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Abstract: Diabetes is one of the leading chronic diseases globally with a significant impact on
mortality. This condition is associated with chronic microvascular and macrovascular complications
caused by vascular damage. Recently, endothelial progenitor cells (EPCs) raised interest due to
their regenerative properties. EPCs are mononuclear cells that are derived from different tissues.
Circulating EPCs contribute to regenerating the vessel’s intima and restoring vascular function. The
ability of EPCs to repair vascular damage depends on their number and functionality. Diabetic
patients have a decreased circulating EPC count and impaired EPC function. This may at least
partially explain the increased risk of diabetic complications, including the increased cardiovascular
risk in these patients. Recent studies have confirmed that many currently available drugs with
proven cardiovascular benefits have beneficial effects on EPC count and function. Among these
drugs are also medications used to treat different types of diabetes. This manuscript aims to critically
review currently available evidence about the ways anti-diabetic treatment affects EPC biology and
to provide a broader context considering cardiovascular complications. The therapies that will
be discussed include lifestyle adjustments, metformin, sulphonylureas, gut glucosidase inhibitors,
thiazolidinediones, dipeptidyl peptidase 4 inhibitors, glucagon-like peptide 1 receptor analogs,
sodium-glucose transporter 2 inhibitors, and insulin.

Keywords: endothelial progenitor cells; diabetes; diabetes complications; diabetes treatment

1. Introduction

The endothelium is the innermost cell layer of the blood vessel wall, with distinct
metabolic features that are critical in maintaining vascular integrity, regulating vascular
tone, blood flow, and preventing thrombosis [1]. Under certain conditions, the endothelium
may become damaged and dysfunctional, resulting in inappropriate vasomotion, inflam-
mation, and atherosclerotic plaque build-up [2]. Atherosclerotic plaques compromise the
blood supply to downstream tissues, either by vessel narrowing or by total vessel obstruc-
tion. Consequently, ischemia or infarction may occur leading to end-organ dysfunction
and failure. If vital organs are affected, the most dramatic outcome is death. From the
epidemiological viewpoint, atherosclerosis and its complications are the leading cause of
death worldwide and represent a global burden to human health [3].

Numerous risk factors related to atherosclerosis have been identified so far; the most
important include age, gender and genetics, lifestyle factors (such as smoking and diet),
and underlying medical conditions, like arterial hypertension, dyslipidemia, diabetes, and
obesity [4,5]. Over time, complex strategies to treat atherosclerosis and vascular events
have been developed, mainly targeting already-mentioned risk factors, blood clotting,
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and end-organ protection [3]. Among various approaches to treat atherosclerosis and its
deleterious outcomes, none of them were able to restore vascular function completely
and reverse atherosclerosis. The progressive nature of this disease and the limitations of
currently available treatment options lead to the general opinion that atherosclerosis is an
irreversible process, strongly linked to aging [6,7].

Endothelial progenitor cells (EPCs) have recently raised significant interest since these
cells can aid in regenerating the damaged vessels’ endothelium and, therefore, restore
vascular function. Discovered at the end of the 20th century, they gave new insight into
the pathology of atherosclerosis and offered new prospects in curative medicine [8]. EPCs
are usually defined as multipotent stem cells with angiogenic potential. These cells are
commonly quantified from blood by flow cytometry as mononuclear cells expressing
CD34 and VEGFR2+. CD133+ and CD45−/dim are proposed as additional markers for
circulating EPCs [9]. The population of EPCs is rather small, with a proportion of up to
0.05% of mononuclear blood cells [10]. Since the proportion of EPCs in blood cells is very
low, some technical considerations need to be highlighted. The analysis of rare cells may
be compromised with background noise. Therefore, special attention needs to be given
to several preanalytical and analytical steps. These include appropriate blood sampling,
collection tube choice and handling temperature, the choice of appropriate flow cytometers,
erythrocyte depletion and wash/no wash protocols, background control, etc. [9]. However,
to determine the proliferation capacity and the ability to form blood vessel-like forms, it is
crucial to cultivate EPCs. In cultures, it became apparent that the phenotype and function
of EPCs are heterogeneous, and that the cell markers differ from those in EPCs detected by
flow cytometry. Originally, these subpopulations were named after the time they appeared
in cultures as early and late outgrowth endothelial cells. These cells express distinct cell
markers and behave diversely in cultures. They have different abilities to act as paracrine
producers or to proliferate and differentiate into mature endothelial cells, contributing to
the formation of new blood vessels or repairing the damaged ones. Therefore, the cells
were renamed into myeloid angiogenic cells (MACs) and endothelial colony-forming cells
(ECFCs). These EPC subpopulations act synergistically in vivo [11–13]. It is noteworthy,
that there are also technical challenges in stem cell cultivation in general that may have an
impact on EPC cultivation, like sample preparation, cell isolation and purification, seeding
density, choice of culture media, etc. [14]. The main characteristics of these EPC subtypes
isolated in culture are shown in Table 1.

Table 1. Characteristics of distinct EPC subtypes in cultures [13].

Lineage Myeloid Angiogenic Cells Endothelial Colony-Forming
Cells

positive cell markers CD45, CD31, CD14

CD31, CD105, CD 146
VE-cadherin, von Willebrand
factor, VEGFR2
CD34+/−

negative cell markers CD146, CD34 CD45, CD14

in vitro effects conditioned media necessary
for the endothelial formation intrinsic tube forming capacity

function provide paracrine angiogenic
factors

provide cells as building
blocks
release of paracrine factors

time of appearance in culture early late

Due to their unique angiogenic features, EPCs seem to be a promising tool to treat
conditions like atherosclerosis and atherosclerosis-related conditions such as ischemic heart
disease, peripheral artery disease, and diabetic vascular complications [15–17]. In various
research, improved parameters of EPC biology (e.g., increased EPC blood count quantified
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by flow cytometry or improved EPC function in cultures) could be correlated with improved
flow-mediated dilation, brachial ankle index, or intima media thickness [18–20]. Furthermore,
EPC biology was found to correlate with clinical outcomes like limb amputation, stroke,
myocardial infarction, or death [21–24].

EPC-based therapies aim to enhance vascular repair and promote the growth of new
blood vessels, ultimately improving blood flow to ischemic tissues, but there are challenges
to be addressed. These include improving methods for EPC isolation and expansion,
enhancing their engraftment and survival in target tissues, and optimizing the timing and
delivery of EPC-based therapies [25,26].

It is noteworthy that many currently prescribed drugs have proven beneficial effects
on EPC biology, like several antihypertensive drugs, statins, various classes of anti-diabetic
medications, some hormones, bisphosphonates, and others [27]. Since at least some of these
drugs are proven to decrease the incidence of cardiovascular incidents and mortality, it
may be assumed that improved EPC biology may contribute to this effect [28]. In addition,
the EPC count in the bloodstream assessed by flow cytometry or altered behavior of EPCs
detected in culture can also serve as biomarkers for cardiovascular health. Reduced EPC
numbers or impaired EPC function are associated with various cardiovascular diseases,
correlating with advanced disease stage and response to treatment [22]. Understanding the
biology of EPCs, and the way they react to currently available pharmacologic interventions
is essential for unlocking their full potential in clinical practice [29].

