroid plexuses. Included 

with the indirect evidence consistent with this view is also the observation that CSF is formed 

within the neural tube of fetal pigs (animal) (Weed, 1917) and humans (Kappers, 1958) before 

the choroid plexuses anlage appears, and the observation that CSF is formed within the 

ventricular cavities of some lower vertebrates that lack choroid plexuses (Cserr, 1971; 

Kappers, 1958; Oppelt et al., 1964). Furthermore, in some sharks, where the choroid plexuses 

are present in the brain ventricles, no open communication has been found between internal 

and external CSF. In spite of the existence of the choroid plexuses in isolated brain ventricles 

there is no tendency for the dilatation of the brain ventricles in physiological conditions 

(Kappers, 1958; Oppelt et al., 1964). If we add to this the results demonstrating that CSF 

formation within isolated brain ventricles in cats is, at physiological pressure, in balance with 

CSF absorption (Orešković et al., 1991;) and that, under physiological conditions in free 

moving cats, CSF absorption within the ventricles takes place, to a significant extent, also in 

an open ventricular system (Bulat et al., 2008), it may be expected that a significant and 

constant exchange occurs between CSF and the surrounding ventricular tissue. 

At the end we should ask, if choroid plexuses are not the place of CSF secretion, what is the 

role of the brain plexuses? This is not an easy question to answer. However, we can say with 

certainty that the function of the choroid plexuses is not of vital significance to a living 

organism. Namely, if the choroid plexuses are removed, the patient will continue to live 
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without disturbance (Enchev and Oi, 2008; Milhorat et al., 1976; Pople and Ettles 1995; 

Wellons et al., 2002). We also know that it is a highly vascularized structure immerged into 

the brain ventricles' CSF, with an expressed active metabolic nature (Brown et al., 2004; 

Johanson, 2008; Kanaka et al., 2001; Li et al., 2002; Oshio et al., 2005). Based on all of this, 

it can be presumed that (in terms of evolution) by bringing the blood vessels in close contact 

(immersing into) with CSF this could accomplish a significant and fast exchange of matter 

between the blood and the CSF, and vice versa, with the purpose of supporting the 

maintenance of the biochemical balance of the CSF as an important physiological medium for 

normal CNS functioning. This theory is also supported by a rather old idea that the choroid 

plexuses (undoubtedly a secretory active tissue) participate in CSF absorption in a manner of 

two way traffic (Brightman, 1968; Cserr, 1971; Dodge and Fishman, 1970; Foley, 1921; 

Hassin, 1924; Wright, 1972). After all, it could be said that everything that has been discussed 

calls for a new approach and hypothesis of CSF hydrodynamics. 

 

5. The new working hypothesis of cerebrospinal fluid hydrodynamics 

On the basis of the mentioned foregoing evident discrepancies between experimental results 

and the classic hypothesis of CSF hydrodynamics, a recent working hypothesis (Figure 8) has 

been proposed that is more appropriate according to experimental facts. According to this 

hypothesis (Bulat and Klarica, 2005; Bulat et al., 2008), the mentioned results can be easily 

explained: during the filtration of water from the arterial capillaries under high hydrostatic 

pressure (Figure 8B), plasma osmolytes are retained since their permeability across the 

cerebral capillary wall is very poor (reflection coefficient of main electrolytes Na+ and Cl- is 

0.98 and it is very similar to that of proteins - 0.999), therefore an osmotic counter-pressure is 

generated which opposes the water filtration. When such hyperosmolal plasma reaches the 
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venous capillaries and postcapillary venules where the hydrostatic pressure is low, it becomes 

instrumental in water reabsorption from interstial fluid (ISF) and CSF (Figure 8B) (Bulat and 

Klarica, 2005; Bulat et al., 2008). In the brain parenchyma, arterial capillaries with high 

hydrostatic pressure can be situated near the vessels with low hydrostatic pressure, as shown 

in Figure 8B. Thus, a rapid turnover of water, which constitutes 99% of ISF-CSF volume, 

continuously takes place between plasma and ISF-CSF (Bulat et al., 2008). Since the surface 

of the choroid plexus is about 5000 times smaller than the surface of cerebral capillaries 

(Crone, 1963; Raichle, 1983), this and all of the above suggests that “formation” and 

