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Abstract 

 The effect of cerebrospinal fluid (CSF) osmolarity on the CSF volume has been studied 

on different CSF/brain tissue contact areas. It has been shown, on anesthetized cats under normal 

CSF pressure, that the perfusion of CSF system (12.96 µl/min) by hyperosmolar CSF (400 

mOsml/l) leads to significantly higher outflow volume (µl/min) during ventriculo-cisternal 

perfusion (29.36 ± 1.17 and 33.50 ± 2.78) than the ventriculo-aqueductal perfusion (19.58 ± 1.57 

and 22.10 ± 2.31) in experimental period of 30 or 60 min. Both of these hyperosmolar perfusions  

resulted in significantly higher outflow volume than the perfusions by isoosmolar artificial CSF 

(12.86 ± 0.96 and 13.58 ±1.64). This results suggest that the volume of the CSF depends on both 

the CSF osmolarity and the size of the contact area between CSF system and surrounding tissue 

exposed to hyperosmolar CSF. However, all of these facts imply that the control of the CSF 

volume is not in accordance with the classical hypothesis of cerebrospinal fluid hydrodynamic. 

According to this hypothesis, the CSF volume should be regulated by active formation of CSF 

(secretion) inside the brain ventricles and passive CSF absorption outside of the brain. Obtained 

results correspond to the new hypothesis which claims that the volume of CSF depends on the 

gradients of hydrostatic and osmotic forces between the blood on one side and extracellular fluid 

and CSF on the other. The CSF exchange between the entire CSF system and the surrounding 

tissue should, therefore, be determined by (patho)physiological conditions that predominate 

within those compartments. 
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According to the generally accepted hypothesis of the cerebrospinal fluid (CSF) dynamics, CSF 

is produced within the cerebral ventricular system, and then circulates slowly from the brain 

ventricles towards the subarachnoid space cortex to be absorbed into the venous sinuses across 

the arachnoid villi (1, 10). It is believed the CSF is formed mainly by the secretory activity of the 

choroid plexuses inside the brain ventricles, and that the majority of the remaining CSF is 

probably produced by the ependyma (2, 6). Since CSF formation is an active process, the CSF 

formation rate should not be significantly altered by moderate changes in the intracranial 

pressure (5, 23). It means that the entire physiological volume of the CSF within the CSF system 

is preserved by the balance between the secretion of the CSF inside the brain ventricles and 

passive absorption of the CSF from cortical subarachnoid space (outside the ventricles). This 

classical hypothesis, with minor modifications, represents a common point of reference in 

scientific papers, review articles and in numerous textbooks, and is proffered as an 

unquestionable fact. The hypothesis is applied to explain the removal of cerebral metabolites, an 

increase in intracranial pressure (ICP) and the development of hydrocephalus. 

 Opposite to the classical hypothesis, we have shown (22) that at a physiological 

intracranial pressure in isolated brain ventricles the CSF production and absorption are in 

balance. Furthermore, when labeled water is infused into the lateral ventricle, it is not distributed 

to the cisterna magna, but rather absorbed into periventricular capillaries, all of which indicates 

that the CSF volume (water) is significantly absorbed inside the ventricles (3, 4). Moreover, 

when the aqueduct of Sylvius had been cannulated, no CSF outflow was observed from the 

isolated ventricle at a normal CSF pressure, suggesting that no net formation of CSF occurred in 

the ventricles (20, 21). Also, in isolated brain ventricles no increase in ICP during 190 min was 

obtained, nor were the ventricles dilatated, which obviously confirmed an absence of active CSF 

formation (14). Based on our experimental work, we have recently postulated new hypothesis of 

the CSF hydrodynamic (3, 4, 18) which suggests that CSF is not solely formed inside the brain 
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ventricles and absorbed outside them in cortical subarachnoid space but equally appears and 

disappears in the whole CSF system. This means that the volume of CSF depends on the fluid 

exchange within the brain and medulla spinalis depending on the hydrostatic gradients and 

osmotic forces present between the blood (capillaries) on one side and the interstitial fluid of 

brain parenchyma and the CSF on the other. Therefore, total CSF volume within the CSF system 

should depend on unceasing (permanent) exchange of the CSF with the interstitial fluid (ISF) of 

the surrounding tissue along the entire cerebrospinal system.  

 If our hypothesis is correct, the exchange between the CSF and the ISF should depend on 

fluid osmolarity, as was previously reported (8, 26), as well as on the size of the contact area 

between the CSF system and surrounding brain tissue. In other words, increase in the CSF 

osmolarity should result in water retreat from capillaries in the surrounding tissue into ISF (as a 

consequence of arrival of osmotically active substances from CSF to adjacent ISF), where 

greater contact area implies greater increase of CSF/ISF volume. 