The aim of this review is to discuss the impact of modern anti-diabetic treatment on
EPC-mediated vascular repair, correlate it to proven clinical effects on vascular health, and
discuss the potential effect of EPCs on recent cardiovascular outcome trial results.

2. Endothelial Progenitor Cells in Health and Disease

There are established regenerative cell responses identified that can diminish and even
heal vascular injury and re-establish endothelial integrity and function. A prominent role
in vascular repair in adult humans is had by resident endothelial progenitor cells, located
in the blood vessel wall. These cells may replicate and differentiate into mature endothelial
cells in response to vascular injury. In contrast to resident endothelial progenitor cells
present in blood vessels’ walls, another type of endothelial progenitor cells may be found
in distant tissues like bone marrow, fat tissue, and the spleen. EPCs from distant locations
may be mobilized into the bloodstream under certain conditions like ischemia and hypoxia.
Under conditions with limited oxygen supply, hypoxia-induced factor 1 (HIF-1) is released,
thus inducing stromal-derived factor 1 (SDF-1) production and release. SDF-1 is the key
regulator of EPC mobilization. SDF-1 interacts with other mobilizing factors like VEGF and
E-selectin, and the PI3K/Akt/eNOS-dependent signal transduction pathway, leading to
mobilization of progenitor cells into the blood flow. In addition, there are certain enzymes
involved in this EPC mobilization like matrix metalloproteinase 8 and 9 (MMP-9) that
inactivate retention factors at the site of EPCs’ origin [30,31]. Blood glucose, erythropoietin,
thyroid hormones, and estrogen may modulate EPC mobilization [11,27,32].

EPCs enter the blood circulation, migrate to the place of vessel injury, embed there in a
process named homing, and produce various paracrine substances like SDF-1, nitric oxide
(NO), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), insulin-
like growth factor (IGF), and others. SDF-1 leads to upregulation of its specific chemokine
receptor type 4 (CXCR-4 receptor) on the EPC surface, resulting in enhanced homing of
these cells to the injured blood vessel. Other adhesion molecules, like E-selectin, integrins,
intercellular adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) are
also included in this process [30]. Responding to paracrine factors secreted by embedded
circulatory EPCs like VEGF, IGF-1, and gasotransmitters, resident endothelial progen-
itor cells proliferate and differentiate in situ resulting in vascular repair [11,30,32]. The
AMPK/Akt/eNOS and AMPK/eNOS signaling pathways with their activators (adipokines,
prostaglandins) have an important role in enhancing further EPC differentiation and vessel
formation [33,34].
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As mentioned earlier, circulating EPCs represent a heterogeneous cell population
with varying characteristics. Two types of EPCs could be detected in the circulation and
characterized after in vitro cultivation: MACs or early-onset EPCs, and ECFCs, known also
as late-onset EPCs. MACs form colonies in cultures under special conditions only, and
ECFCs are better differentiated and provide mature endothelial cells as building blocks
important for physical endothelial integrity and function. Both progenitor cell types can
produce paracrine substances like nitric oxide (NO) and express receptors for growth
factors like the vascular endothelial growth factor receptor 2 (VEGF-R2) [35–37].

In healthy individuals, both resident and circulating EPCs contribute to the main-
tenance of vascular health by continuously replenishing and repairing the endothelial
lining [38]. Considering the impact of circulating EPCs on vascular repair, it seems that
their paracrine function is more important since the resident progenitor cells provide the
majority of newly differentiated cells necessary for vascular repair [11,39].

It has to be noticed that the turnover of healthy human endothelial cells is rather
low in regions with laminar blood flow, with a cell lifespan of many years [40]. However,
in regions with turbulent blood flow, like vessel curvatures and branching points, the
lifespan of endothelial cells may be shortened and cell turnover increased. In humans,
the endothelial turnover is within the range from 47 to 23,000 days [41,42]. Endothelial
damage may occur over time due to various mechanical and chemical stimuli. Mechanical
factors like increased blood pressure may directly harm the endothelium, while chemical
factors like hyperglycemia or smoking may trigger premature endothelial cell apoptosis.
All these mentioned factors disrupt endothelial integrity, resulting in an elevated mature
endothelial cell count in peripheral blood, as a marker of endothelial damage. Without
the functional innermost layer, NO production is compromised, and vascular tone and
blood flow become dysregulated, resulting in endothelial dysfunction and downstream
tissue ischemia. In addition, a cascade of inflammatory processes on the site of injury
triggers cholesterol accumulation and oxidation promoting further growth of atherosclerotic
plaques. Furthermore, cytokines secreted by the damaged tissue attract smooth muscle
cells that migrate from the artery’s muscle layer into the vascular intima. These cells further
proliferate leading to plaque build-up. Oxidized cholesterol attracts macrophages, further
contributing to a pro-inflammatory environment. The plaque surface is covered by a fibrous
cap that may become unstable in a pro-inflammatory environment and finally rupture,
leading to activation of the clotting cascade, resulting in vessel obstruction and infarction
of related tissues [43,44].

In conditions where blood flow is compromised, such as in ischemic diseases (e.g.,
peripheral artery disease or myocardial infarction), repairing mechanisms are activated:
EPCs from distant tissues enter the circulation, providing paracrine factors from myeloid
angiogenic cells to stimulate both embedded late outgrowth endothelial progenitor cells
and resident endothelial progenitor cells, leading to vascular repair [11,36]. In that way, the
presence of EPCs helps restore blood flow by contributing to the formation of collateral
vessels, which bypass blocked or narrowed arteries.

Functional EPCs decrease the risks of thrombotic events. This occurs either by replac-
ing aged and injured endothelial cells with EPCs or by releasing substances that inhibit
blood clot formation from EPCs to an extent that is still under debate [45,46]. The num-
ber and function of EPCs decline with age, which can contribute to the development of
age-related vascular diseases, such as atherosclerosis. Gender-specific differences with a
protective higher estrogen-dependent EPC count in fertile women during the ovulatory
phase compared to age-matched men have been found [47]. EPC dysfunction is also impli-
cated in various other related pathologies, including diabetes, dyslipidemia, and arterial
hypertension, highlighting their significance in vascular disease progression [46,48].

3. Diabetes and Endothelial Progenitor Cells Biology

Diabetes mellitus is a metabolic disorder characterized by chronically elevated blood
glucose levels. Depending on the diabetes type, deficient insulin action and insulin resis-
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tance may additionally contribute to the occurrence of other metabolic abnormalities like
dyslipidemia and abnormal protein metabolism, resulting in inflammation and oxidative
stress [49]. These metabolic alterations result in endothelial dysfunction, a key initiating
event in vascular complications. Furthermore, diabetes is often accompanied by other con-
ditions affecting endothelial function and vascular health like obesity, arterial hypertension,
and dyslipidemia [50]. In addition, diabetes is associated with changes in the coagulation
cascade, platelet function, and fibrinolysis, creating a prothrombotic state and increasing
the risks of thrombotic events [51]. Over time, chronic diabetic complications may develop.
These conditions are linked to vascular dysfunction and structural damage, affecting both
large and small blood vessels in the body [52].