“absorption” of ISF-CSF mainly take place at the cerebral capillaries (Figure 8B). This 

hypothesis is supported by the observation that, when 3H-water in physiological saline was 

slowly infused into the lateral ventricle of cats, it was not delivered to the cisterna magna but 

rather locally absorbed into the periventricular capillaries and drained via the great cerebral 

vein of Galeni into the confluence of the sinuses (Bulat, 1993; Bulat et al., 2008). In other 

words, there is no net CSF formation under normal conditions, especially not only inside the 

brain ventricles, and it seems that CSF appeared and disappeared everywhere in the CSF 

system. Experimental results (Di Chiro, 1964; Orešković et al., 1991; Sato et al., 1972; Sato et 

al., 1971; Sato and Bering, 1967) also show that CSF is formed outside the brain ventricles (in 

subarachnoid space). The results also show that CSF absorption occurs not only through villi 

arachnoidales, but also inside the brain ventricles (Brightman, 1968; Bulat et al., 2008; Cserr, 

1971; Dodge and Fishman, 1970; Foley, 1921; Hassin, 1924; Orešković et al., 1991; Wright, 

1972), along the nerve roots (Kido et al., 1976), from the subarachnoid space into the 

lymphatic system (Bradbury, 1981; Brierly and Field, 1948; Dandy, 1929; Johnston et al., 

2005; Johnston et al., 2004; Koh et al., 2005; Koh et al., 2006; Weed, 1914), and high 

intraspinal absorption (Edsbagge et al., 2004).  
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The control of CSF volume is under the influence of hydrostatic and osmotic forces (Bulat, 

1993; Orešković et al., 2000; Orešković et al., 2002; Orešković et al., 1991) between the CSF 

system and the surrounding tissue (Figure 8D), and CSF volume will change depending on 

the prevalence of those forces, caused by (patho)physiological reasons inside or outside of the 

CSF system, in fact, in a manner similar to the way they regulate the volume of extracellular 

fluid in other organs (Figure 8).  

Of course, that one of the most important mechanisms of maintaining the physiological 

homeostasis in the CNS is the active transport of substances. Such active and energy 

consuming process is omnipresent in the CNS; inside the cells, on the membrane of CNS cells 

(including cells of choroid plexuses) as well as the blood-brain-barrier. Active transport of 

substances proceeds in both directions, in and out of the cell, directly impacting homeostasis 

of the CNS (Strikić et al., 1994; Vladić et al., 2000; Zmajević et al., 2002), and is thereby also 

included in the regulation of osmotic balance and subsequently into maintenance of the CSF 

volume (see above; Fig. 8D). 

Such approach to CSF physiology was strongly supported by our recent investigation using a 

new experimental model of acute aqueductal blockade by plastic cannula in cats (Klarica et 

al., 2009; Orešković et al., 2001; Orešković et al., 2002), as was shown in detail in the section 

Direct aqueductal method for measuring CSF formation (Figure 7). It is only necessary to 

mention that if CSF is mainly formed inside the brain ventricles and absorbed outside, in our 

model it has to circulate through the cannula positioned in the aqueduct. While under 

physiological CSF pressure the CSF was collected from isolated brain ventricles for 120 min 

(Orešković et al., 2001; Orešković et al., 2002), and it permanently pulsated near the external 

end of the cannula and not a single drop of CSF was observed in the collection tube, which 

clearly showed that there was no net formation of CSF. Furthermore, according to a new 

working hypothesis, it is expected that osmotic force also plays an important role in the 
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regulation of CSF volume, and it seems that the imbalance of CSF osmolality would result in 

a change in CSF volume. To test this thesis, infusion was done on the same mentioned model 

(Figure 7) but with hyperosmolal fluid (Orešković et al., 2002). A significant increase in 

outflow was observed in comparison with isoosmolal infusion, i.e. it is unquestionable that 

osmolality significantly influences the control of CSF volume and that the increase in CSF 

osmolality enhanced the CSF volume inside the brain ventricles. In other words, the net CSF 

formation does not exist in brain ventricles in physiological conditions, but in 

pathophysiological conditions (hyperosmolal CSF) there is a false impression of CSF 

formation that could consequently result in an increase in CSF volume, or in our model in the 

CSF outflow throughout the external end of the plastic cannula. 