 This was tested on anesthetized cats by perfusion of the CSF space with smaller (lateral 

and the third ventricles; ventriculo-aqueductal perfusion; Fig. 1a) and larger contact area (lateral, 

the third and the fourth ventricles and cisterna magna; ventriculo-cisternal perfusion; Fig. 1b), 

one time using isoosmolar, and another time using hyperosmolar artificial CSF (aCSF). That way 

both types of perfusion were performed at normal ICP and at the same perfusion rates (12.96 

µl/min). The volumes of collected samples were compared to each other. If higher osmolarity is 

to result in substantial accumulation of CSF at a larger CSF area, volume of the collected 

perfusate should be significantly greater at ventriculo-cistenal perfusion i.e. it would support our 

hypothesis.  

The experiments were performed on adult cats, unselected for age and sex, ranging in 

weight from 1.6 to 3.8 kg. All experimental procedures were performed in accordance with the 

European Directive 86/609/EEC on the protection of animals used for experimental and other 
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scientific purposes, and the Law on Animal Rights and Protection of the Republic of Croatia, 

with the approval of the institutional Ethical Committee. The animals were anesthetized with an 

intraperitoneal injection of chloralose (-chloralose, Fluka; 100 mg/kg). After the femoral artery 

had been cannulated, blood pressure was recorded via a “T”-connector and samples of blood 

were taken for the analysis of blood gases. As the cats continued breathing spontaneously under 

anesthesia no significant changes either in blood pressure or gases were observed.   

 Two types of experiments were performed: the ventriculo-aqueductal (Fig. 1a) and 

ventriculo-cisternal (Fig. 1b) perfusion, with both isoosmolar and hyperosmolar aCSF. In each 

case the cats were positioned in stereotaxy (Cat model, D. Kopf, Tujunga, California, USA) with 

heads elevated, the external auditory meatus being 15 cm above the stereotaxic table (sphinx 

position). A 22–gauge needles were placed by a micromanipulator into both lateral ventricles at 

coordinates 4.5 mm anterior and 9 mm lateral from the zero point of the stereotaxic atlas, and 8–

10 mm vertically from the dural surface, until free communication with the CSF was obtained. 

One needle was connected via a polyethylene tubing to a perfusion pump (Palmer pump) and the 

perfusion solution was infused at the rate of 12.96 µl/min, whereas the other one was used to 

measure the CSF pressure (Fig. 1a and 1b) by a Statham strain gauge connected to the polygraph 

(7D, Grass, Quincy, Massachusetts, USA). 

 For ventriculo-aqueductal perfusion (Fig. 1a), the aqueduct of Sylvius was approached 

via transcerebellar route and cannulated so that the external end of the plastic cannula was 

positioned extracranially. The skull was hermetically closed thereafter. Methodology has been 

described in detail in our previous publications (14, 18, 21). For ventriculo-cisternal perfusion 

(Fig. 1b), cisterna magna was also cannulated by a direct puncture with a stainless steel cannula 

(22 gauge) which was fixed in position by a holder and connected with the plastic tubing filled 

with aCSF (19). Thirty-min samples of perfusate were collected in both types of perfusion from 

external end of cannulas adjusted to physiological level of the CSF pressure. After surgical 
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treatment the CSF pressure was adjusted to physiological value by adjusting the outflow tubing 

above (6 – 8 cm H2O) the external meatus (Fig. 1). The level of the external auditory meatus was 

taken as a zero pressure point. The perfusion was allowed to proceed for 30 min prior to 

collecting the first sample in order to stabilize the perfusion outflow rate. The samples of 

perfusate were collected every 30 minutes in duration of one hour in which perfusate consisted 

of isoosmolar or hyperosmolar aCSF (400 mOsml/l). The aCSF had of the following 

composition: 8.10 NaCl; 0.25 KCl; 0.14 CaCl; 0.11 MgCl2; 1.76 NaHCO3; 0.07 NaH2PO4; 0.13 

urea; 0.61 glucose; grams per liter distilled water. Hyperosmolar sucrose solution was prepared 

by diluting 21.43 g sucrose (Saharoza, Kemika, Croatia) per liter of aCSF. 

 At the end of ventriculo-aqueductal perfusion experiment, trypan blue (1 mg/ml) was 

administered (0.5 ml) through the needle placed into the lateral brain ventricle to test  blockage 

of the aqueduct of Sylvius with plastic cannula. If color was observed behind the aqueduct in 

cavity of the fourth ventricle, experiment was discarded. At the end of experiment, an overdose 

of thiopentone was injected via femoral vein to euthanize the animals. 

 Statistical analysis for all the results was performed using paired Student’s t-test. 