An important pathophysiological mechanism linking diabetes and its complications
seems to be related to both MACs and ECFCs. Namely, hyperglycemia, hypoglycemia, and
increased glucose variability occurring in diabetic patients, regardless of diabetes type, have
detrimental effects on EPC biology [53]. Patients with both type 1 and type 2 diabetes have
reduced numbers of circulating EPCs. This decrease can be noticed early after the diagnosis
of type 1 and type 2 diabetes, regardless of patients’ age [54,55]. Additional studies
have shown that in individuals with diabetes, EPCs often exhibit reduced mobilization
capacity, shortened survival, and impaired ability to differentiate into mature endothelial
cells [37,53,56–58].

Aside from the specific metabolic environment determined primarily by blood glucose
abnormalities, possible mechanisms involved in the deterioration of EPCs abilities for
vascular repair include disruptions in NO pathways, impaired intracellular signaling in
other pathways (MAPK/ERK, SDF-1/CXCR-4) and the p53/sirtuin1 (SIRT1)/p66Shc axis,
inflammation, reactive oxygen species, accumulation of advanced glycation end products
(AGE), low levels of gasotransmitters, imbalance in adipokine production, and direct ef-
fects of insulin and IGF-1, as shown in Figure 1 [27,53,59–61]. In particular, MAPK causes
NF-κB-dependent inflammatory stress response in the bone marrow, disrupting hematopoi-
etic progenitor activity and enhancing inflammation-induced hypoxic injury [62], while
p53/sirtuin/p66Shc disruption promotes EPC senescence [63]. Reactive oxidative species
impair EPCs viability, increase apoptosis, and negatively impact tube formation, and AGE
accumulation disrupts NO production and significantly decreases anti-oxidant enzymes,
thus increasing oxidative stress [64]. Impaired gasotransmitter function, including de-
creased NO, CO, and H2S signaling, may alter extracellular matrix properties, affecting
metalloproteinase function [65].

EPC dysfunction results in compromised function of both large and small blood
vessels and contributes to the development and progression of diabetes-related vascular
complications [53,66,67]. It has been shown that EPC dysfunction is closely linked to the
occurrence of diabetic microvascular complications, such as retinopathy, nephropathy,
and neuropathy [66,68,69]. These complications may lead over time to vision impairment
and blindness, kidney function decline and end-stage renal disease, altered or loss of
sensation in the extremities, and delayed wound healing, and are therefore leading causes
of invalidity in developed countries [70,71]. In other words, enhanced EPC-mediated
angiogenesis and endothelial repair in the renal, retinal, and peripheral vasculature could
contribute to better outcomes in diabetic individuals.

EPC dysfunction is also implicated in macrovascular diabetic complications, including
coronary artery disease, cerebrovascular disease, and peripheral artery disease. Diminished
EPC count and function contribute to impaired endothelial repair mechanisms, leading
to endothelial dysfunction and accelerated plaque formation, which increase the risk
of major cardiovascular events (MACEs) in diabetic individuals. Even more serious, a
decreased EPC function is linked to premature mortality [18,72]. It has been proposed
that EPC levels and function could serve as valuable biomarkers for diabetes-related
complications. Monitoring EPC parameters may help identify individuals at higher risk of
developing vascular complications, allowing early intervention and personalized treatment
strategies [22]. However, it is important to note that individual patient factors, including



Biomedicines 2023, 11, 3051 6 of 23

age and the presence of comorbidities, can influence the response of EPCs to treatment and
modify their effect on the endothelium [6,46]. Therefore, personalized medicine approaches
that consider these factors may be necessary to optimize diabetes management.
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Several landmark studies have shown that good blood glucose control decreases the
risk of developing chronic diabetic complications and mortality [73,74]. Achieving good
blood glucose control requires, in general, both non-pharmacological interventions and
drug therapy. Recently, some anti-diabetic medications like sodium–glucose transporter-2
inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists have proven to have
better cardiovascular outcomes in patients with type 2 diabetes, and these medications
were highlighted in modern international guidelines [75].

4. Currently Available Diabetes Treatments Affecting EPC Count and Function
4.1. Lifestyle Modification

Lifestyle modifications are integral components of diabetes management. Most im-
portantly, evidence-based strategies encompass dietary adjustments, appropriate exercise
programs, body weight optimization, smoking cessation, and prudent alcohol choices. A
healthy lifestyle has been proven to benefit blood glucose control and, thus, help to reduce
diabetic complications in patients with diabetes [76,77]. Nutrition therapy is an umbrella
term used for dietary modifications in diabetes therapy. Quality nutrition choices have
been shown to improve blood glucose control and, thus, help to reduce diabetic complica-
tions [78–82]. At the time, to our best knowledge, there is a single published paper on a trial
regarding EPCs in diabetic patients with a focus on nutrition. The authors found a beneficial
effect of a Mediterranean diet compared to a low-fat diet on EPC count (CD34+VEGFR2+
and CD34+VEGFR2+CD133+) and carotid intima-media thickness in patients with type 2
diabetes. The increased EPC count correlated with improvements in blood glucose control,
insulin sensitivity, total cholesterol, high-density lipoprotein cholesterol, and systolic blood
pressure, decreasing the risk for chronic diabetic complications [83].

Several other studies focused on non-diabetic study populations with risk factors for
cardiovascular events or on healthy volunteers. However, because of the complex interplay
of diabetes, other risk factors, and cardiovascular disease, these trials are also relevant for
diabetic macrovascular complications. Adding vegetables to the diet improved EPC counts
in a randomized small study in Japan involving healthy volunteers. From a contemporary
viewpoint, a serious limitation of the study is the lack of a precise EPC definition [84].



Biomedicines 2023, 11, 3051 7 of 23

Better EPC (CD34+/VEGFR2+) counts and improved vasomotor function measured by
flow-mediated vasodilation on the brachial artery were detected when flavanols were
added to the diet of patients with coronary artery disease [85]. The Mediterranean diet,
rich in vegetables and unsaturated fats also increased EPC (CD34+/VEGFR2+/CD133+)
counts and reduced endothelial cell microparticles related to mature EC apoptosis in a
small group of elderly people with a clinical correlate of improved ischemic reactive hy-
peremia, indicating reduced endothelial damage and improved endothelial regenerative
capacity [86]. Similar results, like improved EPC (CD34+/VEGFR+/CD133+) counts, a
decreased level of circulating microparticles, an improved anti-inflammatory profile, and
increased flow-mediated vasodilation were found in the larger CORDIOPREV trial in-
volving patients with already diagnosed coronary artery disease who were put on the
Mediterranean diet. A simplified dietary approach with fat restriction was statistically
inferior in this trial [87]. Calorie restriction in combination with the Mediterranean diet
and exercise also had beneficial effects on EPC (CD34+/VEGFR2+) count in patients with
metabolic syndrome after three months of intervention. Insulin sensitivity and blood
pressure were also improved and body weight loss was promoted. However, endothelial
function was improved only in subjects randomized to exercise [88]. Adding polyunsat-
urated fat from fish was also shown to improve both circulatory EPC (CD34+/VEGFR+;
CD133+) count and tube-formation function after a 6-week intervention, but this effect
ceased in the following 6 weeks after the intervention was stopped. An improvement in
several inflammatory substances like TNF α, interleukin 8 (IL-8), and an improvement
in adhesion molecule profile was also detected [89]. In another randomized trial, replac-
ing saturated with monounsaturated and polyunsaturated dietary fats in a larger sample
of people at moderate risk for cardiovascular disease increased EPC (CD34+/VEGFR2+)
and decreased microparticle numbers, suggesting beneficial effects on endothelial repair
and maintenance [90]. Intriguingly, excluding meat and fish from nutrition showed less
favorable effects on EPC (CD34+/CD133+/CD45−/dim) than adhering to the full Mediter-
ranean diet in the CARDIVEG study [91]. An ancient type of grain also showed an increase
in EPCs (defined as CD34+ or CD133+ cells) in comparison to modern grain varieties after
an intervention of 8 weeks. At the same time, significantly better blood glucose control and
cholesterol levels were achieved [92].