In addition, the effect on cerebrospinal fluid pressure and the size of the brain ventricles has 

been studied in the same type of experiment (Klarica et al., 2009) after an acute aqueductal 

blockade in cats. We showed that the CSF pressure in the isolated ventricles and cisterna 

magna were practically equal over 120 min, and in some cases up to 190 min, after the 

aqueductal blockade, and similar to the pressure recorded in an open CSF system (control). 

These data contradict the classic hypothesis according to which the CSF secreted into the 

ventricles cannot be absorbed (due to aqueductal occlusion) at the hypothetic CSF absorption 

site outside the ventricles, so that CSF accumulation in the ventricles should lead to a 

significant rise in CSF pressure. There is a hypothetical possibility that the elevation of CSF 

pressure could be avoided by simultaneous dilatation of the isolated ventricles. For that 

reason, the X-ray measurements of the cross-sectioned area of the lateral ventricle were done 

in control conditions (aqueduct open) and two hours after the aqueductal blockade (Klarica et 

al., 2009). Since they did not disclose any significant dilatation of the isolated ventricle, it is 

clear that CSF does not secrete within the brain ventricles. 
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In the end, it is necessary to say that after decades of unsuccessful medical treatment of 

hydrocephalic patients by way of plexectomy, after experimental results which have shown 

dependency of CSF formation on hydrostatic pressure, after a method for determining CSF 

formation that has not been sufficiently critically evaluated, and finally after recently obtained 

results which have clearly shown that there is no net CSF formation in the brain ventricles, 

the time has definitively come to abandon the classic hypothesis as a framework of thinking 

in CSF physiology. The time has also come to abandon the classic hypothesis as a common 

point of reference in scientific papers and in review articles, as an unquestionable fact in text-

books for students, and as a schematic illustration in books and anatomic atlases. The time has 

come for a new hypothesis which can offer a new explanation in CSF physiology that will 

correspond more closely with experimental facts. 

 

6. Concluding remarks 

We may conclude that after almost a hundred years of scientific experimental research in the 

field of CSF hydrodynamics there is no scientifically founded knowledge of CSF formation 

that is supported by relevant facts, but CSF formation is still interpreted by means of the 

classic hypothesis of CSF hydrodynamics. The hypothesis, ever since being founded, has 

been accompanied by a series of results that cannot be explained or integrated into this 

hypothesis. The methods that have been used to determine CSF formation have been 

insufficiently scientifically evaluated, and have very frequently been performed under 

unphysiological conditions. The obtained results are therefore of questionable reliability and 

do not ensure relevant data that could provide an answer regarding the nature of CSF 

establishment. As it has recently been shown that there is no net CSF formation within the 

brain ventricles under physiological conditions, a new working hypothesis has been proposed 
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instead of the classic one. According to the new working hypothesis, osmotic and hydrostatic 

forces are crucial to the regulation of ISF-CSF volume. Considering the capacity of fluid 

exchange, the cerebral capillaries are the dominant place and the choroid plexuses are a less 

relevant place for this process. There is a permanent fluid and substances exchange between 

the CSF system and the surrounding tissue which depends on (patho)physiological conditions 

that predominate within those compartments. Regardless, our results and those mentioned 

above indicate that a new approach to the physiology and pathology of CSF is necessary. 
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Figures legend 

Figure 1. Location scheme of the choroid plexuses and the distribution of CSF in the human 

central nervous system. CSF is shown as the gray area and the arrows point the direction of 

CSF circulation and the sites of CSF absorption. 
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Figure 2. Scheme of the main site of CSF absorption in relation to the arachnoid granulations 

and dural sinuses, shown in the coronal plane. 
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Figure 3. Structure scheme of the choroid plexus. Branched structure of the choroid plexus 

with villi projecting into the ventricle of the brain. Each plexus consists of a network of 

capillaries covered by a single layer of cuboidal epithelial cells. 
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Figure 4. Schematic representation of CSF secretion in the choroid plexus. Inset shows the 

proposed Na+ - K+ pump placed on the apical (CSF-facing) membrane. Aquaporin channels 

exist on the apical and basolateral membrane. 
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Figure 5. Scheme of the human brain ventricles with emphasized choroid plexuses. Inset 

shows the aqueduct of Sylvius, a part of the CSF system and the equations which enable the 

calculation of CSF formation based on CSF velocity using the MRI method. 
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Figure 6. Scheme of the ventriculo-cisternal perfusion in cats. 
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Figure 7. Scheme of the experimental model (direct aqueductal method) showing the position 

of the cannula for the infusion of artificial CSF in the left lateral ventricle, cannula in the right 

lateral ventricle for CSF pressure recording, and cannula in the aqueduct of Sylvius for CSF 

collection or outflow of perfusate.  