 Pursuant to the above mentioned, we have shown that there is no net CSF formation in 

isolated brain ventricles under physiological intracranial pressure (ICP) (21). For that reason in 

ventriculo-aqueductal perfusion of inflow rate (12.96 µl/min) of isoosmolar aCSF is equal to the 

outflow rate (21). Namely, if CSF is mainly formed inside the brain ventricles and is absorbed 

into subarachnoid space, it has to circulate at physiological CSF pressure through the aqueduct of 

Sylvius or, as is the case in this model (Fig. 1a), via plastic cannula positioned in the aqueduct. 

Direct (visual) observation of the CSF outflow throughout external end of the cannula (at 

physiological ICP) should, therefore, represent CSF formation (Fig. 1a). The collected volume of 

CSF divided by the time of collection represents the rate of CSF formation (21). Such 

experimental result, that infused volume is equal to outflow volume, enables us to test if 
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hyperosmolar aCSF could change the volume of collected CSF. If hyperosmolar aCSF extracts 

fluid from ISF of the surrounding tissue, the outflow rate should be higher than the inflow one. 

Hence, if net CSF formation does not exist, under the same experimental conditions 

(physiological ICP; 12.96 µl/min), similar result during ventriculo-cisternal perfusion would be 

expected (perfusion inside ventricles and subarachnoid space), i.e. equal inflow and outflow rate 

at isoosmolar perfusion and higher outflow than inflow rate at hyperosmolar perfusion (Fig. 1b). 

 In the first group of experiments at normal ICP, the outflow rate during ventriculo-

aqueductal and ventriculo-cisternal perfusion was measured after isoosmolar aCSF infusion (60 

min; 12.96 µl/min; Palmer infusion pump, England), and outflow rate was compared to the pump 

testing rate (Fig. 2). The volume of samples was determined by weighing (Mettler, Toledo AT 

20, Switzerland). No difference between the outflow rate in both groups of perfusion methods 

was observed during the 30 and 60 min periods of infusion, i.e. the volume of aCSF infused was 

the same to the fluid volume collected by passage of isolated brain ventricles (ventriculo-

aqueductal perfusion; lateral and the third ventricles) or by passage of ventricles and 

subarachnoid CSF space together (ventriculo-cisternal perfusion; lateral, the third and the fourth 

ventricles and cisterna magna). In other words, after isoosmolar perfusion at normal ICP, the 

change in CSF volume was not obtained in perfused part of the CSF system. The absence of 

reduction or enhancement in detected outflow volume also means that there is no net CSF 

formation or absorption in studied part of the CSF system. 

 In the second group of experiments at normal ICP pressure, the outflow rate during 

ventriculo-aqueductal (Fig. 3a) and ventriculo-cisternal (Fig. 3b) perfusion (60 min; 12.96 

µl/min; Palmer infusion pump, England) was measured after hyperosmolar (400 mOsml/l) 

infusion of aCSF. The outflow rates were compared to results in isoosmolar experiments 

obtained under the same experimental conditions. After 30 and 60 min of hyperosmolar aCSF 

infusion, a significant increase in the outflow was observed in comparison with the outflow 
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obtained during isoosmolar aCSF perfusion in ventriculo-aqueductal (Fig. 3a) and ventriculo-

cisternal experiments (Fig. 3b). It suggests that osmotic force significantly influences control of 

the CSF volume inside the brain ventricles as well as in whole CSF system (brain ventricles and 

subarachnoid space). The increase of CSF osmolarity has resulted in an increase of CSF volume. 

 In Fig. 4, effects of the same hyperosmolar infusion (12.96 µl/min; 400 mOsml/l) on 

different contact areas of CSF/brain tissue at normal ICP pressure are shown; on a smaller 

contact area by ventriculo-aqueductal perfusion, and on a larger contact area by ventriculo-

cisternal perfusion. It is obvious that in spite of the same rate of perfusion and the same 

osmolarity of perfusate, after 30 and 60 min periods of infusion, a significant increase in the 

outflow was observed in ventriculo-cisternal perfusion. In other words, if larger contact area of 

the CSF system is exposed to hyperosmolarity, greater effect on entire CSF volume should be 

expected. 

 Similarly as in our study, the net movement of water from the blood into brain tissue was 

demonstrated during development of osmotic brain edema (7, 25). Namely, when the osmolarity 

of blood is lower than the osmolarity in the brain parenchyma and CSF (e.g., fast reduction of 

blood osmolarity in patients with hyperglycemia after administration of insulin and hypoosmolar 

solution), an osmotic arrival of fluid from the blood into brain interstitial tissue and CSF occurs, 

which results in brain edema and increased CSF pressure. On the other hand, if the blood 

osmolarity is increased (e.g., i.v. application of mannitol hyperosmolar solution in treating 

cerebral edema), a decrease of CSF pressure occurs, due to osmotic movement of water from 

interstitial brain tissue. This clearly indicates that the net movement of water between different 

CNS compartments depends on the osmotic gradient. Furthermore, it has been shown that in case 

of brain ischemia, the ischemic area of brain parenchyma shows an accumulation of water due to 

an increase of tissue osmolarity (for twenty mOsml/l above control values) (9). 
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 It was observed that water accumulation in the brain parenchyma due to an increase of 

tissue osmolality also occurs in neurotrauma patients (11, 12). It was shown (11) that necrotic 

brain tissue sampled from the central area of contusion demonstrated a very high osmolality. The 

cerebral contusion induced an increase in tissue osmolality and a significant decrease of specific 

gravity in contused tissue has reflected water accumulation (13). 