Besides the approach with the Mediterranean diet, green tea may improve the EPC
count (CD34+/VEGFR2+/CD45−/dim) even over the short term in a population of chronic
smokers. In the same period, an improvement of vascular function assessed by flow-
mediated dilation was detected. However, since there was no control group in the study,
definitive conclusions cannot be made [93]. Wise alcohol choices may also benefit EPC
biology. In a trial with a cross-over design, the effect of beer and non-alcoholic beer on circu-
lating EPC (CD34+/VEGFR2+/CD133+) levels was tested in patients with high cardiovas-
cular risk, compared to gin. The beer and non-alcoholic beer increased the circulating EPC
count and SDF-1 in the peripheral blood. On the other hand, while the same subjects were
drinking gin during the control period, there was a decrease in EPC count. A major study
limitation is the lack of a control group drinking water [94]. Considering other types of
alcohol, red wine has been shown to increase circulating EPC (CD34+/VEGFR2+/CD133+)
levels and to improve EPC function (attenuated senescence and improved adhesion, mi-
gration, and tube formation) by modifying nitric oxide bioavailability, at least in healthy
volunteers who were randomized either on red wine, vodka, beer, or water. Clinically,
improved FMD vasodilation was seen in patients drinking red wine [95]. White wine
also increases the EPC (CD34+/VEGFR2+, CD133+) count and decreases concentrations
of several pro-inflammatory markers in a population with increased cardiovascular risk,
but there was also no control group on water [96]. It is unclear if alcohol is the key effect
mediator since grape seeds have been shown to also improve CD34+ cell counts. A more
precise EPC characterization would be necessary to confirm this result [97].

Essentially, dietary adjustments recommended for patients with diabetes do not only
improve blood glucose control but reduce the need for pharmacotherapy. It seems that
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they may improve vascular health by benefitting several aspects of EPC biology like EPC
count, modifying NO production, and reducing the number of endothelial microparticles
in circulation. However, the best dietary approach for diabetic patients needs still to be
established since there is only one study performed in this population. This study showed
the benefits of the Mediterranean diet. Other approaches like adding unsaturated fat,
vegetarian diet, caloric restriction, and others still need to be evaluated in diabetic patients.
Correlating EPC findings with clinical tests like FMD would enhance the predictive value
of such research. However, eating more vegetables, adding more unsaturated fat to the
diet, and caloric restriction could positively impact EPCs in non-diabetic persons, but in
some parts of these studies, there was no correlate with other clinical findings. The exact
mechanisms by which food influences EPC biology remain to be elucidated, but improved
insulin sensitivity, decreased inflammatory parameters, and prostaglandins could play a
significant role [98–101]. Intriguingly, alcohol could not show benefits on EPC parameters,
with the exception of red wine, and there could not be a definitive conclusion drawn on
green tea. In addition, EPCs are not equally defined in these studies, making comparations
between studies difficult.

Exercise is another lifestyle factor that affects blood glucose control, but also car-
diovascular morbidity and mortality in patients with diabetes. There are several trials
dealing with the effect of exercise on EPC biology in diabetic patients. Acute exercise loads
promptly increased the EPC (CD34+/CD133+) count in patients with type 2 diabetes with
and without nephropathy [102]. In patients with type 2 diabetes and diagnosed coronary
artery disease, an elevated level of microparticles and EPC could be detected. In contrast,
patients with type 1 diabetes have shown a blunted EPC response to both aerobic and
resistance exercise. The authors concluded that these findings may suggest a low reserve of
EPC (CD34+/CD45dim and CD34+/VEGFR2+/CD45dim) in the bone marrow in patients
with type 1 diabetes [103]. These findings have been confirmed by another trial by an inde-
pendent group of authors, testing CD34+/VEGFR+ and CD34+/VEGFR2*/CD45dim EPC
count [104]. More studies have shown the impact of exercise in non-diabetic populations,
with or without other cardiovascular risk factors. Studied populations include healthy
volunteers, obese adolescents, patients with renal failure, patients with heart failure, and
patients with coronary artery disease [105–109]. In general, moderate exercise increases the
EPC count, improves their migratory capacity, and reduces EPC apoptosis, with beneficial
effects on vascular healing. Exercise may influence EPC counts and EPC function by several
mechanisms that include increased NO production, improved insulin sensitivity, decreased
inflammation, and improved hormonal and cytokine signaling [110,111]. However, EPCs
are not universally equally defined in these research, making direct comparison hard.

Finally, an important lifestyle factor affecting diabetic and vascular outcomes is smok-
ing. While nicotine is responsible for tobacco addiction, cigarette smoke contains many
substances resulting from tobacco combustion. Oxidizing chemicals, carbon monoxide,
particulates, heavy metals, nitrosamines, and polycyclic aromatic hydrocarbon carcinogens
are drivers of tobacco toxicity and may affect EPC biology. One important mechanism
responsible for endothelial damage is compromised tetrahydrobiopterin depletion lead-
ing to decreased NO availability, endothelial dysfunction, increased inflammation, and
activation of platelets, resulting in accelerated atherogenesis [112]. Smokers are shown
to have decreased EPC (CD34+/VEGFR2+) counts and impaired endothelial-dependent
vasodilatation compared to non-smokers. The survival of EPC is also shortened [113]. Both
active and passive smoking impact EPC biology negatively. Smoking cessation increases
EPC (CD34+/VEGFR2+/CD133+) count and function by reducing hypoxia, reactive oxy-
gen species (ROS) generation, and inflammation [113]. Intriguingly, consuming electronic
cigarettes increases acutely the count of CD34+/CD309+ cells in regular smokers, maybe
indicating an acute bone marrow response to vascular injury. Still, there is not enough
evidence to draw definitive conclusions about electronic cigarettes [114]. Important to
note, these studies are not consistent in EPC characterization, and there are no studies
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involving diabetic patients performed up to the present time, making conclusions on this
topic elusive.

4.2. Anti-Diabetic Agents

Many different anti-diabetic agents are currently used to treat diabetes. Better glucose
control itself is associated with improved endothelial function and a decreased risk of mi-
crovascular and macrovascular diabetic complications. There is mounting evidence about
the impact of currently available anti-diabetic drugs on cardiovascular health. Furthermore,
since 2008, every new anti-diabetic drug needs to be tested in a cardiovascular outcome
trial if seeking approval from the Food and Drug Agency (FDA). In these trials, new agents
are compared to standard treatment, and must at least prove non-inferiority considering
cardiovascular outcomes. Cardiovascular outcomes of interest typically include cardiovas-
cular death, non-fatal myocardial infarction, and stroke. Optional other outcomes may be
additionally considered, like total mortality, hospitalizations for heart failure, lower limb
amputations, albuminuria, etc. A brief overview on anti-diabetic medications, their mode
of action, cardiovascular safety/superiority, and clinical trials involving EPC biology is
shown in Table 2.