 

 

 

 

 

 

 

 



 74

Figure 8. A scheme of the interrelation between cerebrospinal fluid (CSF), interstitial fluid 

(ISF) and cerebral blood vessels, and the exchange of water and substances between the blood 

and ISF-CSF through the blood-brain barrier. 

A. Larger blood vessels enter deep into the brain tissue. The substances with large m.w. can, 

after being applied into the CSF system, rapidly enter deep into the tissue via perivascular 

spaces and reach the vast capillary net. Due to the slow elimination from ISF-CSF into the 

blood, those substances should be widely distributed inside the brain parenchyma and along 

CSF system. On the other hand, smaller molecules like water can rapidly reach the capillary 

net situated under the pia mater after application into the CSF, and then they can be removed 

from the ISF. Similar to that, the molecules of water from the ventricles can rapidly reach the 

choroid plexus and the capillaries under the ependyma surrounding the ventricles.  

B. The contact surface of the capillaries inside the brain is vast (250cm2/g of the tissue), and it 

is about 5000 times larger than the surface of the capillaries inside the choroid plexus. Apart 

from this, the surface of the arachnoid villi and perineural sheaths of the cranial and spinal 

nerves are not assumed to be higher than 10 cm2. Filtration of water from the blood to the ISF 

takes place at the arterial capillaries (high capillary pressure), and absorption is observed at 

the vessels under low hydrostatic pressure (venous capillaries, postcapillary venules). The 

rapid turnover of water volume between the cerebral capillaries and ISF-CSF takes place. Due 

to great differences between the contact surface of capillaries in brain tissue and in the 

choroid plexus, it should be expected that the volume of CSF-ISF is predominantly regulated 

inside the brain parenchyma. The differences in hydrostatic pressure inside the capillaries are 

shown by the intensity of the color gray. 
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C. A scheme of the relationship between a cerebral capillary endothelial cell and the 

surrounding structures (pericytes, neurons, astrocyte end-feets, basement membrane) which 

contribute to the blood-brain barrier function. 

D. The ways substances pass through the membranes of the cerebral capillaries' endothelial 

cells. A passive diffusion is highly expressed regarding liposoluble substances, and it is 

conducted under gradient of concentration. The net transport of water depends on the 

gradients of hydrostatic (hydrostatic capillary pressure-HPc, and hydrostatic interstitial 

pressure-HPi) and osmotic (osmotic capillary pressure-Opc, and osmotic interstitial pressure-

Opi) pressures. The transport systems enable the entrance of more hydrophilic and larger 

molecules from the blood to the ISF (influx; the straight arrow at the top of the figure). There 

are also the transport systems which enable the return of molecules from ISF-CSF into the 

bloodstream (efflux; the straight arrow at the bottom of the figure). The transport of 

molecules with large m.w. often occurs via endosomes (the formation of the endocytic 

vesicles; it can also be receptor-dependent) 
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Table 1. Rates of cerebrospinal fluid formation in humans estimated by Magnetic Resonance 

Imaging methods 
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Table 1. Rates of cerebrospinal fluid formation in human estimated by Magnetic Resonance 

Imaging methods 

 

 

*Vf was obtained by measuring the CSF flow; **Vf was obtained by calculation based on CSF 

velocity; ***Corrected Vf was obtained by adding Vf from IV brain ventricle 
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Thomsen et al.,  
(1990) 

-- -- -- -- -- -- 
0.42-
0.83 

-- 
0.53-
1.04 

2 
Mascalchi et al., 
(1988) 

-- -- -- 3-5 3-5 0 -- 0 0 

3 
Forner et al., 
(2007) 

-- -- -- -- -- -- 0.4 -- 0.5 

4 
Nitz et al. 
(1992) 

3.42 2.67 0.75 21.5 17.5 4.0 0.75 0.75 0.94 

5 
Enzman et al., 
(1991) 
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Gideon et al., 
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