 Our previous studies (15, 17) in dogs have shown that bacterial meningitis caused by 

Streptococcus pneumoniae increased CSF osmolarity and pressure. In addition, it has been 

demonstrated on experimental animals that the same hyperosmolarity which has been applied in 

different CNS compartments differently affected the CSF pressure (16). Namely, application into 

CSF space led to significantly higher increase of CSF pressure than such an application into 

brain parenchyma (16). Thus, effect of osmolarity on the CSF pressure in a smaller area 

(distribution of osmotically active substances is limited after application into brain parenchyma) 

was lower than in the larger area (better distribution of osmotically active substances after 

application in CSF system). These results correspond to our results (see Fig. 4) where the effect 

of the same hyperosmolarity on CSF volume is also higher in case of distribution along larger 

area. Therefore, if osmotically active substances from brain necrotic area reach the CSF, 

significantly greater change of CSF volume and pressure and severe patient’s clinical state 

should be expected. 

 In conclusion, results obtained in our perfusion experiments on cats suggest that, at 

normal ICP, the volume of CSF is not regulated via CSF secretion inside the brain ventricles and 

CSF absorption outside of them. Namely, it has been clearly shown by isoosmolar perfusion 

experiments that there is no net CSF formation inside the brain ventricles and no passive CSF 

absorption in the subarachnoid space (Fig.2). In addition, it has also been shown that the volume 

of CSF depends on the changes in CSF osmolarity (Fig. 3). Thus, increase in CSF osmolarity 

leads to an increase of the CSF volume. Impact of osmolarity on the CSF volume will be higher 
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if the contact CSF/brain tissue area exposed to hyperosmolarity is larger (Fig. 4). To summarize, 

it seems that CSF volume would not depend on the differences between CSF secretion and 

absorption rates, but on the osmolarity of CSF.  

 Finally, these results contradict the classic hypothesis, and therefore support recently 

proposed new hypothesis on CSF hydrodynamics (4, 14, 18), according to which CSF is being 

permanently produced and absorbed in the whole CSF system as a consequence of filtration and 

reabsorption of water through the capillary walls into ISF of the surrounding brain tissue. The 

CSF exchange between an entire CSF system and the surrounding tissue depends on 

(patho)physiological processes (trauma, ischemia, etc.) which can cause the changes of fluid 

osmolarity in different CNS compartments.  
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Figure legend 

 

Figure 1.  

The experimental model scheme of ventriculo-aqueductal (a) and ventriculo-cisternal perfusion 

(b) on cat. 
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Figure 2.  

The rate of aCSF infusion obtained by pump testing (n=5; ; 12.96 µl/min) during the 30 and 60 

min and the outflow rate obtained on cats by aCSF ventriculo-aqueductal (n=6; ) and 

ventriculo-cisternal perfusion (n=6; ) under the same duration (30 and 60 min) and rate of 

infusion (12.96 µl/min). The results are shown as mean value ± SEM. Differences between the 

outflow and infused rates are not statistically significant. 
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Figure 3.  

a) The outflow of perfusate in cats during the 30 and 60 min by ventriculo-aqueductal perfusion 

(12.96 µl/min) with isoosmolar (n=6; ) and with hyperosmolar (n=6; ; 400 mOsml/l) aCSF; 

and b) the outflow of perfusate in cats during the 30 and 60 min by ventriculo-cisternal perfusion 

(12.96 µl/min) with isoosmolar (n=6; ) and with hyperosmolar (n=6; ; 400 mOsml/l) aCSF. 

The results are shown as mean values ± SEM. Differences between the outflow rates during 

isoosmolar and hyperosmolar perfusion of aCSF are statistically significant (xp<0.05; xxp<0.02). 
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Figure 4.  

The outflow of perfusate in cats obtained by ventriculo-aqueductal (n=6; ) and ventriculo-

cisternal perfusion (n=6; ) with hyperosmolar aCSF (400 mOsml/l) under the same rate (12.96 

µl/min) and duration (30 and 60 min). The results are shown as mean values ± SEM. Differences 

between the outflow rates of ventriculo-aqueductal and ventriculo-cisternal hyperosmolar 

perfusion of aCSF are statistically significant (xp<0.05). 
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