Table 2. Currently available anti-diabetic medications, their main mode of action, cardiovascular
effects, and effects on EPCs.

Drug Class Mode of Action Cardiovascular Effects Effects on EPCs Reference

Biguanides:
Metformin

reduces hepatic glucose production

facilitates peripheral glucose uptake and
utilization, in part by increasing insulin
action

reduces basal hyperinsulinemia

alters glucose turnover in the gut

increases glucose uptake from circulation
and decreases absorption from food
increases the release of glucagon-like
peptide-1 (GLP-1)

alters the gut microbiome

activates adenosine
monophosphate-protein-kinase (AMPK)
activator and increases the transport
capacity of all types of membrane
glucose transporters (GLUTs)

beneficial effects
not proven in CVOTs

↑EPC
(CD34+/VEGFR2+/CD45-
/dim) count assessed by flow
cytometry
↑FMD

[115]

↑EPC
(CD34+/VEGFR2+/CD45-
/dim) count assessed by flow
cytometry
↑ECFC colonies number

↑adhesion capability of
proangiogenic cells using
fibronectin adhesion assay

[116] *

↑EPC
(CD34+/VEGFR2+/CD45-
/dim) count assessed by flow
cytometry

[117]

1Sulphonylureas:
Gliclazide
Glimepiride
Gliquidon

stimulates insulin secretion from the
β-cells of the islets of Langerhans

increases insulin and C-peptide secretion

second generation
sulphonylureas are
superior to first generation
finding not proven in
CVOTs

gliclazide only:
↑EPC
(CD34+/VEGFR2+/CD45-
/dim) count assessed by flow
cytometry
↑FMD

[118]

no proven effects for other
sulphonylureas [119,120]
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Table 2. Cont.

Drug Class Mode of Action Cardiovascular Effects Effects on EPCs Reference

Thiazolidinediones:
Pioglitazone
Rosiglitazone

reduces insulin resistance and reduces
insulin concentrations

activates peroxisome
proliferator-activated receptor gamma

increases insulin sensitivity of liver, fat,
and skeletal muscle cells

reduces hepatic glucose output

increases peripheral glucose disposal

improves some MACEs
not proven in CVOTs
increased risk of heart
failure

pioglitazone:
↑EPC (CD34+/VEGFR2+)
count assessed by flow
cytometry

pioglitazone:

[121]

↑ circulating CD34+ cell count [122]

pioglitazone:
↑EPC (CD34+) count assessed
by flow cytometry
↑increased migratory response
and adhesion capacity to
fibronectin and collagen in
culture

[123]

pioglitazone:
↑EPC (CD34+/VEGFR2+)
count assessed by flow
cytometry
↑ SDF1 induced migratory
capacity
↑ ECFC in cultures

[124]

pioglitazone:
no effect on EPC count [125]

DPP-4 inhibitors
Sitagliptin
Linagliptin
Alogliptin
Saxagliptin
Vildagliptin
Teneligliptin

inhibits dipeptidyl peptidase 4 (DPP-4)

enhances the levels of glucagon-like
peptide-1 (GLP-1) and
glucose-dependent insulinotropic
polypeptide (GIP) in a
glucose-dependent manner
improves beta cell responsiveness to
glucose and stimulates insulin
biosynthesis and release
lowers glucagon secretion

reduces hepatic glucose production

non-inferiority to standard
treatment/class effect
proven in CVOTs except
for vildagliptin and
teneligliptin
increased risk for heart
failure for saxagliptin

sitagliptin:
↑EPC (CD34+/VEGFR2+)
count assessed by flow
cytometry
↑ SDF1 blood concentrations

[126]

sitagliptin:
↑EPC (CD34+/CXCR4+) count
assessed by flow cytometry
↓ SDF1 blood concentrations

[120]

sitagliptin:
↑EPC (CD34+/VEGFR2+ and
CD34+/VEGFR2+/CD133+)
count assessed by flow
cytometry
↑GLP-1, NO and SDF-1 blood
concentrations

[127]

sitagliptin:
↑EPC (CD34+) count assessed
by flow cytometry
↑FMD

[128]

linagliptin:
↑EPC (CD34+/VEGFR2+ and
CD34+/CD133+) count
↑GLP-1, and SDF-1 blood
concentrations

[129]

linalgiptin
no effect on EPCs
↑SDF-1 blood concentrations

[130]
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Table 2. Cont.

Drug Class Mode of Action Cardiovascular Effects Effects on EPCs Reference

DPP-4 inhibitors
Sitagliptin
Linagliptin
Alogliptin
Saxagliptin
Vildagliptin
Teneligliptin

inhibits dipeptidyl peptidase 4 (DPP-4)

enhances the levels of glucagon-like
peptide-1 (GLP-1) and
glucose-dependent insulinotropic
polypeptide (GIP) in a
glucose-dependent manner
improves beta cell responsiveness to
glucose and stimulates insulin
biosynthesis and release
lowers glucagon secretion

reduces hepatic glucose production

non-inferiority to standard
treatment/class effect
proven in CVOTs except
for vildagliptin and
teneligliptin
increased risk for heart
failure for saxagliptin

linagliptin↑CD34+/CD184+
EPC
improved arterial stiffness and
pulse wave velocity

[131]

vildagliptin:
↑EPC (CD34+/VEGFR2
+/CD133+) count assessed by
flow cytometry
↓SDF1 blood concentrations

[119]

alogliptin:
↑EPC (CD34+/VEGFR2
+/CD45-/dim) count assessed
by flow cytometry

[132]

saxagliptin:
↑EPC (CD34+/VEGFR
+/CD133+) count assessed by
flow cytometry
↑FMD

[133]

saxagliptin:
no effect on EPC if added to
metformin
improved migratory capacity

[134]

teneligliptin:
no significant effect on EPC
↑FMD

[135]

GLP-1 receptor
agonists
Exenatide
Lixisenatide
Liraglutide
Dulaglutide
Semaglutide

activates the GLP-1 receptor
stimulates insulin secretion and lowers
glucagon secretion in a
glucose-dependent manner
delays gastric emptying in the early
postprandial phase.

liraglutide, dulaglutide,
and semaglutide showed
cardiovascular superiority
in CVOTs or equivalent
studies

exenatide in full dose superior
to medium dosed liraglutide
in ↑EPC (CD34+/VEGFR2 +)

[136]

liraglutide superior to
sitagliptin in ↑VEGF and
SDF-1

[137]

dulaglutide:
↑EPC (CD34+/VEGFR2
+/CD133+)
enhanced EPC proliferation,
adhesion, migration, and
tubule formation abilities
improved brachial-ankle pulse
wave velocity

[138]

SGLT-2 inhibitors
Empagliflozin
Dapagliflozin
Canagliflozin

inhibits the sodium-glucose
cotransporter-2 by dapagliflozin in the
proximal renal tubule

improves both fasting and postprandial
plasma glucose levels

cardiovascular superiority
proven in CVOTs
beneficial in heart failure
and renal failure
black box warning for
lower limb amputations

dapagliflozin lead to a late
increase in EPC count
(CD34+/VEGFR2+)
no change in EPCs in the
empagliflozin group

[139]

dapagliflozin treatment
activated AMPK signaling in
EPCs

[140]

empagliflozin increases
CD133+EPC count [141]

canagliflozin improved CXCR
receptors on EPCs, improving
their migratory capacity

[142]
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Table 2. Cont.

Drug Class Mode of Action Cardiovascular Effects Effects on EPCs Reference

Insulin and insulin
analogs

binds to insulin receptors
proven non-inferiority to
standard therapy in
CVOTs for newer insulin
analogs

detemir and glargin both
increased EPC count
(CD34+/VEGFR2+ and
CD34+/VEGFR2+/CD133+)
decreased adhesion molecules

[143]

no difference in
CD34*/VEGFR2+ EPCs
between groups receiving
NPH insulin, insulin glargin,
or oral therapy
improved ECFC growth with
NPH insulin and glargin
decrease in intima media
thickness

[144]

intensive insulin therapy
increased EPC count
(CD34+/VEGFR2+)

no effect on clinical outcomes

[145]

reduced glucovariability by
using insulin pumps increased
the EPC count
(CD34+/VEGFR+) compared
to intensified insulin therapy

[58] *

* indicates studies of patients with type 1 diabetes, ↑ increased, ↓ reduced.

Possible mechanisms of cardiovascular benefits include beneficial effects on EPC
health. EPCs may benefit from improved glycemia and insulin sensitivity, enhanced nitric
oxide production, reduced oxidative stress, and decreased inflammatory parameters. Some
drugs improve EPC homing by other mechanisms, including altered expression of adhesion
molecules. Specific effects on EPC may vary according to differences among various classes
of anti-diabetic drugs.

Among the drugs with favorable cardiovascular effects is metformin. For many years
considered the first-line anti-diabetic therapy for patients with type 2 diabetes, metformin
has shown cardiovascular benefits in the landmark UKPDS study [146]. Considering EPC
biology, one study found that circulating EPC counts increased after metformin initiation
in patients with type 2 diabetes, correlating with increased FMD [115]. Later, an increase
in EPCs was proven also in patients with type 1 diabetes, when metformin was given
as a supportive treatment in the MERIT trial [116]. Regarding the EPC increase with
metformin in patients with type 2 diabetes, this effect could be enhanced when gliclazide, a
sulphonylurea, was added [117]. It seems that the most important mechanism affecting
EPC biology in metformin-treated patients is increased phosphorylated-eNOS expression
and NO production in cultures, as well as altered AMPK function [147].

In general, the effect on EPCs of most other anti-diabetic drugs was tested when these
drugs were added to metformin, with few exceptions.

Gliclazide alone was also able to improve EPC biology, correlating with flow-mediated
vessel dilatation and improvements in markers of oxidative stress as the key mechanism
of action on EPCs [118]. It seems so far that gliclazide is the only sulphonylurea with
a proven effect on EPCs. Glibenclamide did not show any increase in EPCs in a trial
when it was compared to vildagliptin [119]. The same was shown for glimepiride when
compared to sitagliptin [120]. Although hampered by methodological limitations in EPC
characterization and the absence of clinical assessment of endothelial function, this finding
fits perfectly into the context of better cardiovascular outcomes in patients treated with
gliclazide compared to other sulphonylureas after myocardial infarction [148,149].

Another class of oral anti-diabetic drugs are thiazolidinediones, or peroxisome proliferator-
activated receptors gamma (PPAR γ) agonists. Although they are used to improve blood
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glucose control, they have also been shown to affect other cardiovascular risk factors, like
dyslipidemia and albuminuria [150,151]. Since these drugs may cause water retention,
heart failure may occur [152,153]. Pioglitazone was shown to reduce the incidence of
some major adverse cardiovascular events in patients with type 2 diabetes [154,155]. Two
members of this class, rosiglitazone and pioglitazone, have been proven to impact EPCs. In
patients with type 2 diabetes, rosiglitazone improved EPC re-endothelialization impaired
by NADPH oxidase activity, diminishing the effects of oxidative stress [156]. Human stud-
ies with pioglitazone have demonstrated increased EPC counts and proliferative ability,
decreased EPC apoptosis, and improvements in some metabolic parameters and inflam-
matory markers [121–124]. Improved adipokine profile and anti-inflammatory properties
were also proposed mechanisms to obtain EPC biology improvement [122]. In some studies,
CD34+/VEGFR2+ EPCs were investigated, and these studies showed favorable results on
EPC health, but the clinical response on endothelial function remains unknown since it
was not tested. It has to be mentioned that in one study, pioglitazone showed no impact
on EPC counts, but in this study there is no evidence about the method used for EPC
determination [125]. These results justify the need for future research regarding the impact
of thiazolidindiones on EPCs and clinically assessed endothelial function.

Incretin-based therapies emerged recently as interesting add-ons to diabetic pharma-
cotherapy. There are two classes of incretin-modulating drugs. The first one contains in-
hibitors of dipeptidyl peptidase-4 (DPP-4 inhibitors). The main mode of action is inhibiting
the breakdown of endogenous incretins, mainly GLP-1, thus maintaining the concentration
of this substance within a physiological range. This incretin then enhances food-triggered in-
sulin secretion. The majority of them like sitagliptin, linagliptin, saxagliptin, and alogliptin
were tested in cardiovascular outcome trials and were proved to be non-inferior to standard
treatment [157–160]. In other words, these drugs were as good as standard treatment at that
time, like metformin, gliclazide, thiazolidindiones, or insulin. The impacts of vildagliptin
and teneligliptin on cardiovascular outcomes were not tested in large, randomized trials.

Considering the effect of DPP-4 inhibitors on EPCs, there are some results published
showing the favorable impact of these drugs. Improved glucoregulation, improved oxida-
tive parameters, increased NO and SDF-1 production, and decreased inflammation are the
proposed mechanisms for these effects [127,128,131]. Sitagliptin increased EPCs and SDF-1
during 4 weeks as add-on treatment compared to standard treatment involving metformin
and/or insulin secretagogues in a small sample of people with type 2 diabetes [126]. Similar
results considering EPC count, but with a decrease in SDF-1α during a 12-week trial in
patients with type 2 diabetes, were detected when sitagliptin was added to metformin [120].
These results on SDF-1 fit less well into the proposed mechanism of action of DPP-4 in-
hibitors since DPP-4 degrades SDF-1 [161]. More recently, sitagliptin was tested against
metformin in a short trial for three days. The drug increased EPCs, but also SDF-1α and
NO concentration, with the most profound impact on patients receiving both drugs [127].
In another trial, in which voglibose was used as the comparator drug, sitagliptin was
shown to increase EPCs and improve flow-mediated vasodilation, while voglibose showed
no effect [128]. Linagliptin also increased the EPC count acutely in patients with type
2 diabetes during a 4-day trial, with increased concentrations of SDF-1α. Intriguingly,
DPP-4 activity was abated by more than 50%, indicating other mechanisms responsible
for an increase in SDF-1α [129]. An increase in SDF-1 with linagliptin has been observed
even after 6 months of treatment. The effect on EPCs was not statistically significant [130].
However, in patients with chronic kidney disease, linagliptin improved EPC count, the
antioxidant level was enhanced, and clinical parameters like augmentation index and pulse
wave parameter were improved during a 12-week trial [131].

As mentioned before, vildagliptin also increases the number of EPCs, but with a re-
duction in SDF-1α levels after 12 months, in comparison to glibenclamide [119]. Alogliptin
showed the same effect as gliclazide on the EPC count. The authors concluded that the ob-
served increase in EPCs seemed to be due to the glucose-lowering effect of both drugs [132].
Furthermore, saxagliptin failed to be superior to metformin in two 12-week trials. Although
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there was an increase in EPC count and improvement in flow-mediated dilation, metformin
showed similar effects when these drugs were given as monotherapy, with no add-on
effect on EPCs in dual treatment [133,134]. Finally, teneligliptin showed an increasing trend
in the number of EPCs, albeit this did not reach statistical significance. However, flow-
mediated vasodilatation improved in the study group, suggesting a mechanism different
than EPC [135]. In conclusion, there is some evidence that DDP-4 inhibitors improve certain
aspects of EPC health; the main limitation is the absence of clinical endothelial assessment
in the majority of research, and a short study duration in some of the trials.

In contrast to DPP-4 inhibitors, GLP-1 receptor agonists override the physiological
effects of endogenous GLP-1 and exert a stronger effect on GLP-1 receptors. These are
potent anti-diabetic drugs with the main mechanism of action that stimulates insulin
secretion after an oral glucose load via the incretin effect. Other medical benefits may
include delaying gastric emptying, inhibiting glucagon production, decreasing pancreatic
beta-cell apoptosis, promoting weight loss, lowering arterial blood pressure and total
cholesterol, improving left ventricular ejection fraction, myocardial contractility, coronary
blood flow, cardiac output, and endothelial function while reducing infarction size. Some
of them like liraglutide, semaglutide, and dulaglutide are proven to be superior to standard
anti-diabetic treatment in secondary cardiovascular prevention [162–164]. Interestingly,
there are limited data about their effects on human EPCs. In a small trial, liraglutide was
inferior to exenatide considering EPC counts, but liraglutide was not given in the full dose
of 1.8 mg daily. The authors speculated about antioxidative/anti-inflammatory effects
as mediators on EPC biology [136]. In a head-to-head trial, comparing liraglutide in the
full dose of 1.8 mg daily and sitagliptin, there was a similar effect on EPC count, with a
more favorable effect of liraglutide on VEGF and SDF-1α after 26 weeks. However, in
this trial, CD 34+/VEGFR2+ EPCs were not investigated [137]. So far, dulaglutide is the
single GLP-1 receptor agonist that showed an increase in EPC count and function resulting
in improved clinical parameters like brachial-ankle pulse wave velocity. Lower grades
of inflammation and increased NO production were the supposed mechanisms for these
effects [138]. No data on humans for semaglutide have yet been published. Putting all
these data into the context of previously published cardiovascular outcome trials which
stated superiority for the majority of these drugs [162–164], and borderline significance
(p = 0.06) for exenatide [165], it seems that further investigations are justified to prove the
beneficial impact of GLP-1 receptor agonists on EPCs.

Sodium-glucose transporter-2 inhibitors (SGLT2i) are the latest introduced class of anti-
diabetic treatment. Their main mode of action involves the inhibition of the sodium/glucose
co-transporter-2 (SGLT-2) in the kidneys’ proximal tubule, causing glycosuria and lowering
blood glucose levels independent of insulin action. Empagliflozin was the first anti-diabetic
drug to show cardiovascular superiority over standard anti-diabetic treatment [166]. Later
it was recognized that the benefit of the entire drug class goes beyond the glucose-lowering
effects, from reducing the risk of MACEs, hospitalization for heart failure, and worsening
of chronic kidney disease (CKD) in diabetic patients, to reducing the rate of cardiovascular
death and hospitalization for heart failure in nondiabetic patients [167]. There is a limited
number of clinical research studies considering the impact of SGLT2i on EPC biology. In the
first randomized controlled trial of dapagliflozin vs. placebo with an open-label extension
and an open-label observational study of empagliflozin treatment on levels of circulating
stem cells (CSCs) and EPCs, results showed a non-significant increase in CSC and EPC after
short-term treatment with SGLT-2is. After 1.5 years of dapagliflozin treatment, the EPC
count significantly increased. The authors concluded that cardiovascular protection cannot
be directly correlated with EPC counts, suggesting protection is dominantly attributable
to other factors [139]. In another trial, empagliflozin increased the subpopulations of
circulating cells expressing CD133+ following 6 months of treatment, while improving
inflammation parameters [141]. In addition, dapagliflozin was shown to improve the
vasculogenic capacity of EPCs via activating AMPK-mediated inhibition of inflammation
and oxidative stress in a study comparing patients with type 2 diabetes with healthy
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controls over 3 months [140]. Similarly, a significant better expression of the CXCR4
receptor with an increase in the migratory function of CD34+ cells and an increase in the
expression of antioxidants (superoxide dismutase 2, catalase, and glutathione peroxidase)
in canagliflozin-treated patients as compared to the placebo group was shown [142]. These
results suggest that the action of SGLT-2i may also be in part mediated through the effect
on EPCs with consequently beneficial effects that go beyond the glucose-lowering effect,
but it is still too early to deduce on the effect of this drug class on EPCs. Although there are
only a few studies exploring these issues, they showed new directions in explaining and
understanding the beneficial effects of SGLT-2i. Future research would surely benefit from
better EPC definition.

The effect of insulin analogs on EPCs has also been investigated. In vitro, insulin
can mobilize EPCs. In patients suffering from type 2 diabetes, both insulin glargine and
detemir raised EPC counts, with no difference between the two drugs over 6 months [143].
However, it seems that long-acting insulin analogs increased the EPC count to a greater
extent in comparison to intermediate-acting human insulin and oral drugs with a trend
towards improved intima-media thickness [144]. Intensive insulin therapy enhanced EPC
counts over 6 months compared to basal–oral therapy (metformin and/or sulphonylureas)
in patients with type 2 diabetes and peripheral artery disease undergoing peripheral
angiography and subsequent angioplasty procedure. However, the cumulative incidence
of restenosis/amputation/limb salvage procedures/death in patients with type 2 diabetes
and chronic limb ischemia patients did not differ between groups at the study end, but
there was a significant effect on eNOS gene variants [145]. In addition, hypoglycemia
during insulin therapy may negatively impact EPC biology and clinical outcomes [56].
Since there was no inherent effect of both NPH insulin and insulin glargine on EPC count
compared to escalated oral therapy, it may be concluded that there is no specific effect of
insulin beyond better glucose control. These findings fit into the general accepted fact that
novel insulins are not superior to standard treatment in terms of reducing MACEs. Other
factors, like eNOS genetic polymorphism and eventual hypoglycemic events, may easily
overshadow the beneficial effects of insulin therapy.

Finally, it has to be mentioned that trials involving patients with type 1 diabetes are
few. The majority of treatment discussed previously is registered for patients with type 2
diabetes. In an interesting trial involving patients with type 1 diabetes, reducing glucose
variability with new technologies like insulin pumps showed beneficial effects on EPC
count in a 6-month trial [58]. As mentioned before, adding metformin to insulin treatment
in type 1 diabetes may improve EPC count and function [116].

5. Conclusions

EPCs are a captivating and vital component of the vascular system. Their roles in
vascular repair, regeneration, and potential therapeutic applications make them a subject of
ongoing research and hold promise for improving cardiovascular health and advancing
regenerative medicine. Vessel regeneration and repairment are both altered in diabetes
mellitus. Consequently, micro and macroangiopathic complications may develop. There-
fore, EPCs have become the target of interest for many scientists who are putting an effort
into discovering treatment options that can affect their count and function. Many available
anti-diabetic drugs like metformin, sulphonylureas, PPAR γ agonists, DPP-4 inhibitors, and
insulin are proven to improve, under certain conditions, the low number and functional
impairment of EPCs. SGLT-2i and GLP-1 receptor agonists are the newest anti-diabetic
drugs with limited evidence of beneficial effects on EPC biology. Future research will likely
focus on untangling the complexity of EPC biology and developing innovative approaches
to harness their full potential both in type 2 and type 1 diabetes.

To conclude, current data suggest that the low number and dysfunction of EPCs can
be improved by treatment of diabetes with currently available drugs, either through drugs’
specific mechanisms or through improving blood glucose control.
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23. Pyšná, A.; Bém, R.; Němcová, A.; Fejfarová, V.; Jirkovská, A.; Hazdrová, J.; Jude, E.B.; Dubskỳ, M. Endothelial Progenitor Cells
Biology in Diabetes Mellitus and Peripheral Arterial Disease and Their Therapeutic Potential. Stem Cell Rev. Rep. 2019, 15, 157–165.
[CrossRef] [PubMed]

24. Kukumberg, M.; Zaw, A.M.; Wong, D.H.; Toh, C.M.; Chan, B.P.; Seet, R.C.; Wong, P.T.; Yim, E.K. Characterization and Functional
Assessment of Endothelial Progenitor Cells in Ischemic Stroke Patients. Stem Cell Rev. Rep. 2021, 17, 952–967. [CrossRef] [PubMed]

25. Salybekov, A.A.; Kobayashi, S.; Asahara, T. Characterization of Endothelial Progenitor Cell: Past, Present, and Future. Int. J. Mol.
Sci. 2022, 23, 7697. [CrossRef]

26. Chambers, S.E.; Pathak, V.; Pedrini, E.; Soret, L.; Gendron, N.; Guerin, C.L.; Stitt, A.W.; Smadja, D.M.; Medina, R.J. Current
Concepts on Endothelial Stem Cells Definition, Location, and Markers. Stem Cells Transl. Med. 2021, 10, S54–S61. [CrossRef]
[PubMed]

27. Altabas, V. Diabetes, Endothelial Dysfunction, and Vascular Repair: What Should a Diabetologist Keep His Eye On? Int. J.
Endocrinol. 2015, 2015, 848272. [CrossRef]

28. Altabas, V.; Biloš, L.S.K. The Role of Endothelial Progenitor Cells in Atherosclerosis and Impact of Anti-Lipemic Treatments on
Endothelial Repair. Int. J. Mol. Sci. 2022, 23, 2663. [CrossRef]

29. Ross, M.D. Endothelial Regenerative Capacity and Aging: Influence of Diet, Exercise and Obesity. Curr. Cardiol. Rev. 2018, 14,
233–244. [CrossRef]

30. Li, J.-H.; Li, Y.; Huang, D.; Yao, M. Role of Stromal Cell-Derived Factor-1 in Endothelial Progenitor Cell-Mediated Vascular Repair
and Regeneration. Tissue Eng. Regen. Med. 2021, 18, 747–758. [CrossRef]

31. Klein, G.; Schmal, O.; Aicher, W.K. Matrix Metalloproteinases in Stem Cell Mobilization. Matrix Biol. 2015, 44, 175–183. [CrossRef]
[PubMed]

32. Tao, J.; Cao, X.; Yu, B.; Qu, A. Vascular Stem/Progenitor Cells in Vessel Injury and Repair. Front. Cardiovasc. Med. 2022, 9, 845070.
[CrossRef] [PubMed]

33. Wang, S.; Miao, J.; Qu, M.; Yang, G.-Y.; Shen, L. Adiponectin Modulates the Function of Endothelial Progenitor Cells via
AMPK/eNOS Signaling Pathway. Biochem. Biophys. Res. Commun. 2017, 493, 64–70. [CrossRef] [PubMed]

34. Zhu, Z.; Fu, C.; Li, X.; Song, Y.; Li, C.; Zou, M.; Guan, Y.; Zhu, Y. Prostaglandin E2 Promotes Endothelial Differentiation from Bone
Marrow-Derived Cells through AMPK Activation. PLoS ONE 2011, 6, e23554. [CrossRef]

35. Chopra, H.; Hung, M.K.; Kwong, D.L.; Zhang, C.F.; Pow, E.H.N. Insights into Endothelial Progenitor Cells: Origin, Classification,
Potentials, and Prospects. Stem Cells Int. 2018, 2018, 9847015. [CrossRef]

36. Yang, J.-X.; Pan, Y.-Y.; Wang, X.-X.; Qiu, Y.-G.; Mao, W. Endothelial Progenitor Cells in Age-Related Vascular Remodeling. Cell
Transpl. 2018, 27, 786–795. [CrossRef]

37. Morrone, D.; Picoi, M.E.L.; Felice, F.; De Martino, A.; Scatena, C.; Spontoni, P.; Naccarato, A.G.; Di Stefano, R.; Bortolotti, U.; Dal
Monte, M. Endothelial Progenitor Cells: An Appraisal of Relevant Data from Bench to Bedside. Int. J. Mol. Sci. 2021, 22, 12874.
[CrossRef]

38. Fadini, G.P.; Mehta, A.; Dhindsa, D.S.; Bonora, B.M.; Sreejit, G.; Nagareddy, P.; Quyyumi, A.A. Circulating Stem Cells and
Cardiovascular Outcomes: From Basic Science to the Clinic. Eur. Heart J. 2020, 41, 4271–4282. [CrossRef]

39. Evans, C.E.; Iruela-Arispe, M.L.; Zhao, Y.-Y. Mechanisms of Endothelial Regeneration and Vascular Repair and Their Application
to Regenerative Medicine. Am. J. Pathol. 2021, 191, 52–65. [CrossRef]

40. Pearson, J.D. Plasticity of Adult Endothelium: How Frequent and to What Extent? Cardiovasc. Res. 2015, 108, 319–320. [CrossRef]
41. Kliche, K.; Jeggle, P.; Pavenstädt, H.; Oberleithner, H. Role of Cellular Mechanics in the Function and Life Span of Vascular

Endothelium. Pflügers Arch. Eur. J. Physiol. 2011, 462, 209–217. [CrossRef] [PubMed]
42. Hobson, B.; Denekamp, J. Endothelial Proliferation in Tumours and Normal Tissues: Continuous Labelling Studies. Br. J. Cancer

1984, 49, 405–413. [CrossRef] [PubMed]
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